

# Machine Learning for Bioinformatics & Systems Biology

### 3. Feature selection and extraction

Lodewyk WesselsThe Netherlands Cancer InstituteMarcel ReindersDelft University of TechnologyPerry MoerlandAmsterdam UMC,<br/>University of Amsterdam

Some material courtesy of Robert Duin and David Tax

- Feature extraction
- Feature selection
- Regularized classifiers



#### Feature extraction

- Linear:
  - PCA
  - Fisher
- Non-linear
  - MDS (Multi-dimensional scaling)



#### Feature selection

- Criteria
- search algorithms
  - Forward selection
  - Backward selection
  - Branch & Bound search



#### Regularized classifiers

- PAM (Prediction Analysis of Micro-arrays = shrunken centroids)
- Ridge regression
- LASSO (Least Absolute Shrinkage and Selection Operator)



## **Dimensionality reduction**

Aim of Feature Extraction and Selection: reduce dimensionality



# **Dimensionality reduction**

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?

- **1. Fewer parameters**: faster, easier to estimate possibly better performance
- 2. Explain which measurements (genes) are useful and which are not (reduce redundancy)
- **3.** Visualisation



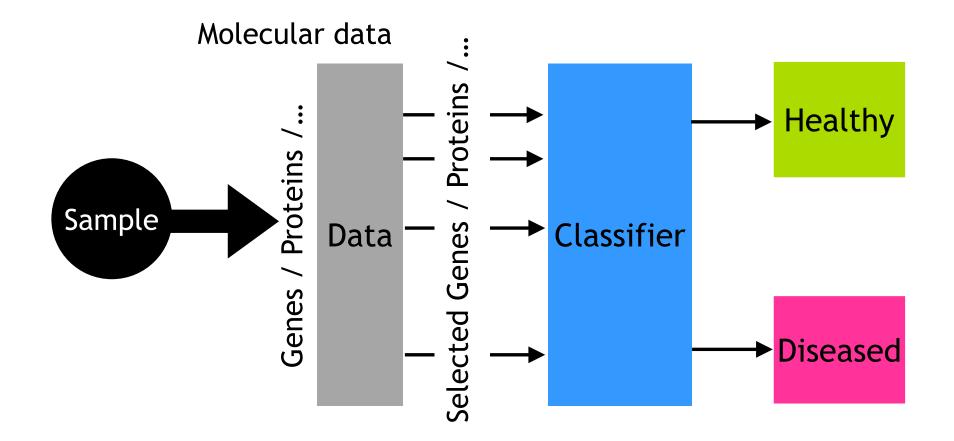
## **Dimensionality reduction**

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?



## Example: molecular diagnostic classifiers





- Curse of dimensionality (# features / # samples):
  - for **fixed** sample size
  - and **increasing** number of features (number of parameters)
  - performance **decreases**
  - (There are fewer samples per parameter, i.e. worse estimates)



- Curse of dimensionality (# features / # samples):
  - for **fixed** sample size
  - and **increasing** number of features (number of parameters)
  - performance **decreases**
  - (There are fewer samples per parameter, i.e. worse estimates)
- Traditional assumption in pattern recognition:
  - need 5-10 times as many samples as there are parameters
  - with regularization we can do with fewer



- Curse of dimensionality (# features / # samples):
  - for **fixed** sample size
  - and **increasing** number of features (number of parameters)
  - performance **decreases**
  - (There are fewer samples per parameter, i.e. worse estimates)
- Traditional assumption in pattern recognition:
  - need 5-10 times as many samples as there are parameters
  - with regularization we can do with fewer
- But genomic data (e.g. RNAseq) is extreme:
  - 100-1000 times *fewer* samples than parameters!

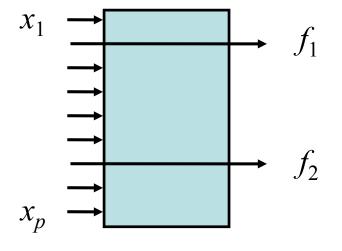


- Curse of dimensionality (# features / # samples):
  - for **fixed** sample size
  - and **increasing** number of features (number of parameters)
  - performance **decreases**
  - (There are fewer samples per parameter, i.e. worse estimates)
- Traditional assumption in pattern recognition:
  - need 5-10 times as many samples as there are parameters
  - with regularization we can do with fewer
- But genomic data (e.g. RNAseq) is extreme:
  - 100-1000 times *fewer* samples than parameters!
- For example: nearest mean classifier on Golub data
  - $p = 3051, k = 2 \rightarrow number of parameters = 6102$
  - Number of samples, n = 38



### Feature selection vs. extraction

• Feature selection: select *d* out of *p* measurements

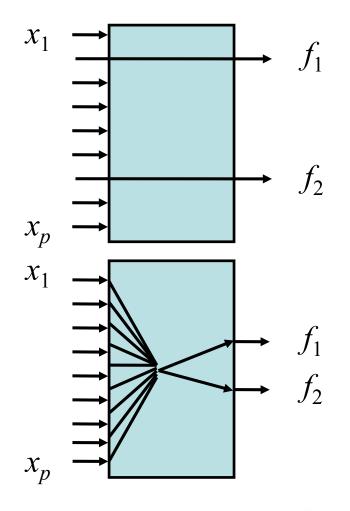




### Feature selection vs. extraction

• Feature selection: select *d* out of *p* measurements

 Feature extraction: map *p* measurements to *d* measurements (e.g. PCA, CCA, LDA, MDS)





### Feature selection v extraction (2)

|           | Advantage           | Disadvantage      |
|-----------|---------------------|-------------------|
| Selection | cut in measurements | expensive         |
|           | easy interpretation | often approximate |



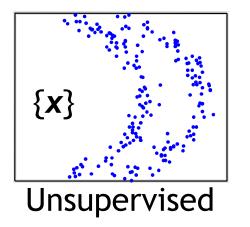
## Feature selection v extraction (2)

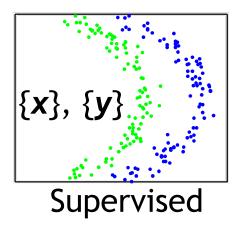
|            | Advantage                                     | Disadvantage                                   |
|------------|-----------------------------------------------|------------------------------------------------|
| Selection  | cut in measurements                           | expensive                                      |
|            | easy interpretation                           | often approximate                              |
| Extraction | cheap<br>can be nonlinear<br>not axis aligned | need all measurements<br>criterion sub-optimal |



## Feature extraction (1)

Main types: supervised/unsupervised

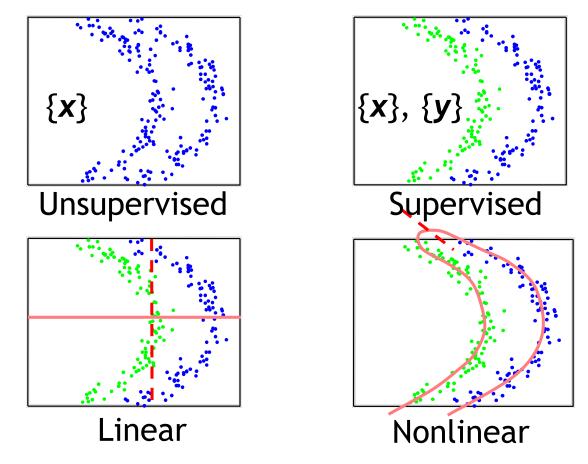






## Feature extraction (1)

Main types: Linear / Nonlinear





### Feature extraction (2)

- Linear, unsupervised:
  - Principal Component Analysis (PCA)
- Linear, supervised:
  - Linear Discriminant Analysis (LDA)



• **Principal component analysis (PCA, 1901):** Goal: find directions in data...



- **Principal component analysis (PCA, 1901):** Goal: find directions in data...
  - which retain as much *variation* as possible

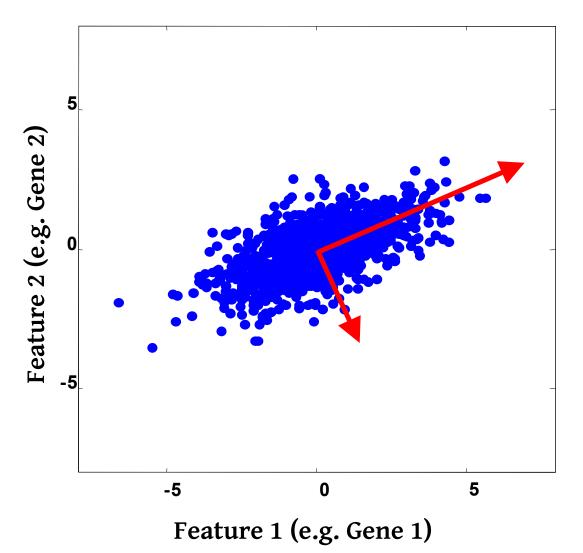


- **Principal component analysis (PCA, 1901):** Goal: find directions in data...
  - which retain as much *variation* as possible
  - which make projected data *uncorrelated*



- **Principal component analysis (PCA, 1901):** Goal: find directions in data...
  - which retain as much *variation* as possible
  - which make projected data *uncorrelated*
  - which minimise squared *reconstruction error*





Steps:

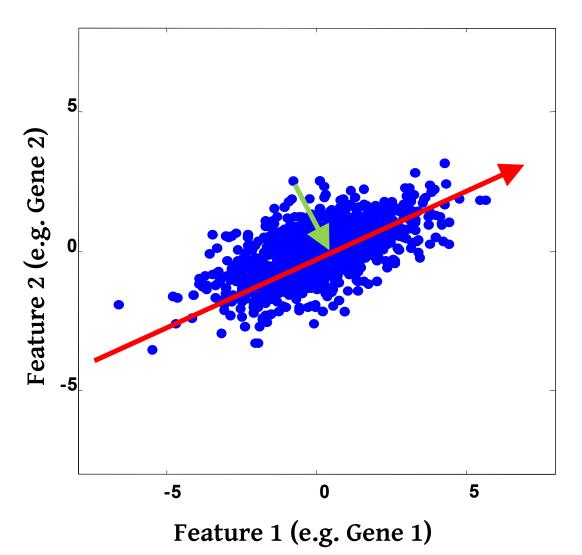
- 1. Center data
- 2. Compute covariance, C
- 3. Perform PCA on C

Output:

- 1. Eigenvectors:  $\mathbf{e}_1$ ,  $\mathbf{e}_2$
- 2. Eigenvalues:  $\lambda_1$ ,  $\lambda_2$

Reducing dimensions: Choosing 'd'





#### Steps:

- 1. Center data
- 2. Compute covariance, C
- 3. Perform PCA on C

### Output:

- 1. Eigenvectors:  $\mathbf{e}_1$ ,  $\mathbf{e}_2$
- 2. Eigenvalues:  $\lambda_1$ ,  $\lambda_2$

### **Reducing dimensions:**

- 1. Choosing *d* = 1
- 2. Project data on  $e_1$



# Choosing reduced dimensionality

• To choose *d* inspect the retained variance,

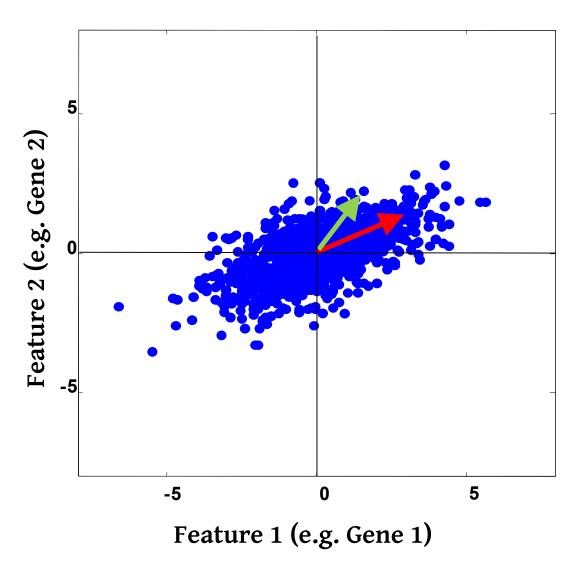


• or the ratio of retained variance,

$$\sum_{i=1}^{d} \lambda_i / \sum_{j=1}^{p} \lambda_j$$

- Rule of thumb: Select *d* for which 80-90% variance is retained
- Reduced dimensionality data set
  - $[\mathbf{x}_1^{T}; \mathbf{x}_2^{T}; ...; \mathbf{x}_2^{T}][\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_d]$





Steps:

- 1. Center data
- 2. Compute covariance, C
- 3. Perform PCA on C

### Output:

- 1. Eigenvectors:  $e_1$ ,  $e_2$
- 2. Eigenvalues:  $\lambda_1$ ,  $\lambda_2$

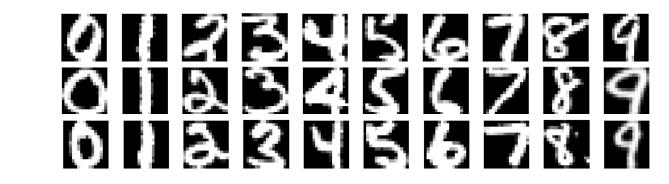
### **Reducing dimensions:**

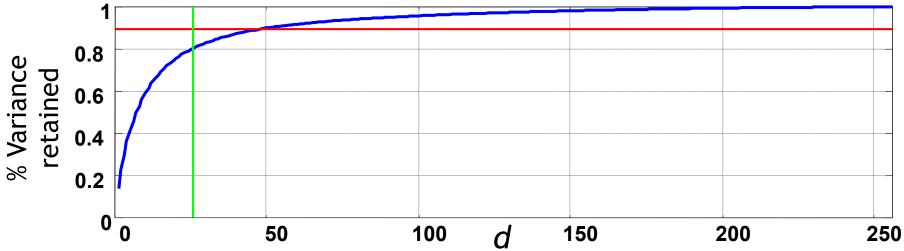
- 1. Choosing *d* = 1
- 2. Project data on  $\mathbf{e}_1$



### PCA example

• *e.g.* NIST digits: 2000 samples, *p* = 256 (16 X 16)



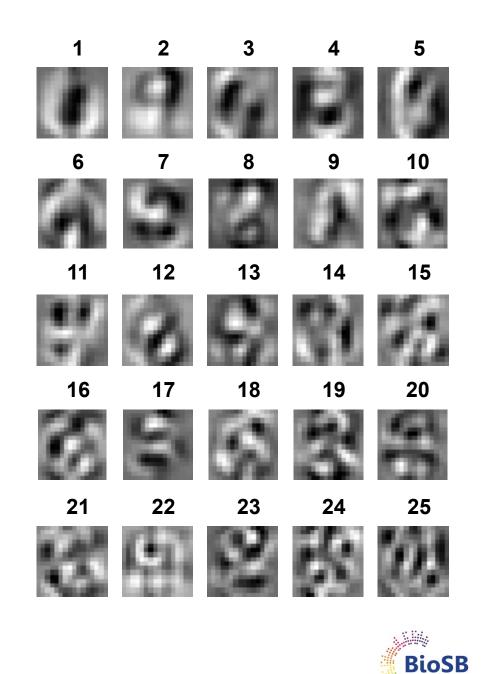




# PCA example (2)

 For image data, principal components can also be interpreted...

> most often occuring variations between digits



# PCA tips

• Ensure data is centered (mean of each feature is zero):  $x' \leftarrow (x - \mu)$ 



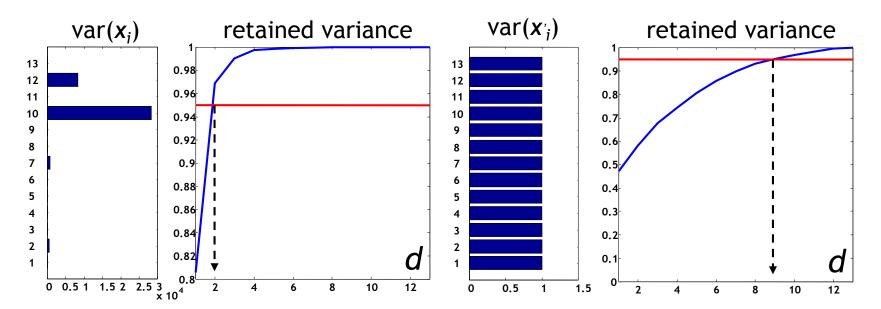
# PCA tips

- Ensure data is centered (mean of each feature is zero):  $x' \leftarrow (x \mu)$
- PCA is sensitive to scaling
  - length in cm has a much larger variance than length in m
  - best to standardise:  $x' \leftarrow (x \mu) / \sigma$



# PCA tips

- Ensure data is centered (mean of each feature is zero):  $x' \leftarrow (x \mu)$
- PCA is sensitive to scaling
  - length in cm has a much larger variance than length in m
  - best to standardise:  $x' \leftarrow (x \mu) / \sigma$





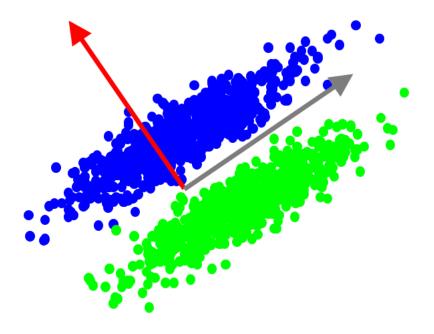
# PCA conclusions

- PCA:
  - Is global and linear
  - Is **unsupervised** (but we can do PCA on each class)
  - Needs a **lot of data** to estimate  $\Sigma$  well.



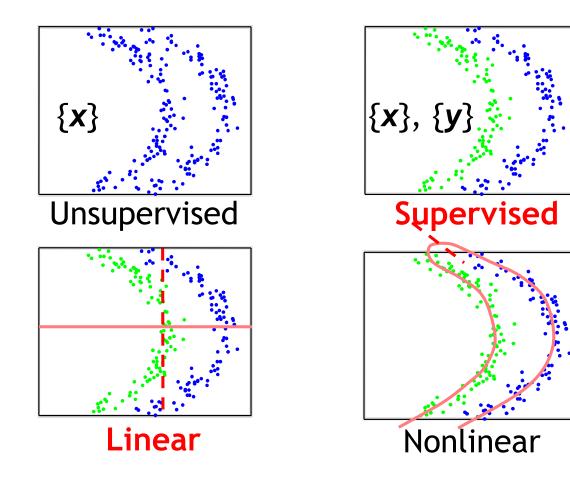
# PCA conclusions

- PCA:
  - Is global and linear
  - Is **unsupervised** (but we can do PCA on each class)
  - Needs a **lot of data** to estimate  $\Sigma$  well.
- Danger:
  - Criterion is not necessarily related to the goal;
  - Might discard important directions



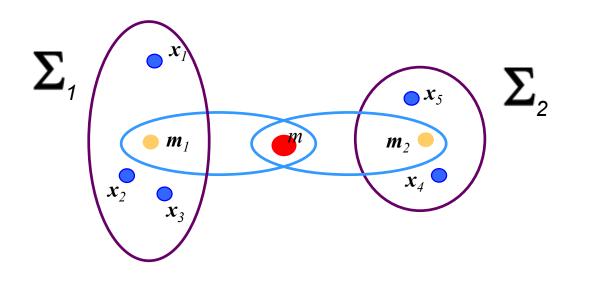
# Supervised, linear feature extraction

- If class label  $\omega$  (or y) is given, supervised extraction
- Examples: Fisher mapping; Linear Discriminant Analysis (Day 2)





### Supervised feature extraction



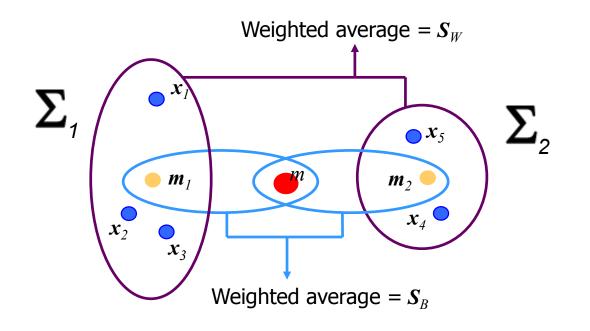


### Supervised feature extraction

Within-class and between-class scatter matrices:

• Within-class:

$$\boldsymbol{S}_{w} = \sum_{i=1}^{C} \frac{\boldsymbol{n}_{i}}{\boldsymbol{n}} \boldsymbol{\Sigma}_{i}$$





### Supervised feature extraction

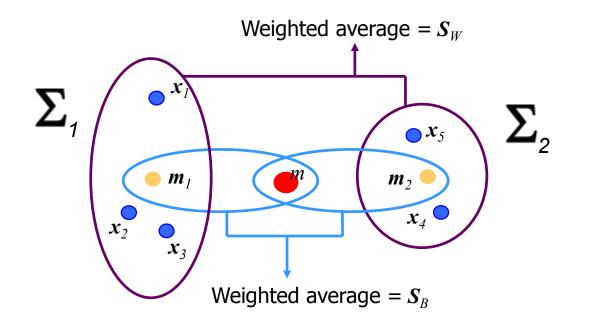
Within-class and between-class scatter matrices:

• Within-class:

$$\boldsymbol{S}_{w} = \sum_{i=1}^{C} \frac{n_{i}}{n} \boldsymbol{\Sigma}_{i}$$

• Between-class:

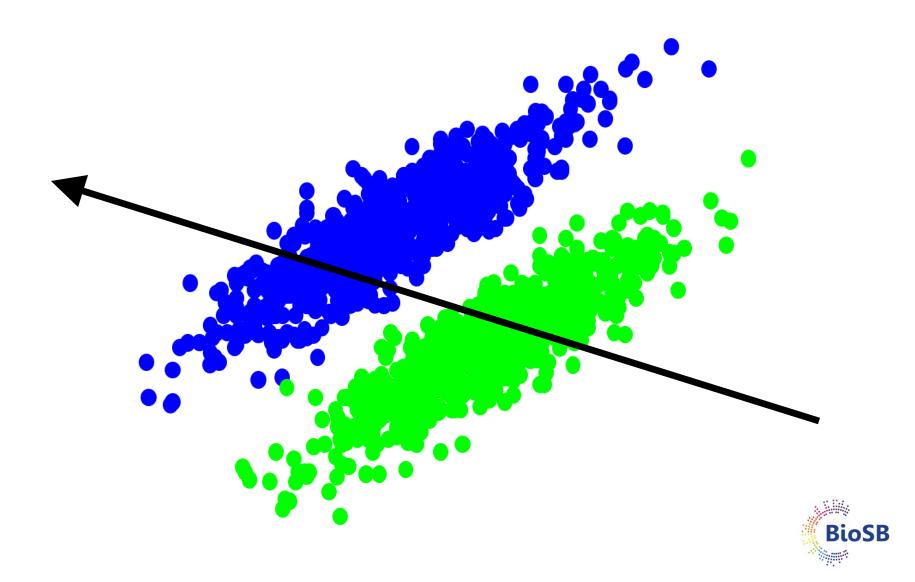
$$\boldsymbol{S}_{B} = \sum_{i=1}^{C} \frac{n_{i}}{n} (\boldsymbol{m}_{i} - \boldsymbol{m})(\boldsymbol{m}_{i} - \boldsymbol{m})^{T}$$

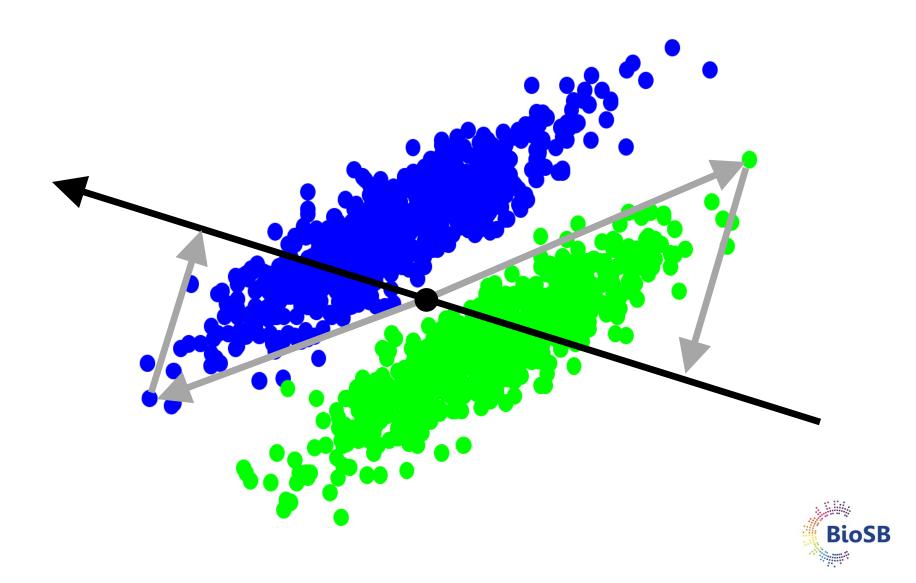


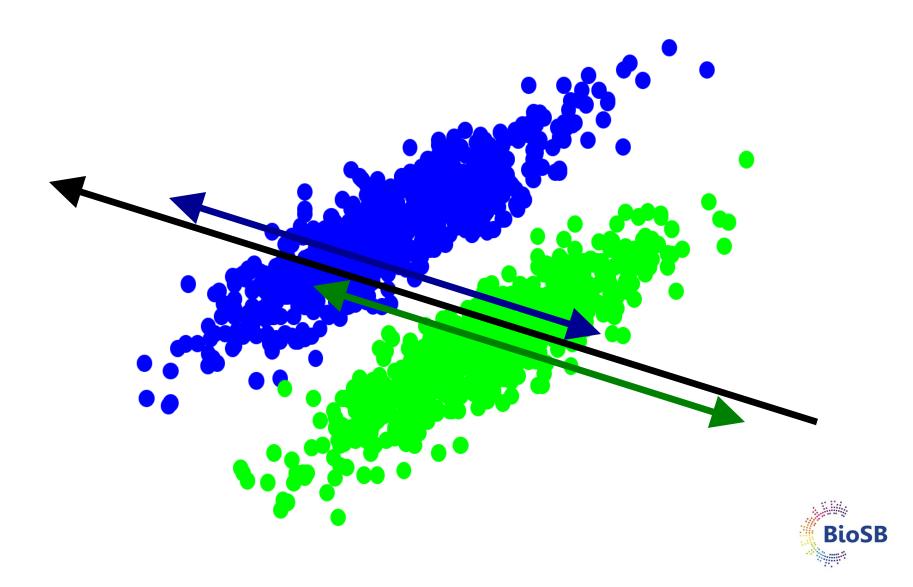


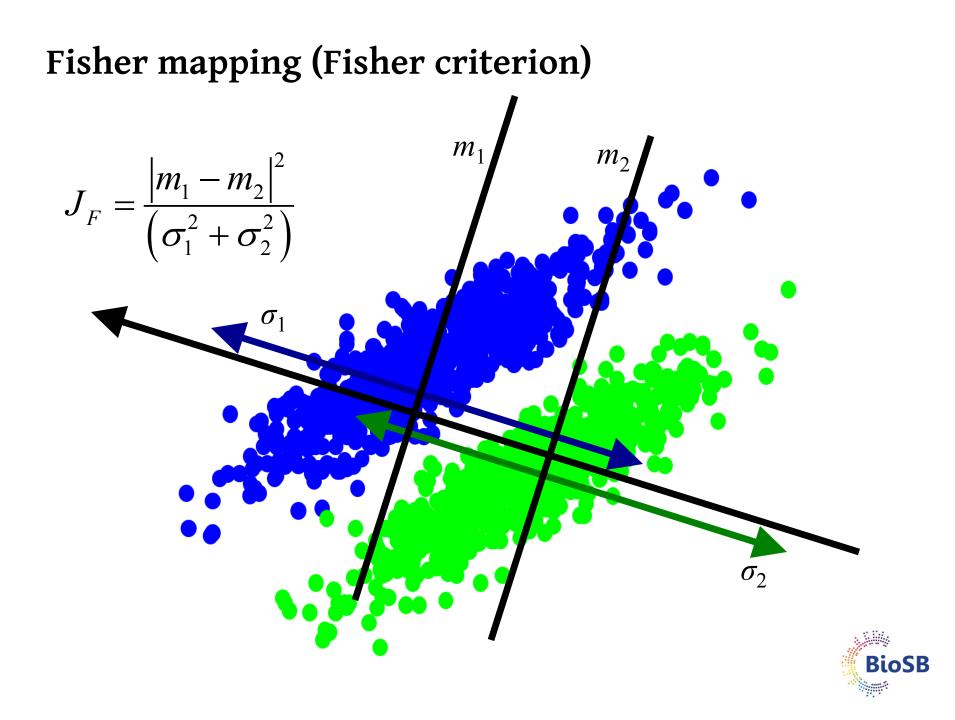
Fisher mapping: finding the direction (subspace) to project onto for the best class separation

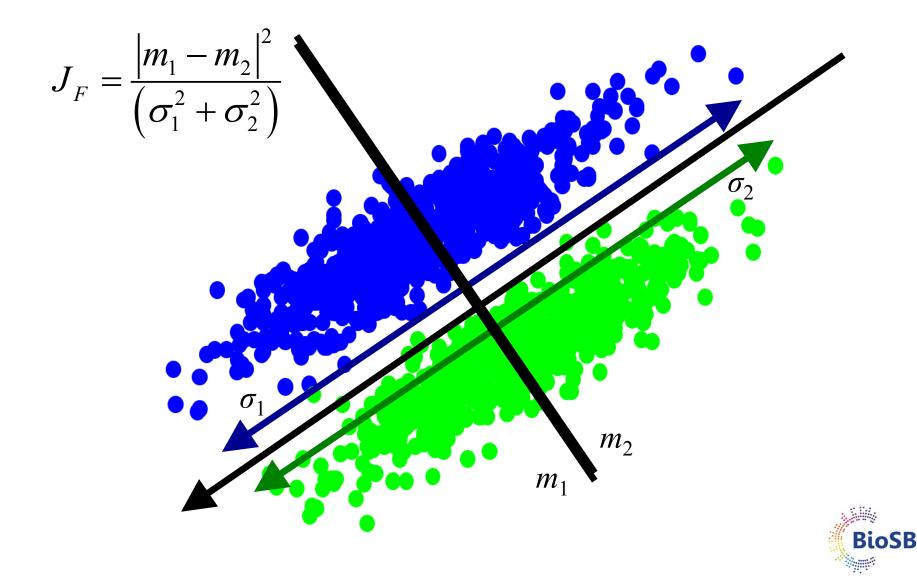
BioSB

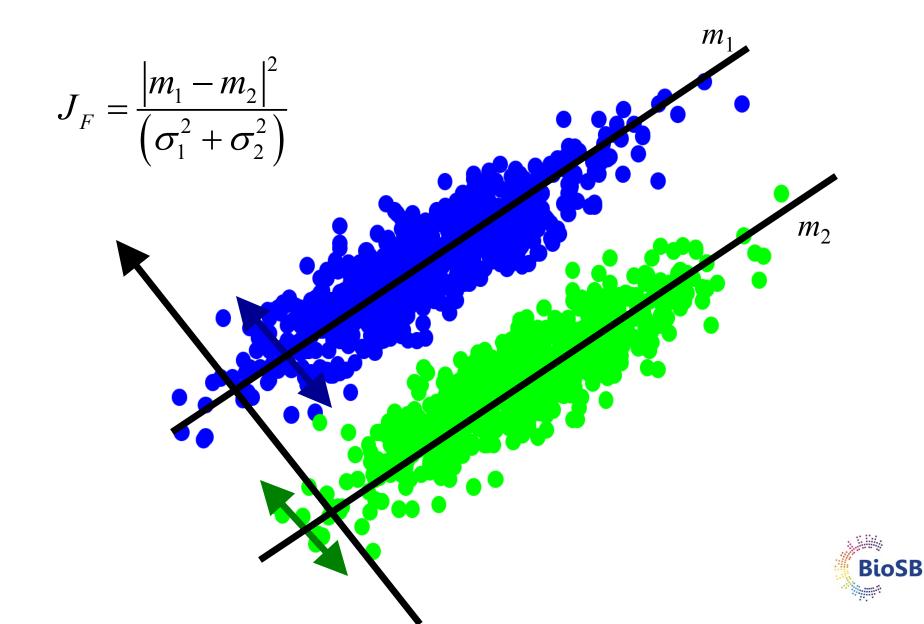










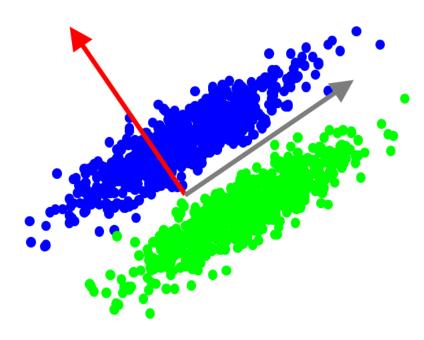


# Fisher mapping

- Find basis vector **a**<sub>1</sub> for {**x**} such that in the projections, the classes are maximally separated
- Choose  $a_1$  to maximise Fisher criterion:

$$J_F(\boldsymbol{a}_1) = \frac{\boldsymbol{a}_1^T \boldsymbol{S}_B \boldsymbol{a}_1}{\boldsymbol{a}_1^T \boldsymbol{S}_W \boldsymbol{a}_1}$$

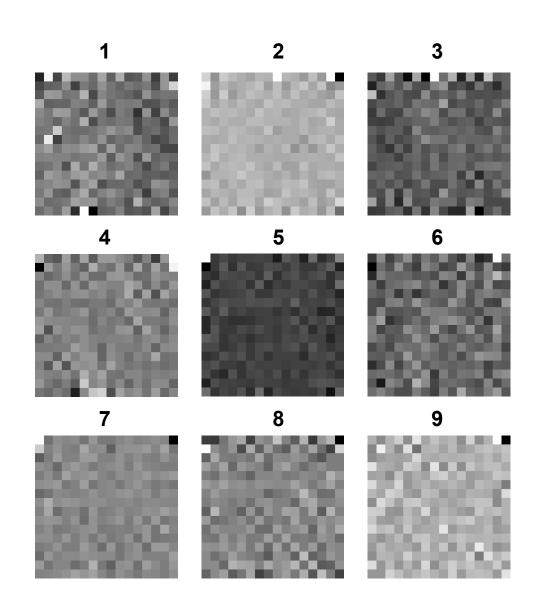
- Maximize between class variance
  Minimize within class variance
- Solution:
  - eigen-analysis on  $S_W^{-1}S_B$
  - select c-1 (# classes 1) dimensions for final classifier (allows linear separation of classes)

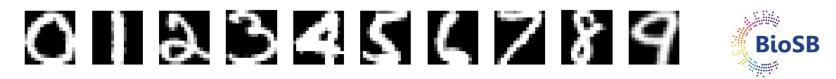




# Fisher mapping (2)

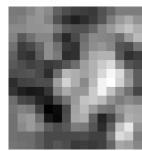
- Map down to a maximum of *c* 1 dimensions
- Example: NIST digits



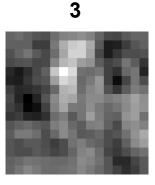


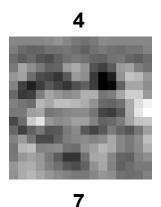
# Fisher mapping (3)

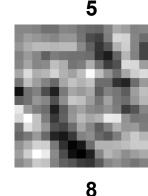
• To avoid fitting noise, can do PCA first

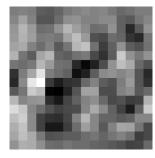


2









6

9



If system underdetermined  $(n \le p)$ , first doing PCA is required, otherwise matrix inversion results in singularity

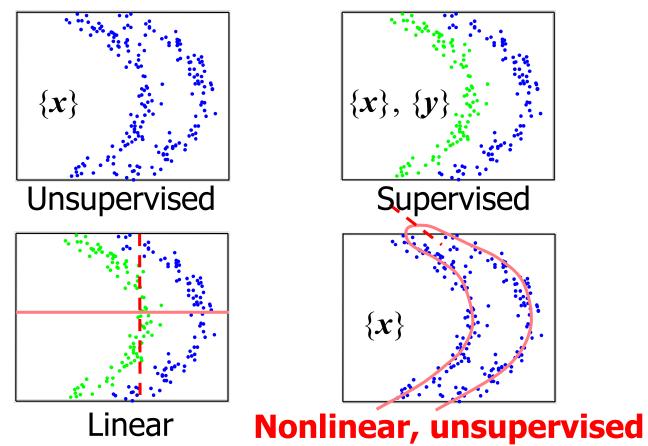
#### Summary

- Discussed:
  - Linear feature extraction
    - Unsupervised: Principal Component Analysis (PCA)
    - Supervised: Fisher mapping



#### **Feature extraction**

• Main types:





### Nonlinear, unsupervised feature extraction

#### • Multidimensional scaling (MDS):

- Nonlinear:
  - Sammon mapping
  - t-SNE



### Nonlinear feature extraction

#### Example: embedding

 Find new representation such that distances between samples are preserved as well as possible





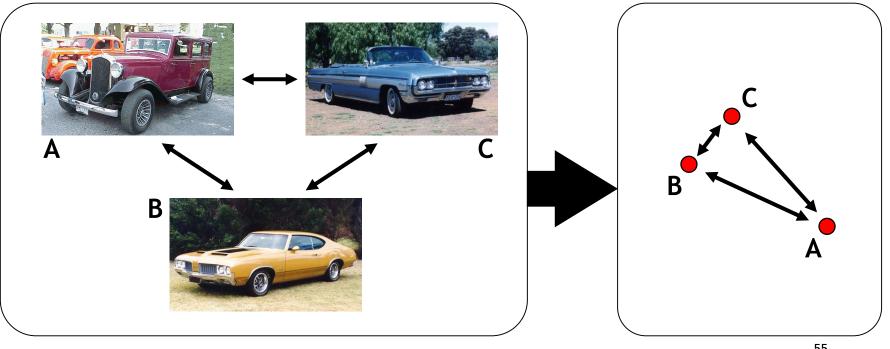
# Multidimensional scaling (MDS)

- Criterion: preserve all inter-sample distances
- Needed: *n* x *n* distance matrix between all samples
- Map samples to a new (lower dimensional) space



# Multidimensional scaling (MDS)

- Criterion: preserve all inter-sample distances
- Needed: *n* x *n* distance matrix between all points
- Map samples to a new (lower dimensional) space





- Advantages of using distances:
  - do not necessarily need original data



- Advantages of using distances:
  - do not necessarily need original data
  - allows for inclusion of **knowledge on objects** (e.g. characteristics of amino acids when comparing proteins)



- Advantages of using distances:
  - do not necessarily need original data
  - allows for inclusion of **knowledge on objects** (e.g. characteristics of amino acids when comparing proteins)
  - allows for inclusion of **knowledge of relations** (e.g. invariances) in distance measure (e.g. Pearson correlation being shift and scale independent when comparing expression profiles)



- Advantages of using distances:
  - do not necessarily need original data
  - allows for inclusion of **knowledge on objects** (e.g. characteristics of amino acids when comparing proteins)
  - allows for inclusion of **knowledge of relations** (e.g. invariances) in distance measure (e.g. Pearson correlation being shift and scale independent when comparing expression profiles)
  - easy to introduce nonlinearity



- Advantages of using distances:
  - do not necessarily need original data
  - allows for inclusion of knowledge on objects (e.g. characteristics of amino acids when comparing proteins)
  - allows for inclusion of **knowledge of relations** (e.g. invariances) in distance measure (e.g. Pearson correlation being shift and scale independent when comparing expression profiles)
  - easy to introduce nonlinearity
- Algorithms should find:
  - new, low-dimensional coordinates for each object
  - the number of dimensions to embed the data in



- $d_{ij}$ : distance  $|| \mathbf{x}_i \mathbf{x}_j ||$  in original space (? dimensional)
- $\delta_{ij}$  : distance  $|| y_i y_j ||$  in new space (*d* dimensional)



- $d_{ij}$ : distance  $|| \mathbf{x}_i \mathbf{x}_j ||$  in original space (? dimensional)
- $\delta_{ij}$  : distance  $|| y_i y_j ||$  in new space (*d* dimensional)

$$Stress(\mathbf{y}) = \frac{1}{\sum_{i} \sum_{j > i} d_{ij}^{(q+2)}} \sum_{i} \sum_{j > i} d_{ij}^{q} (\delta_{ij} - d_{ij})^{2}$$

 weight factor q = ..., -2, -1, 0, 1, 2,... q > 0 : emphasise large distances
 q < 0 : de-emphasise large distances (smallest more important)</li>

Sammon mapping: q = -1



- Procedure:
  - Initialize positions of samples in lower dimensional space  $(y_i)$



- Procedure:
  - Initialize positions of samples in lower dimensional space  $(y_i)$
  - Compute stress

$$Stress(\mathbf{y}) = \frac{1}{\sum_{i} \sum_{j>i} d_{ij}^{(q+2)}} \sum_{i} \sum_{j>i} d_{ij}^{q} (\delta_{ij} - d_{ij})^{2}$$



- Procedure:
  - Initialize positions of samples in lower dimensional space  $(y_i)$
  - Compute stress

$$Stress(\mathbf{y}) = \frac{1}{\sum_{i} \sum_{j > i} d_{ij}^{(q+2)}} \sum_{i} \sum_{j > i} d_{ij}^{q} (\delta_{ij} - d_{ij})^{2}$$

• Compute derivative of the stress with respect to positions of samples in new space



- Procedure:
  - Initialize positions of samples in lower dimensional space  $(y_i)$
  - Compute stress

$$Stress(\mathbf{y}) = \frac{1}{\sum_{i} \sum_{j > i} d_{ij}^{(q+2)}} \sum_{i} \sum_{j > i} d_{ij}^{q} (\delta_{ij} - d_{ij})^{2}$$

- Compute derivative of the stress with respect to positions of samples in new space
- Adapt the positions of samples in lower dimensional space

$$y' = y - \alpha \frac{\partial Stress(y)}{\partial y}$$



- Procedure:
  - Initialize positions of samples in lower dimensional space  $(y_i)$
  - Compute stress

$$Stress(\mathbf{y}) = \frac{1}{\sum_{i} \sum_{j > i} d_{ij}^{(q+2)}} \sum_{i} \sum_{j > i} d_{ij}^{q} (\delta_{ij} - d_{ij})^{2}$$

- Compute derivative of the stress with respect to positions of samples in new space
- Adapt the positions of samples in lower dimensional space

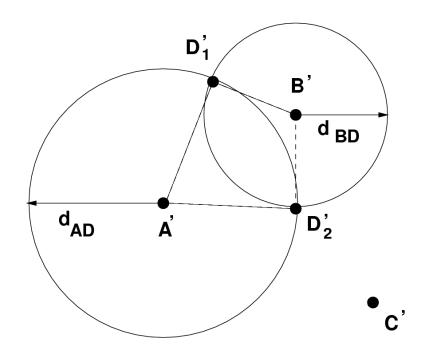
$$\mathbf{y'} = \mathbf{y} - \alpha \frac{\partial Stress(\mathbf{y})}{\partial \mathbf{y}}$$

• Repeat till convergence (positions of samples do not change)



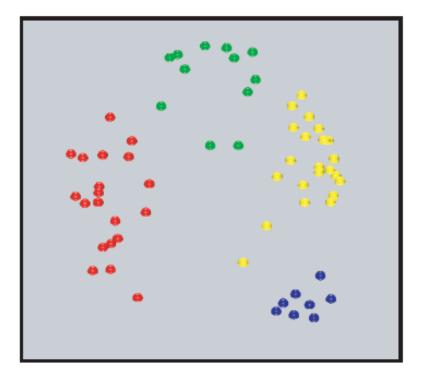
# Embedding new points

- Problematic: re-run entire algorithm...
- Sub-optimal solution: triangulation
  - Embed new point **D**
  - **D** has **A** and **B** as neighbors in original space
  - Preserve distance to two embedded neigbours A', B' exactly
  - Use C' to decide which of the two candidates D<sub>1</sub>', D<sub>2</sub>' to use

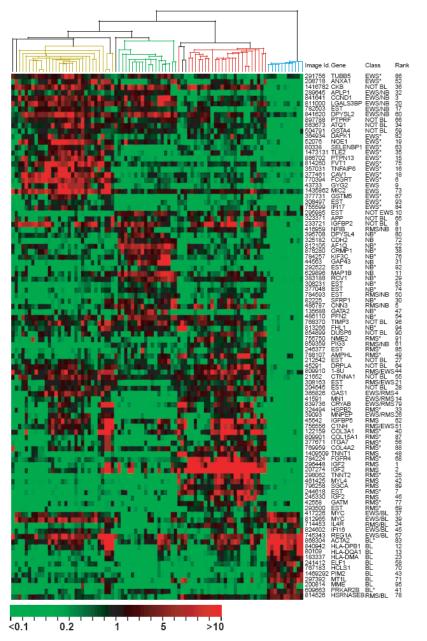




### MDS example

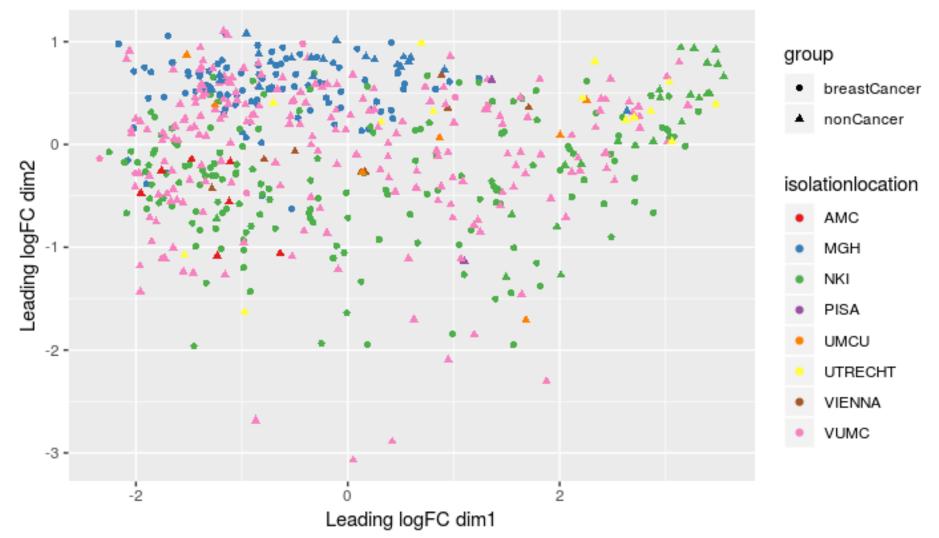


- Neuroblastoma (NB)
  Rhabdomyosarcoma (RMS)
  Burkitt lymphoma (BL)
  Ewing family of tumors (E)
- Ewing family of tumors (EWS),





#### MDS example: detecting batch effects



t-SNE (t-distributed stochastic neighbor embedding) (van der Maaten et al, 2008)

- Definitions:
  - A data point is a point  $x_i$  in the original data space  $R^D$
  - A map point is a point  $y_i$  in the map space  $R^2$
  - This space will contain our final representation of the dataset
  - Every map point represents one of the data points.



### t-SNE (2)

- How do we choose the positions of the map points?
  - We want to conserve the structure of the data
  - data points close  $\implies$  corresponding map points close



## t-SNE (2)

- How do we choose the positions of the map points?
  - We want to conserve the structure of the data
  - data points close  $\implies$  corresponding map points close
- Similarity of data points
  - Let  $|x_i x_j|$  be the Euclidean distance between two data points
  - The conditional similarity between the two data points is:

$$p_{j|i} = \frac{\exp\left(-|x_i - x_j|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-|x_i - x_j|^2 / 2\sigma_i^2\right)}$$



# t-SNE (2)

- How do we choose the positions of the map points?
  - We want to conserve the structure of the data
  - data points close  $\implies$  corresponding map points close
- Similarity of data points
  - Let  $|x_i x_j|$  be the Euclidean distance between two data points
  - The conditional similarity between the two data points is:

$$p_{j|i} = \frac{\exp\left(-|x_i - x_j|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-|x_i - x_j|^2 / 2\sigma_i^2\right)}$$

Convert a *dissimilarity* (Euclidean distance) to a *similarity* 

- This represents the likelihood of  $x_j$  given  $x_i$
- Assuming a Gaussian distribution around  $x_i$  with variance  $\sigma_i^2$



# t-SNE (3)

- The conditional similarity between the two data points is:

$$p_{j|i} = \frac{\exp\left(-|x_i - x_j|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-|x_i - x_j|^2 / 2\sigma_i^2\right)}$$

–  $\sigma_i^2$  is different for every point

- \* dense areas are given a smaller variance
- \* sparse areas are given a larger variance
- Similarity is symmetrized form:

 $p_{ij} = (p_{j|i} + p_{i|j})/2N$ 



# t-SNE (4)

- Similarity of map points:
  - Let  $|y_i y_j|$  be the Euclidean distance between the map points

$$q_{ij} = \frac{f(|y_i - y_j|)}{\sum_{k \neq i} f(|y_i - y_k|)}$$

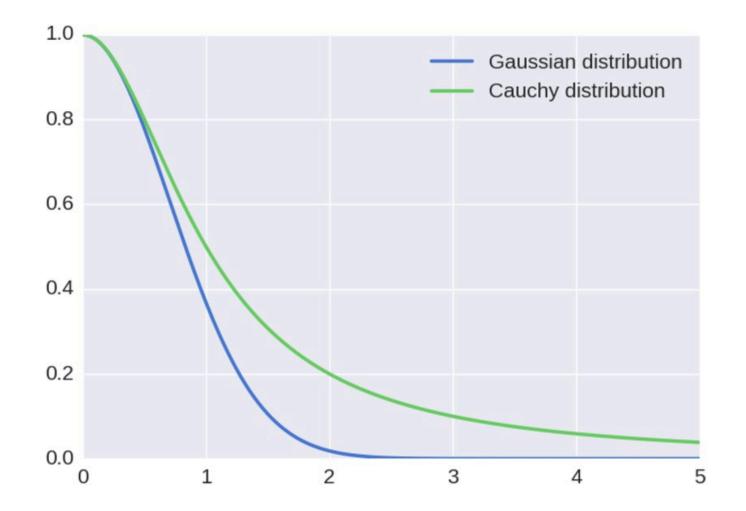
with

$$f(z) = 1/(1+z^2)$$

- Same as for the data points, but different distribution:
- t-Student with one degree of freedom, or Cauchy distribution



## t-SNE (5): Cauchy and Gaussian distribution





# t-SNE (6)

- How do we choose the positions of the map points?
  - Data similarity matrix  $(p_{ij})$  is fixed
  - Map similarity matrix  $(q_{ij})$  depends on the map points
  - Get two matrices as similar as possible
  - Idea: similar data points yield similar map points

Distribution of data and map similarities is the same



# t-SNE (7)

- Algorithm
  - Minimizing the Kullback-Leibler divergence between  $p_{ij}$  and  $q_{ij}$ :

$$KL(P,Q) = \sum_{i,j} p_{ij} \log(p_{ij}/q_{ij})$$

– KL(P,Q) measures the distance between our two distributions

.

# t-SNE (7)

- Algorithm
  - Minimizing the Kullback-Leibler divergence between  $p_{ij}$  and  $q_{ij}$ :

$$KL(P,Q) = \sum_{i,j} p_{ij} \log(p_{ij}/q_{ij})$$

- KL(P,Q) measures the distance between our two distributions
- To minimize this score, we perform a gradient descent
- The gradient can be computed analytically:

$$\frac{\partial KL(P,Q)}{\partial y_i} = 4\sum_j (p_{ij} - q_{ij})f(|y_i - y_j|)$$

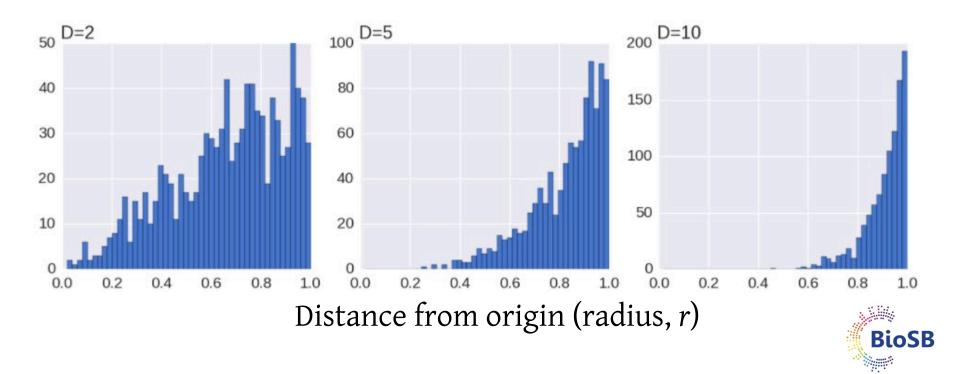
where  $f(z) = z/(1 + z^2)$ 

- The gradient expresses the sum of all spring forces applied to map point *i*.

## t-SNE (8)

• Why the t-Student distribution?

– For large N, random points are close to the surface, not in center



# t-SNE (9)

#### • Why the t-Student distribution?

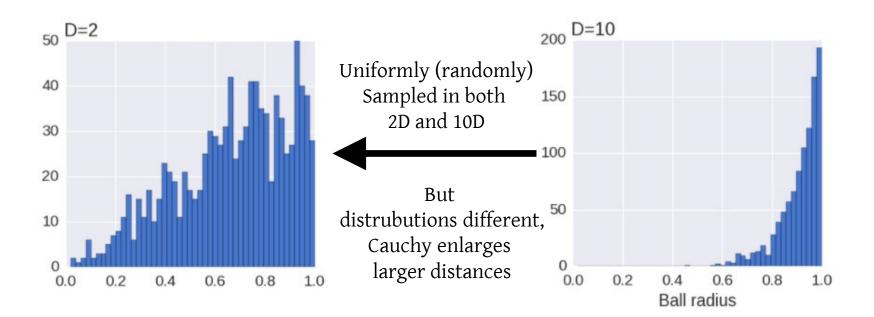
- We go from high dimensionality to low dimensionality
- If we use the same distribution in data and map space
- There is an imbalance in the distribution of the distances of a point's neighbors.
- As distances are so different between a high-D and low-D space
- Yet, t-SNE tries to reproduce the same distances in the two spaces
- Result: excess of 'attraction forces' (gradient) that move map space points
- t-SNE compensates this by the heavier tail of the t-distribution in low-D
- Larger distances in low-D get more weight so match high-D



# t-SNE (9)

#### • Why the t-Student distribution?

- We go from high dimensionality to low dimensionality
- If we use the same distribution in data and map space
- There is an imbalance in the distribution of the distances of a point's neighbors.
- As distances are so different between a high-D and low-D space



#### • Setting $\sigma_i$

– Unlikely that a single value of  $\sigma_i$  is optimal

- Setting  $\sigma_i$ 
  - Unlikely that a single value of  $\sigma_i$  is optimal
  - Density of datapoints varies
    - \* In dense regions a smaller value
    - \* In sparse regions a larger value

- Setting  $\sigma_i$ 
  - Unlikely that a single value of  $\sigma_i$  is optimal
  - Density of datapoints varies
    - \* In dense regions a smaller value
    - \* In sparse regions a larger value
  - $\sigma_i$  induces a probability distribution,  $P_i$ , across all datapoints

- Setting  $\sigma_i$ 
  - Unlikely that a single value of  $\sigma_i$  is optimal
  - Density of datapoints varies
    - \* In dense regions a smaller value
    - \* In sparse regions a larger value
  - $\sigma_i$  induces a probability distribution,  $P_i$ , across all datapoints
  - This distribution's entropy increases as  $\sigma_i$  increases

If sigma is small, all pairwise similarities = 0 = low entropy

- Setting  $\sigma_i$ 
  - Unlikely that a single value of  $\sigma_i$  is optimal
  - Density of datapoints varies
    - \* In dense regions a smaller value
    - \* In sparse regions a larger value
  - $\sigma_i$  induces a probability distribution,  $P_i$ , across all datapoints
  - This distribution's entropy increases as  $\sigma_i$  increases
  - t-SNE searches for the  $\sigma_i$  such that  $P_i$  has the specified *perplexity* (J):

 $J(P_i) = 2^{H(P_i)}$  Perplexity proportional to entropy

- where  $H(P_i)$  is the Shannon entropy of  $P_i$  in bits:

$$H(P_i) = -\sum_j p_{j|i} log_2(p_{j|i})$$

If sigma is small, all pairwise similarities = 0 = low entropy

- Setting  $\sigma_i$ 
  - Unlikely that a single value of  $\sigma_i$  is optimal
  - Density of datapoints varies
    - \* In dense regions a smaller value
    - \* In sparse regions a larger value
  - $\sigma_i$  induces a probability distribution,  $P_i$ , across all datapoints
  - This distribution's entropy increases as  $\sigma_i$  increases
  - t-SNE searches for the  $\sigma_i$  such that  $P_i$  has the specified *perplexity* (J):

 $J(P_i) = 2^{H(P_i)}$  Perplexity proportional to entropy

- where  $H(P_i)$  is the Shannon entropy of  $P_i$  in bits:

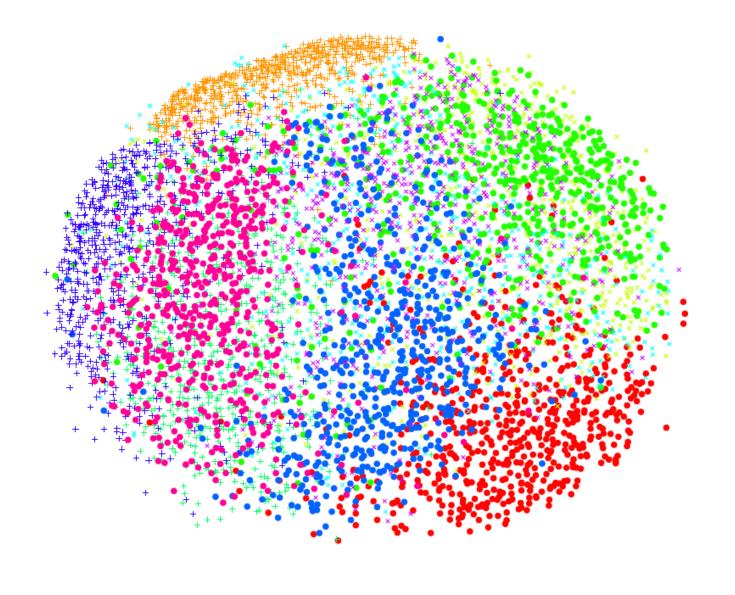
$$H(P_i) = -\sum_j p_{j|i} log_2(p_{j|i})$$

- Perplexity is a smooth measure of the effective number of neighbors
- t-SNE is not sensitive to this value: set between 5 and 50

If *sigma* is small, all pairwise similarities = 0 = low entropy

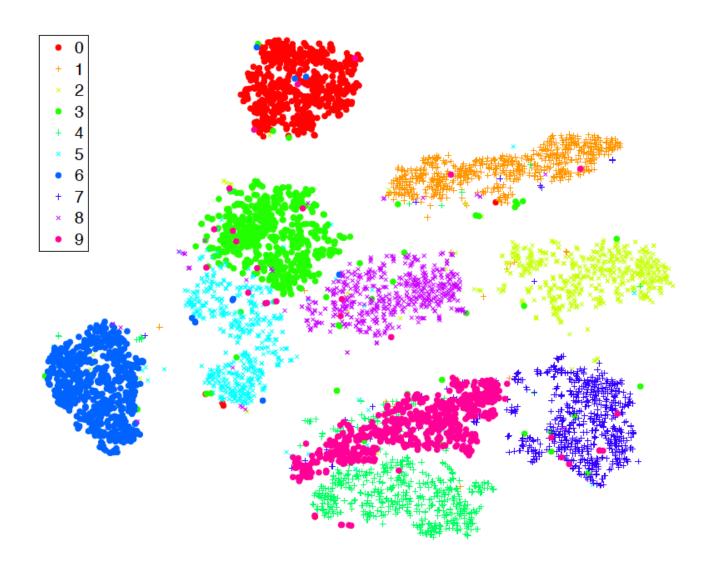


### t-SNE (11): Sammon map of digit data





### t-SNE (12): t-SNE map of digit data





# MDS and t-SNE conclusions

- Experts or measurements give distances
- Optimise a *stress-function* (MDS) or KL distance (t-SNE)
- Important:
  - *the distance measure used:* is it representative?
  - *the weighting of distances (q):* can influence outcome heavily.
  - t-SNE run with defaults is quite reliable
- Largest risk: seeing structure in the data that is not really there
- Remaining problem: embedding new data points
- t-SNE (and now UMAP) are modern techniques to perform representation of data in high-D space in 2D



#### **Feature selection**

- For feature selection, we need:
  - A **criterion** function *e.g.* error, class overlap, information loss
  - A **search algorithm** *e.g.* pick the best single feature at each time



#### Criteria

1. Wrapper: exact performance measure

- base performance estimate on classifier;
- estimate performance using cross-validation:
- very expensive!



#### Criteria

1. Wrapper: exact performance measure

- base performance estimate on classifier;
- estimate performance using cross-validation:
- very expensive!

**Note:** we should never use the training set to calculate performance; this will give a biased estimate!



### Criteria

1. Wrapper: exact performance measure

- base performance estimate on classifier;
- estimate performance using cross-validation:
- very expensive!

**Note:** we should never use the training set to calculate performance; this will give a biased estimate!

2. **Filter**: approximate performance predictors:

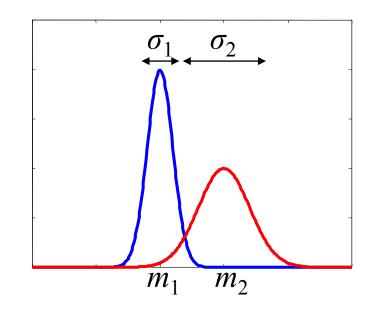
- calculate the performance of an easy-to-use/'cheap' model
- indication of how well a more powerful model may perform
- is much faster to compute.



# Criteria (2)

- Example
  - Simple measure of the 'separability' of classes given a feature
  - 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

$$J_{F} = \frac{\left| m_{1} - m_{2} \right|^{2}}{\left( \sigma_{1}^{2} + \sigma_{2}^{2} \right)}$$



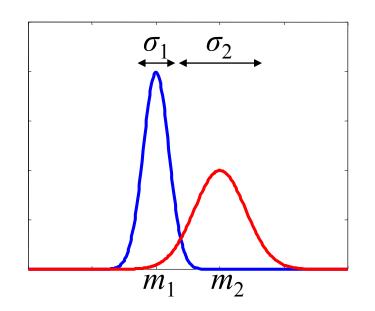


# Criteria (3)

- Example
  - Simple measure of the 'separability' of classes given a feature
  - 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

$$J_{F} = \frac{\left| m_{1} - m_{2} \right|^{2}}{\left( \sigma_{1}^{2} + \sigma_{2}^{2} \right)}$$

- If  $J_F$  is large: good separability
- If *J<sub>F</sub>* is small: poor separability

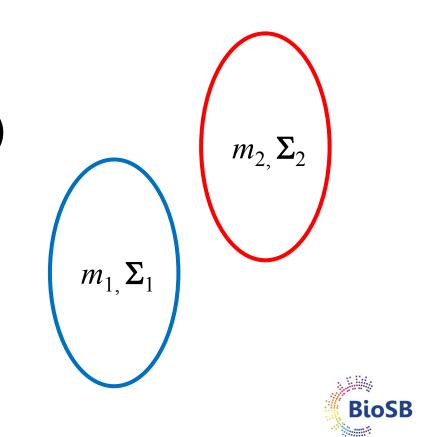




# Criteria (4)

- The multi-variate equivalent of Fisher criterion is the
- Mahalanobis distance:
  - assumes
    - Gaussian distributions with
    - equal covariance matrix Σ:

$$D_{M} = (m_{1} - m_{2})^{T} \Sigma^{-1} (m_{1} - m_{2})$$
$$\Sigma = \sum_{i=1}^{C} \frac{n_{i}}{n} \Sigma_{i}$$

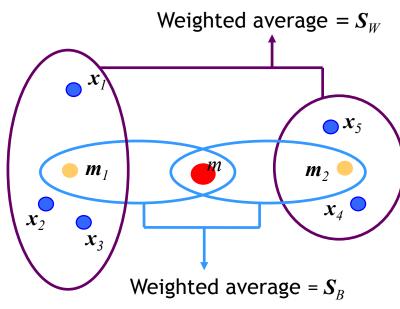


# Criteria (5)

• Recall

$$\boldsymbol{S}_{w} = \sum_{i=1}^{C} \frac{n_{i}}{n} \boldsymbol{\Sigma}_{i} \qquad \boldsymbol{S}_{B} = \sum_{i=1}^{C} \frac{n_{i}}{n} (\boldsymbol{m}_{i} - \boldsymbol{m}) (\boldsymbol{m}_{i} - \boldsymbol{m})^{T}$$

- Scatter-based classification performance indicators:  $J_1 = \text{trace } (S_W + S_B) = \text{trace } (\Sigma)$   $J_2 = \text{trace } (S_B / S_W)$   $J_3 = \text{det } (\Sigma) / \text{det } (S_W)$   $J_3 = \text{trace } (S_W) / \text{trace } (S_B)$ (trace = sum of diagonal elements)
  - These are all just approximations!





## Search algorithms

- **Feature selection:** select a subset of *d* out of *p* features which optimises the criterion
- Simplest solution: look at all possible subsets

• Problem: there are

$$\binom{p}{d} = \frac{p!}{(p-d)!d!}$$

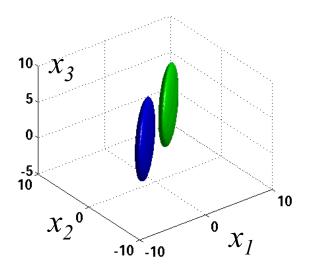
• *e.g. p* = 50 features,

d = 2: 1225 subsets d = 5: 2.1 x 10<sup>6</sup> subsets d = 25: 1.3 x 10<sup>14</sup> subsets

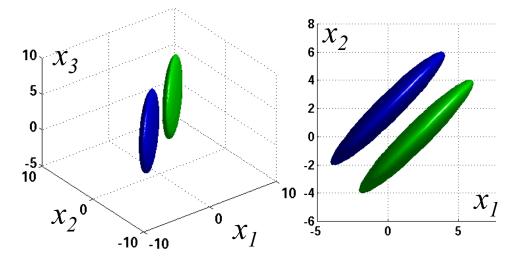


- Sub-optimal algorithms: select or deselect one feature (or a few features) at a time
- Simplest: best individual *d* but these are not necessarily the best *d* !
- Demonstration: two Gaussians; select 2 features out of 3 for classification

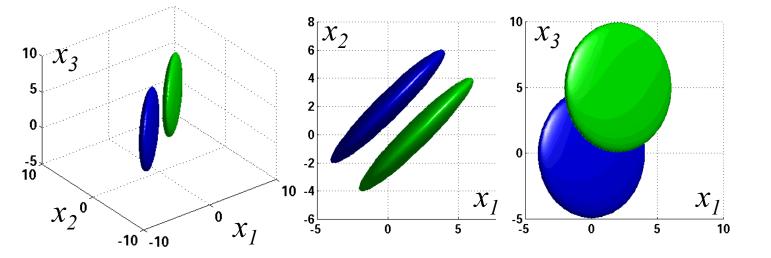




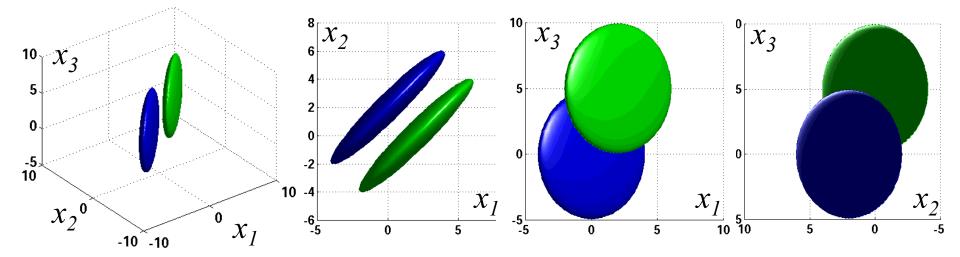




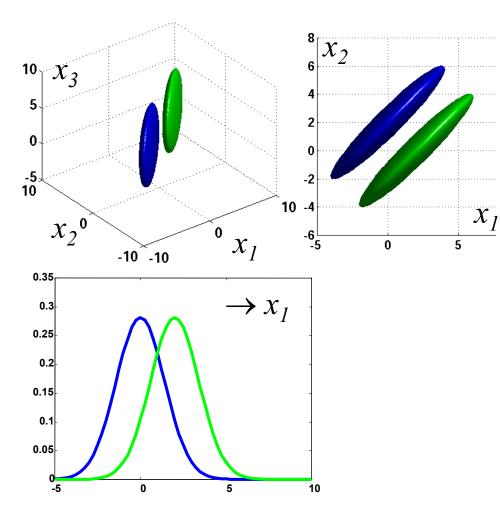




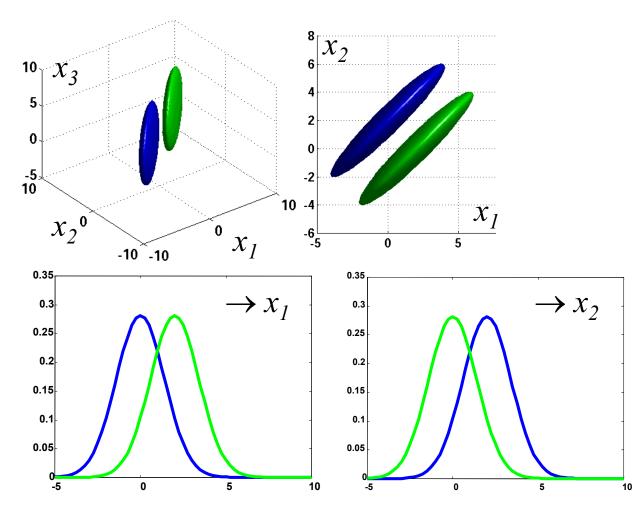






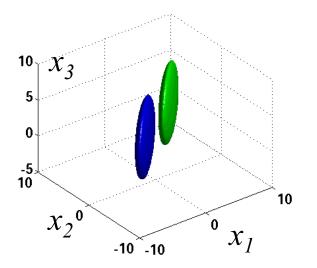


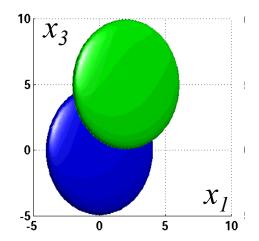


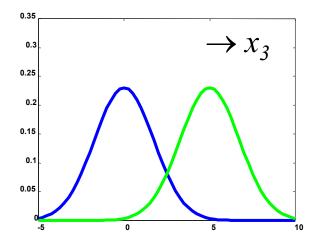




#### Search algorithms (3)

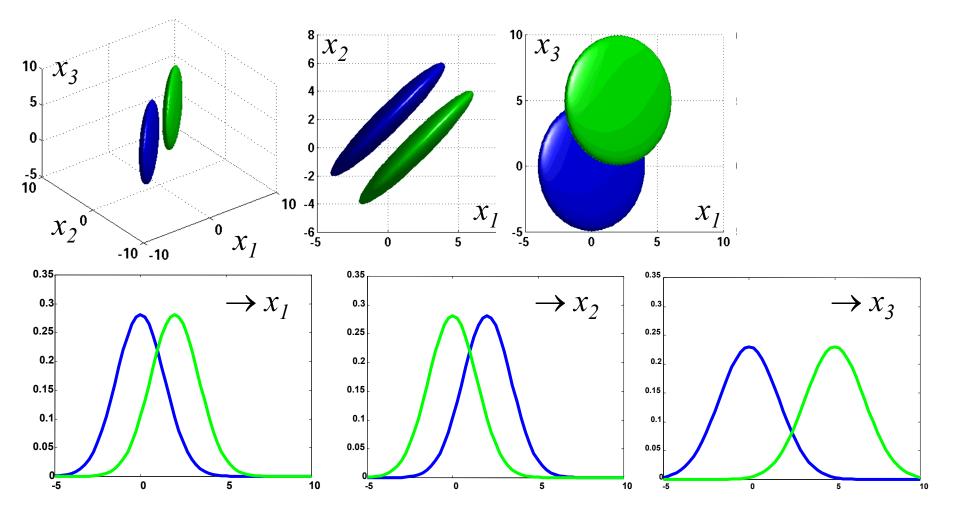








#### Search algorithms (3)





#### Search algorithms (4)

- Other sub-optimal algorithms:
  - Forward selection (for when *d* is low)
    - start with empty set
    - keep adding one feature at a time so that the entire subset so far performs best



#### Search algorithms (4)

- Other sub-optimal algorithms:
  - Forward selection (for when *d* is low)
    - start with empty set
    - keep adding one feature at a time so that the entire subset so far performs best
  - Backward selection (for when *d* is high)
    - start with entire set
    - keep removing one feature at a time so that the entire subset so far performs best



## Search algorithms (4)

- Other sub-optimal algorithms:
  - Forward selection (for when *d* is low)
    - start with empty set
    - keep adding one feature at a time so that the entire subset so far performs best
  - Backward selection (for when *d* is high)
    - start with entire set
    - keep removing one feature at a time so that the entire subset so far performs best
  - Plus-*l*-takeaway-*r* (may be slightly better)
    - start with empty set (if l > r) or entire set (if l < r)
    - keep adding best *l* and removing worst *r*



## Search algorithms (5)

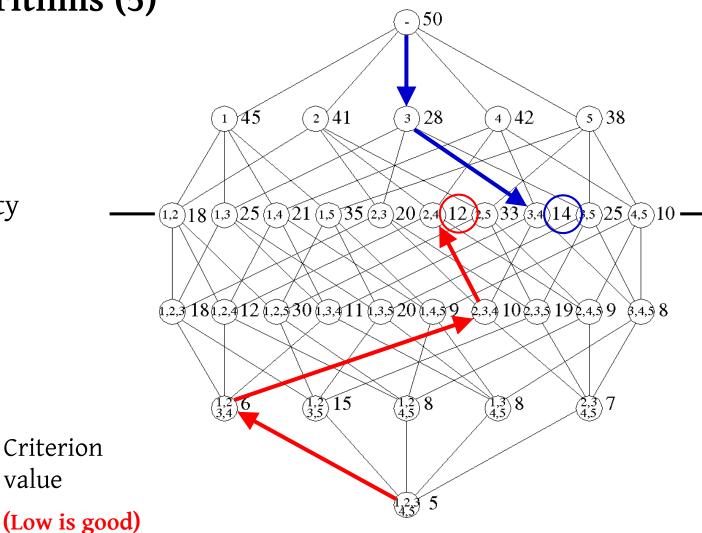
- Select d = 2out of p = 5features
- Sub-optimality illustrated:
  - forward •
  - backward

Feature

subset

Criterion

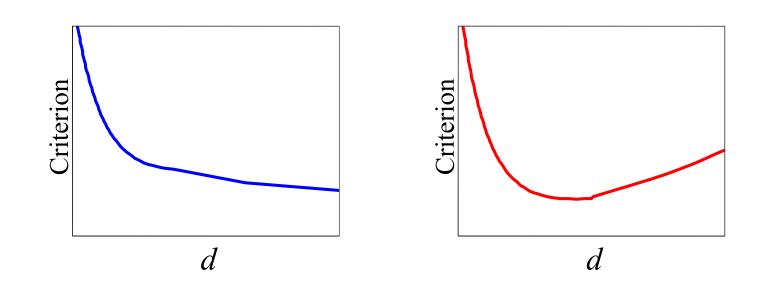
value





#### Search algorithms (6)

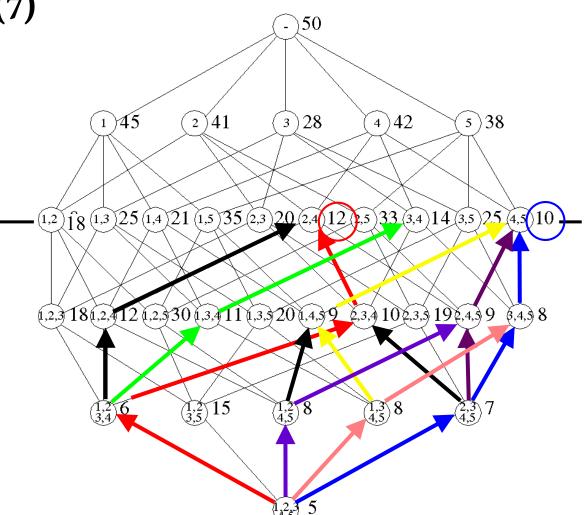
- Branch & bound: backtracking
- Optimal when criterion is monotonic in the number of features *d*





# Search algorithms (7)

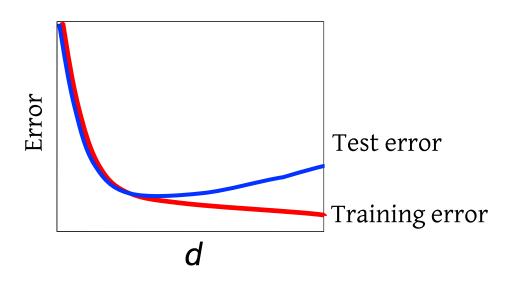
- Branch & bound
  - Use backward search to find preset number of features
  - Set bound, backtrack (branch) and use backward search again, considering just sets with criterion values better than the bound





## Search algorithms (8)

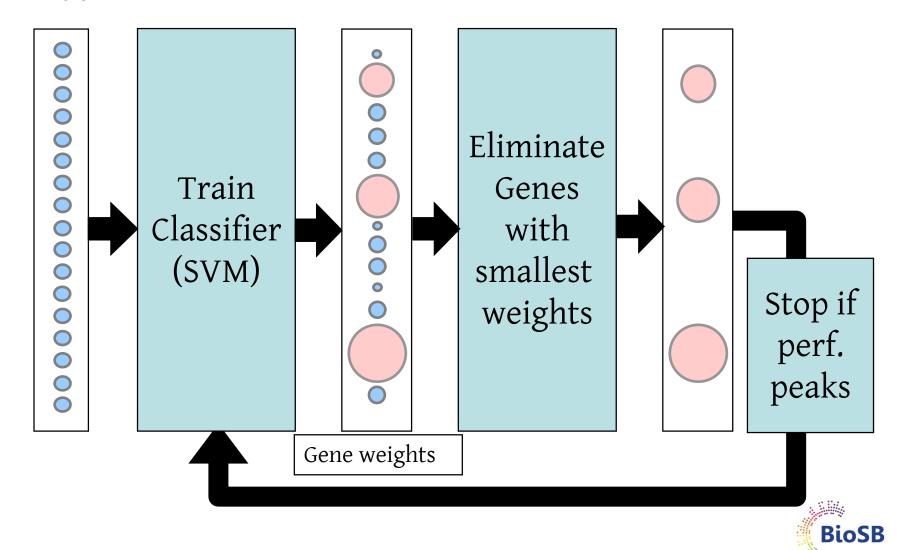
- When should we stop?
  - Due to estimation problems (*e.g.* covariance matrix), we may be overtraining on training set
  - This is revealed by increasing error on the test set



• Otherwise (with very large sample sizes), we will have to specify a desired number of measurements



## **Example: Recursive feature elimination (RFE)** Wrapper, Backward search



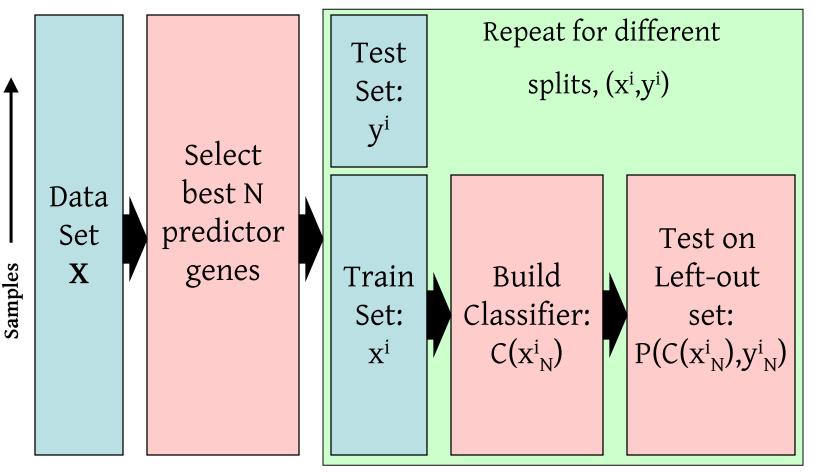
#### What can go wrong?

#### Selection bias...

- Guyon et al. (2002). Machine Learning **46**, 389 422.
- Ambroise and McLachlan (2002). PNAS **99**, 6562-6566.

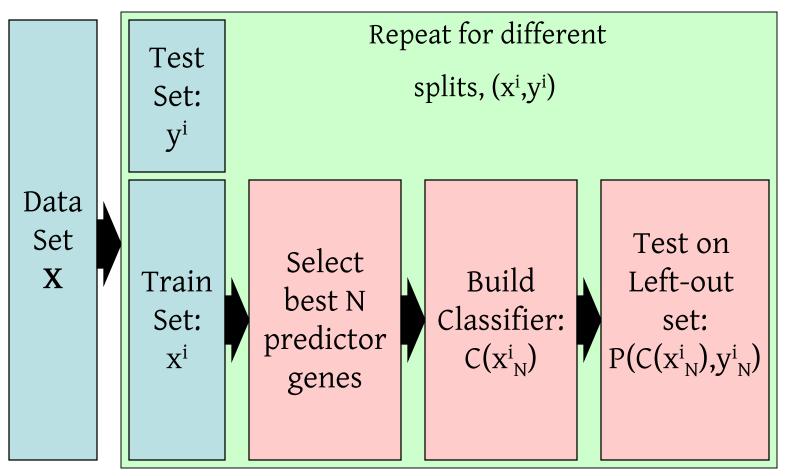


#### **Biased selection**



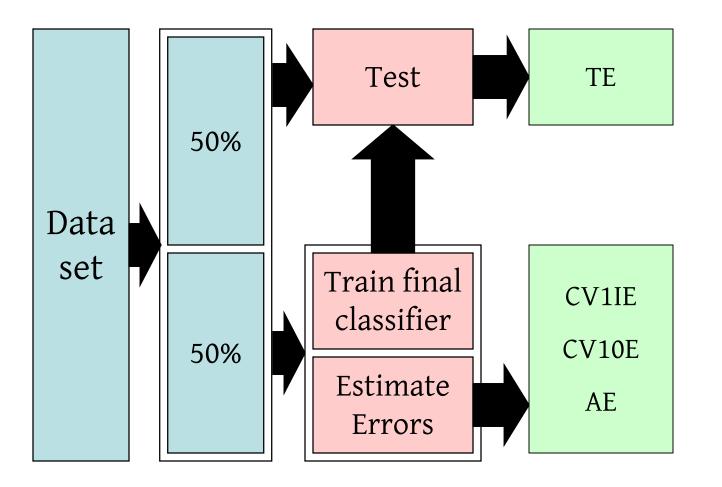


#### **Unbiased selection**





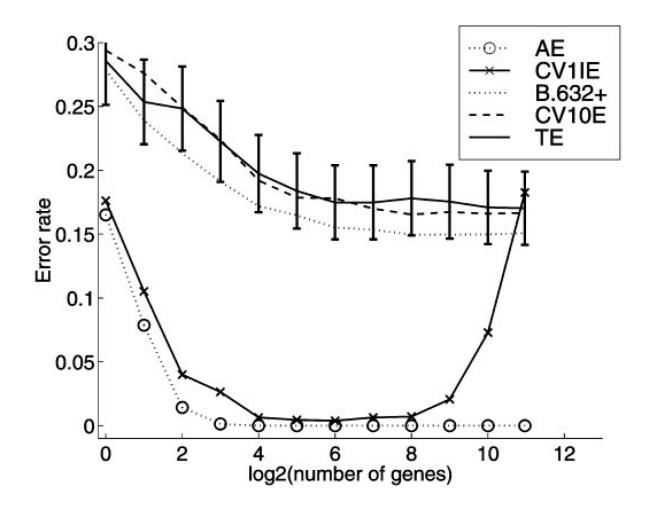
#### Ambroise & McLachlan experiments





#### Ambroise & McLachlan experiments

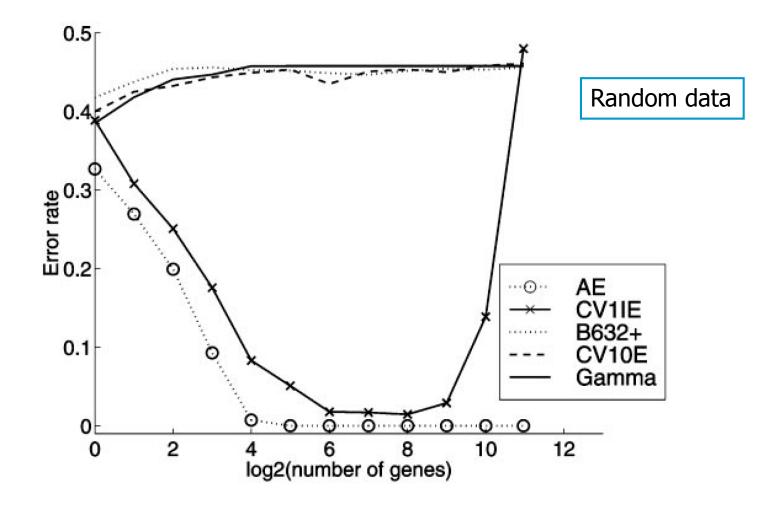
Colon vs. normal data





#### Ambroise & McLachlan experiments

Random data





#### **Cross-validation**

• Remember:

#### Note: we should never use the training set to calculate performance; this will give a biased estimate!

- for small sample size: use cross-validation
- Cross-validation should be applied to *every choice* made, including:
  - the number of features to use
  - the features to use
  - the type of classifier to use

•••



#### Feature selection: summary

- Feature selection can improve performance and help interpretation
- Requirements: a criterion and a search algorithm
- Methodology (cross-validation) is very important, especially for RNAseq data ('p >> n')
- There seems to be some evidence that the simplest methods (individual selection) work best



#### Shrinkage

- Feature selection: selects a subset of features (1/0)
- Feature extraction: combinations of features are constructed based on variance and accuracy arguments
- Regularization 1: 'shave off' genes based on individual quality and control degree of 'shaving' with error
- Regularization 2: combines accuracy (error) and penalty on large weights (= simple models) in one criterion.



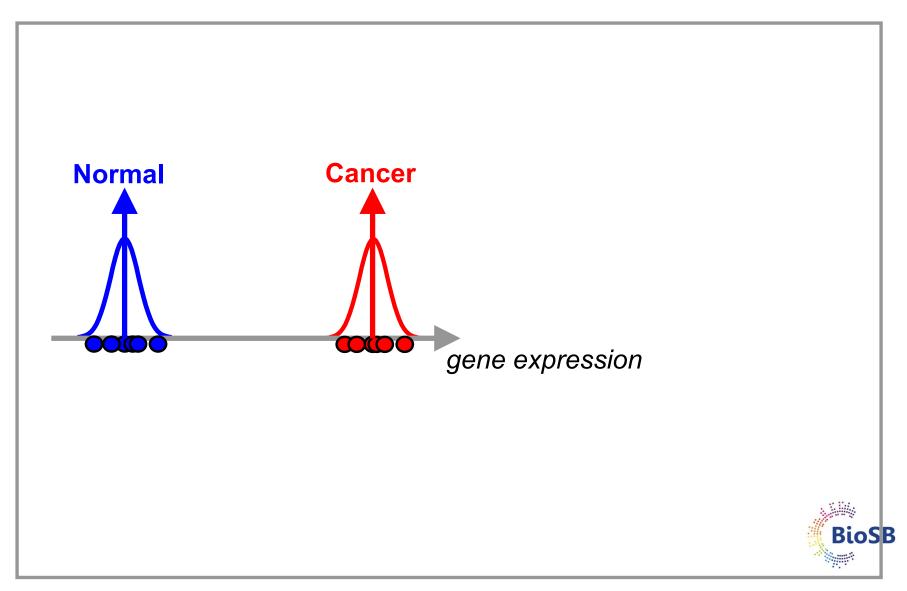
#### Shrunken centroids

- Same principle as forward filtering
- Genes are evaluated *individually*
- BUT, do not start with the best and keep adding;
- RATHER, start removing worst genes from the back
- In PAM\* genes can participate 'partially', in forward filtering a gene is either 100% in or out.

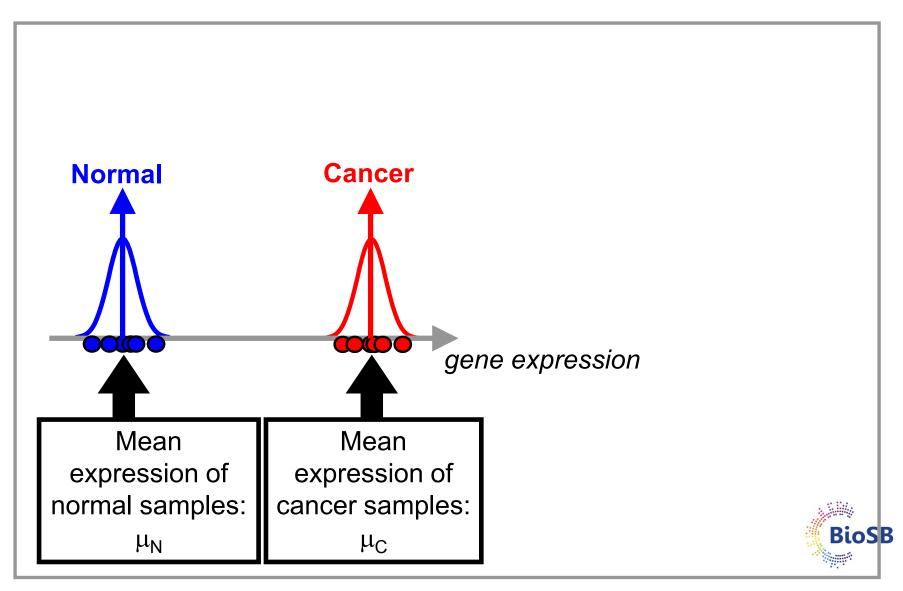
\* PAM: Prediction analysis of micro-arrays; R. Tibshirani, T. Hastie, B. Narasimhan and G. Chu. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99(10):6567 6572, 2002.



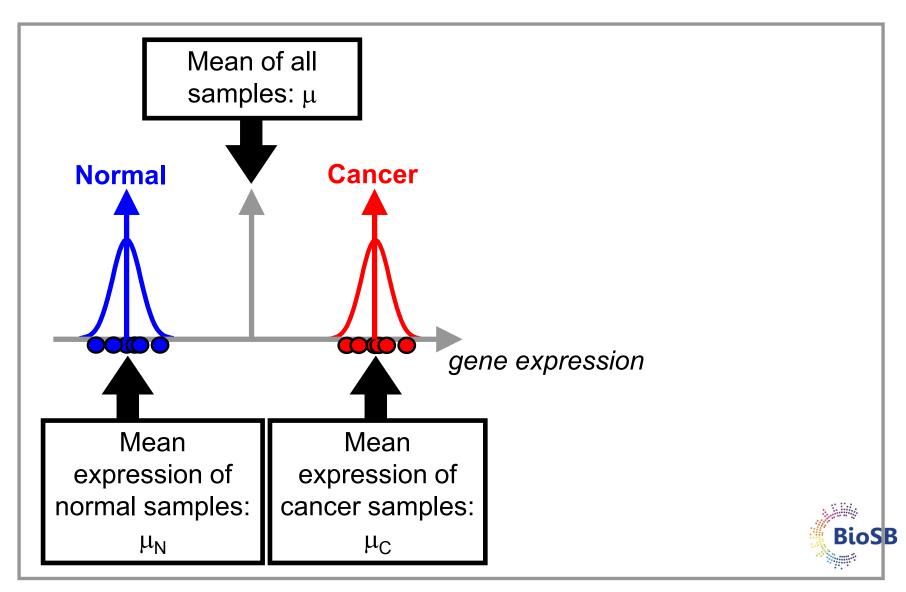
## Shrunken centroids (1) Step 1: Compute class centroids per gene



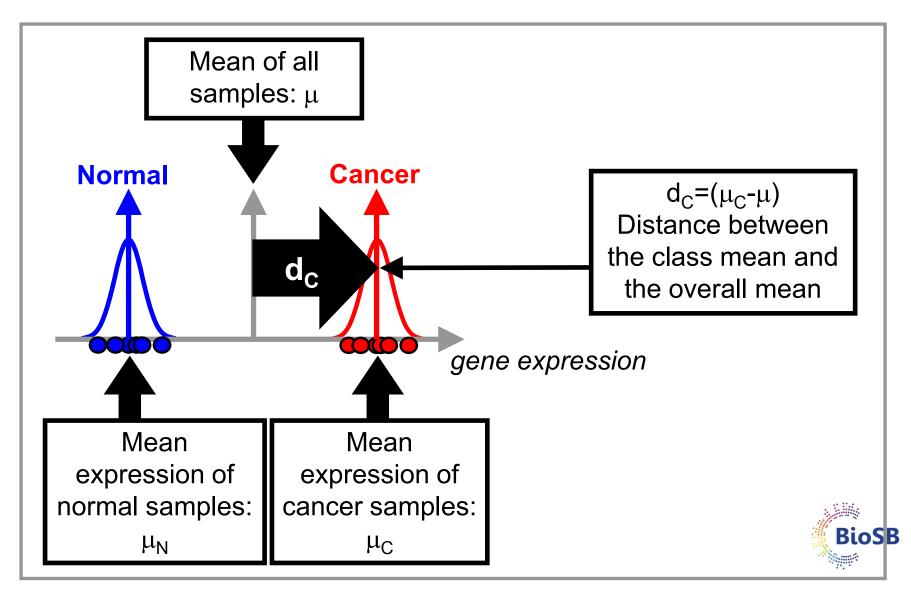
## Shrunken centroids (2) Step 1: Compute class centroids per gene



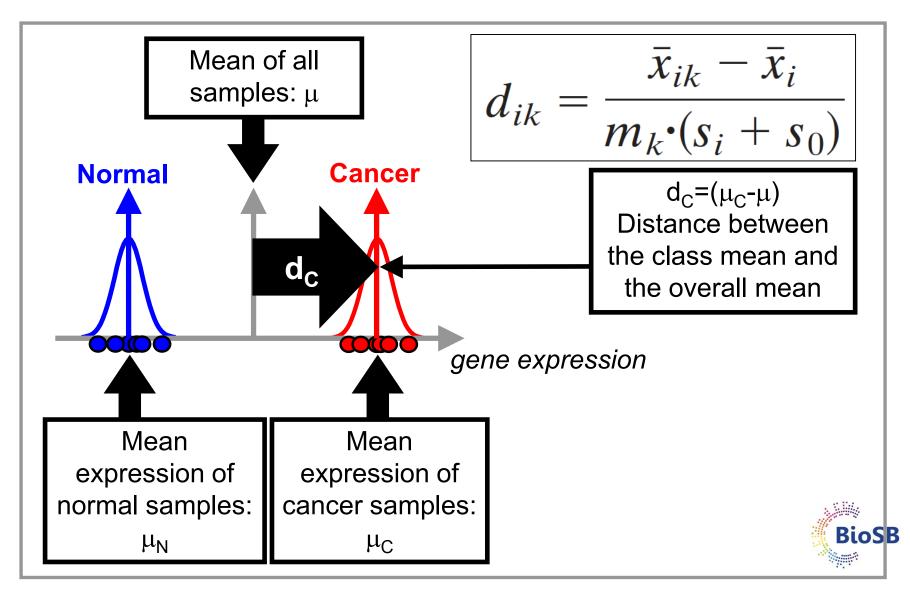
## Shrunken centroids (3) Step 2: Compute overall centroids per gene



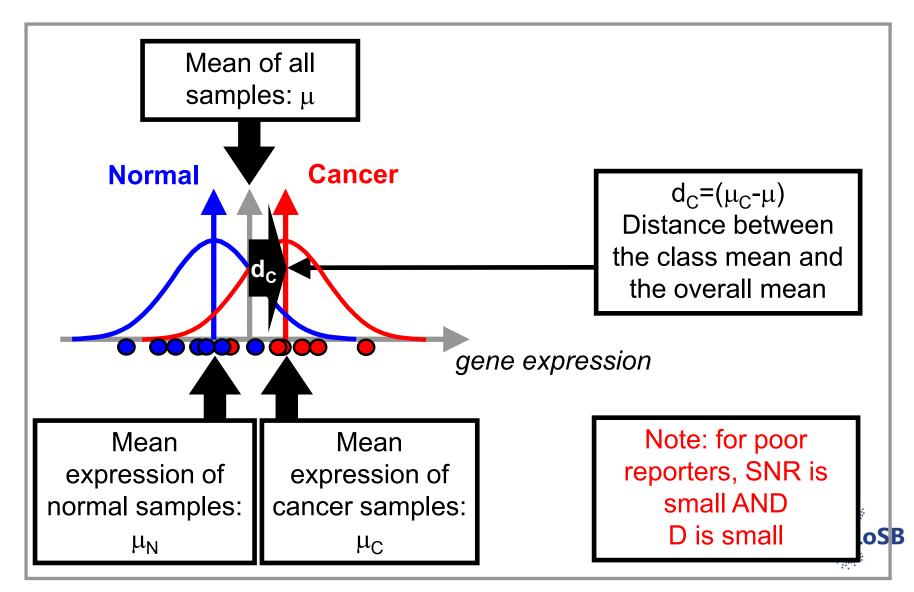
#### Shrunken centroids (4) Step 3: Compute d per gene



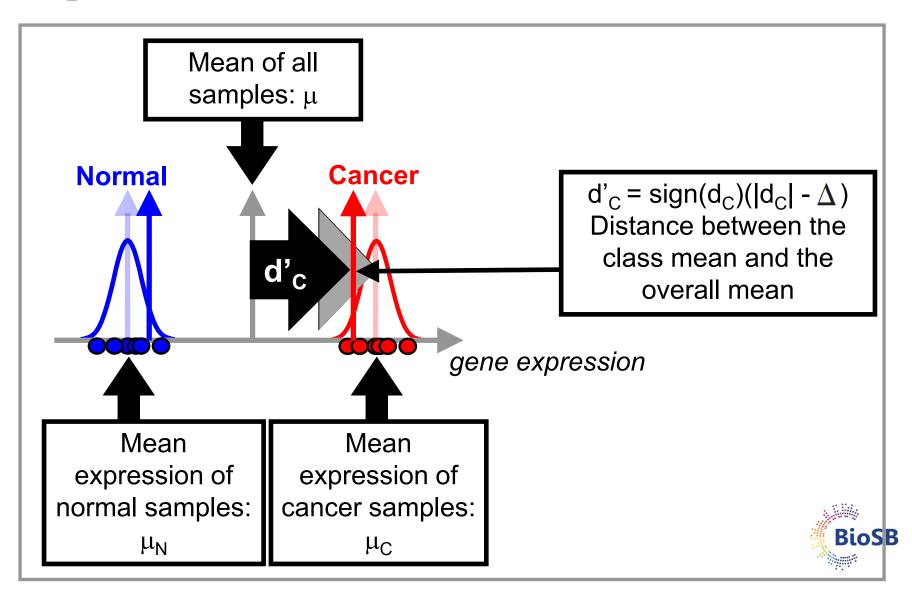
#### Shrunken centroids (4) Step 3: Compute d per gene



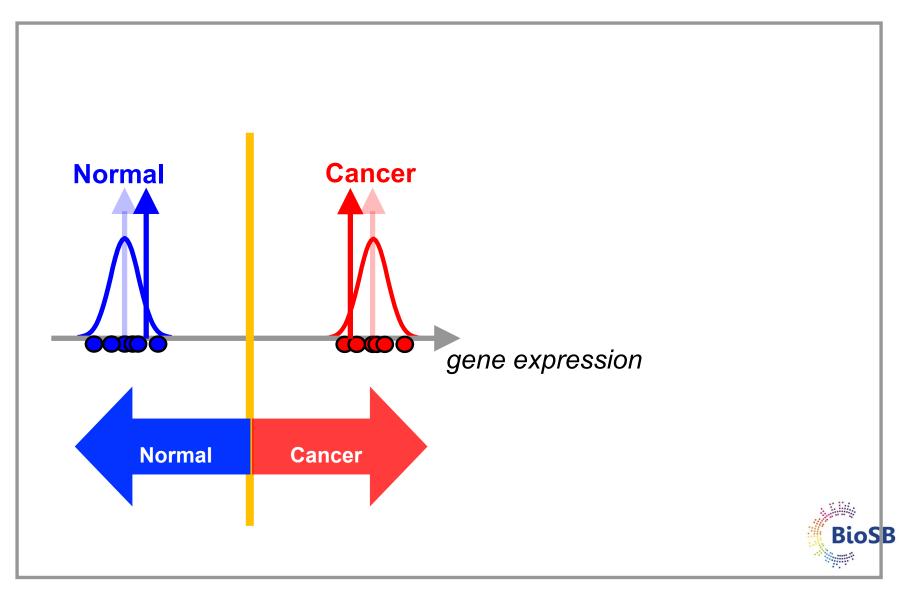
#### Shrunken centroids (5) Step 3: Compute d per gene

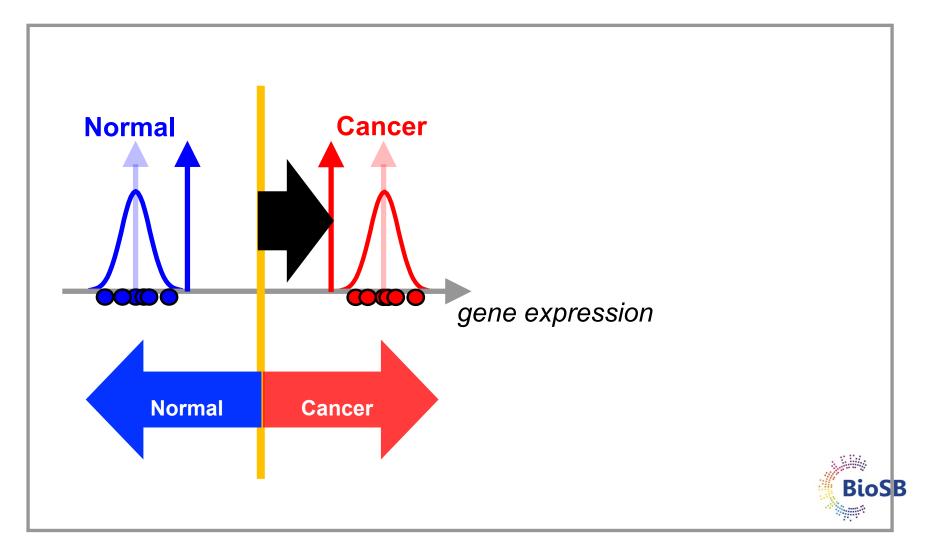


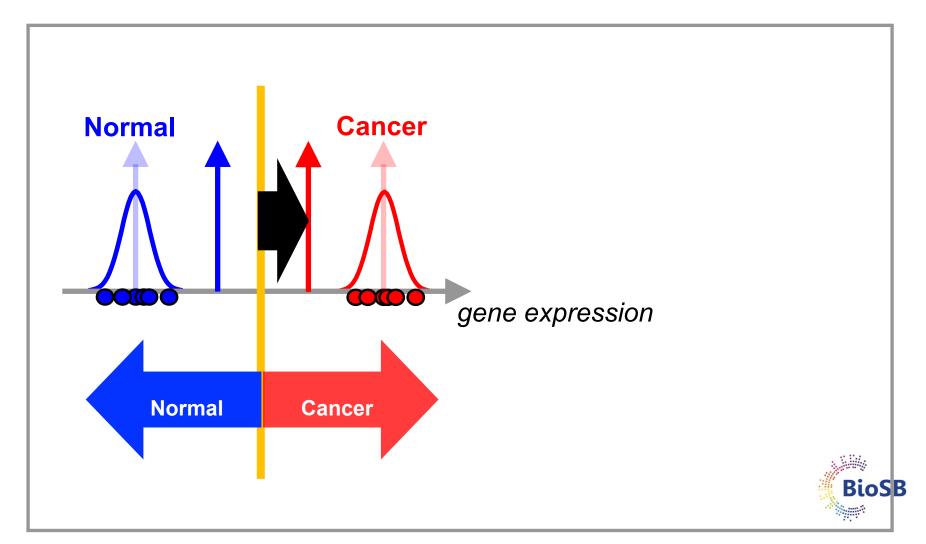
#### Shrunken centroids (6) Step 4: Shrink the centroids

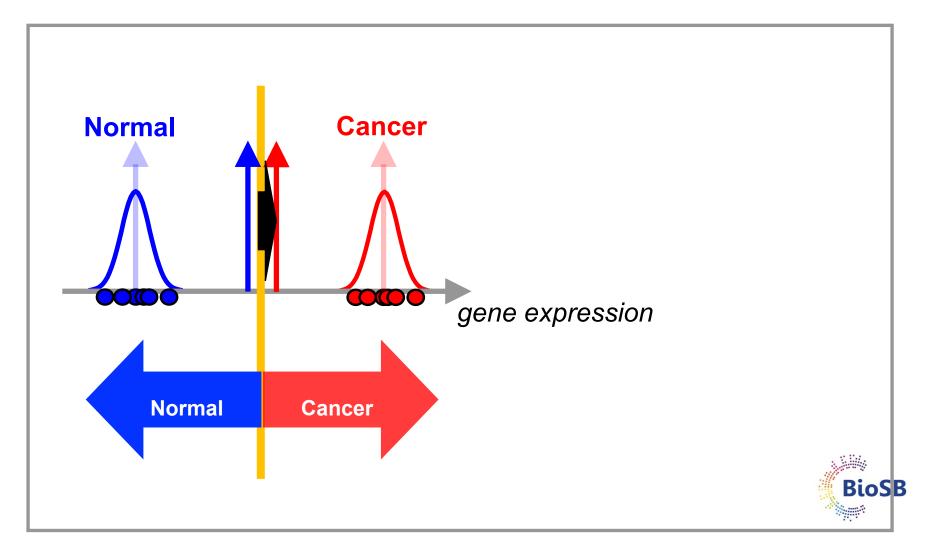


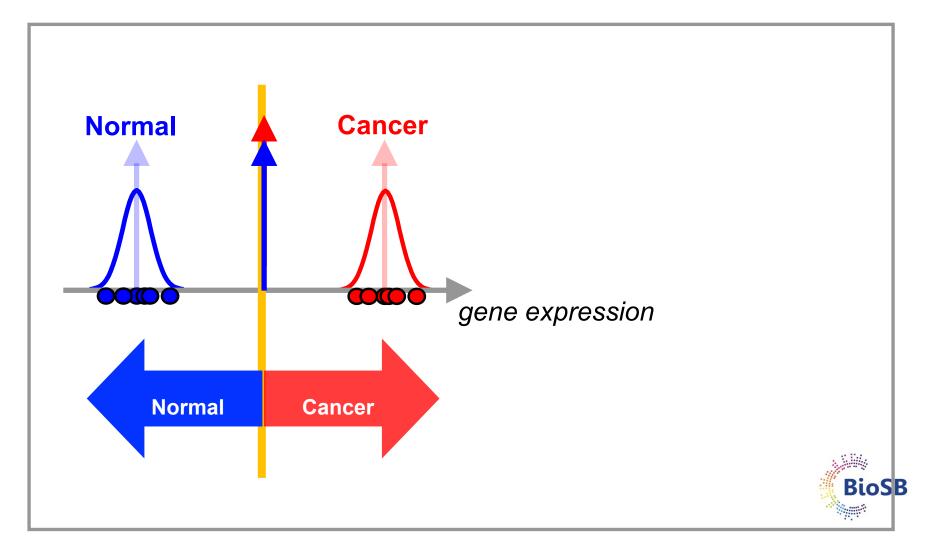
## Shrunken centroids (7) Step 5: Classify with shrunken centroids / perf.



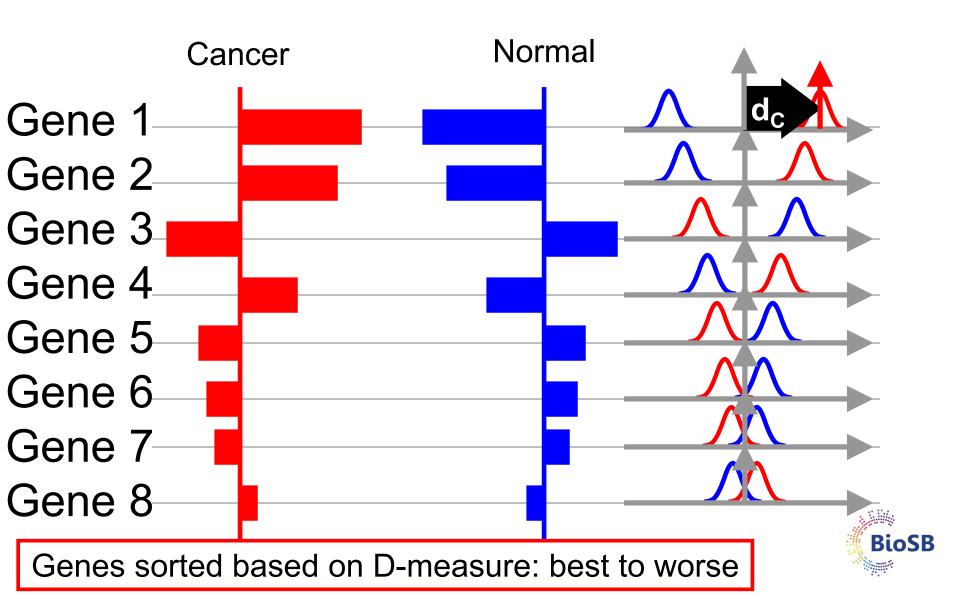




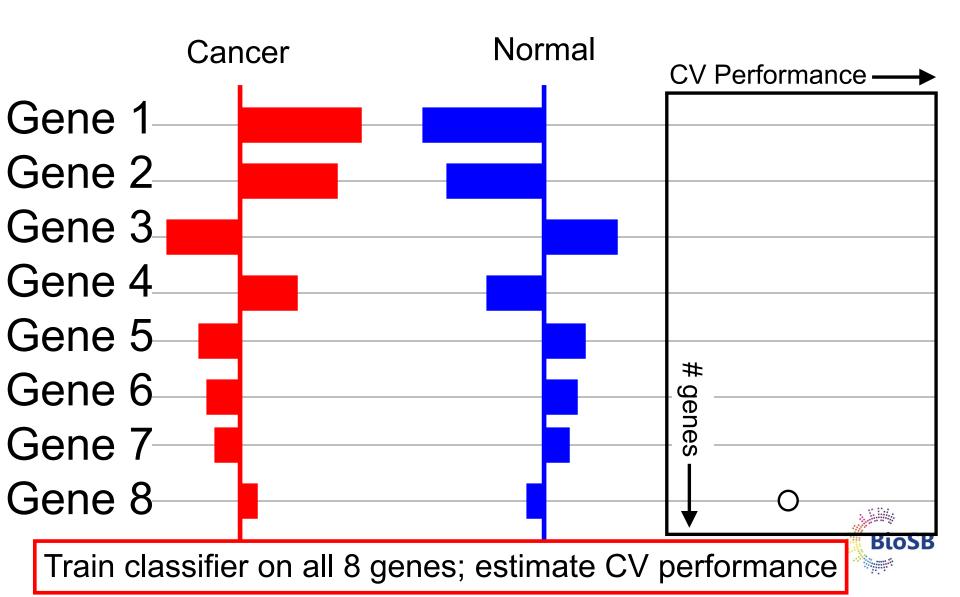




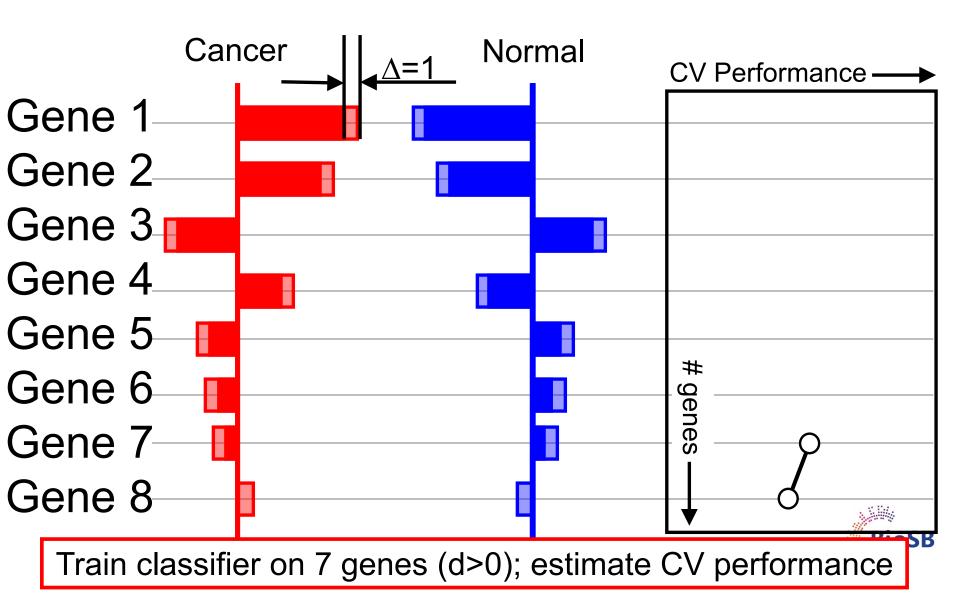
# Shrunken centroids: selecting the genes



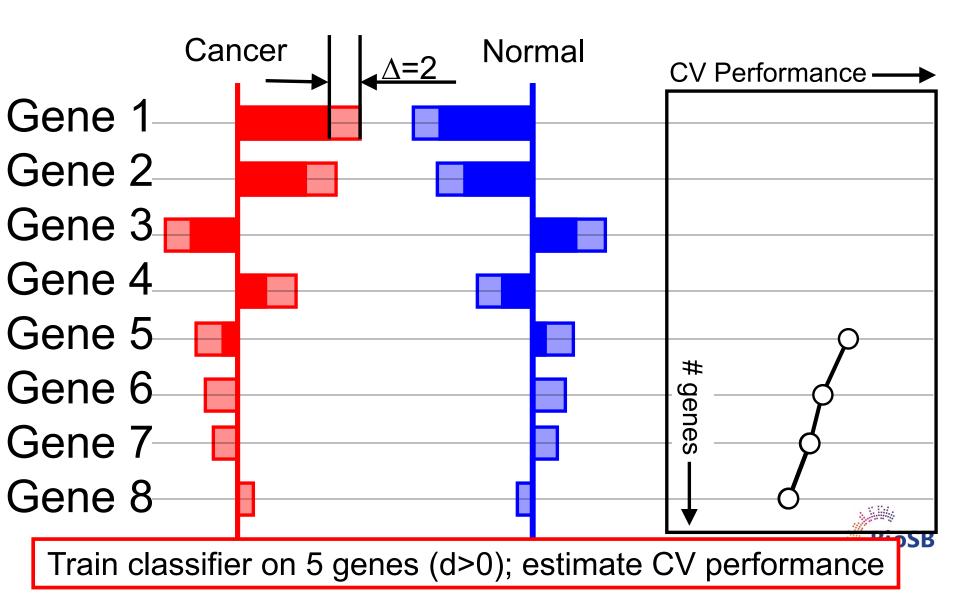
# Shrunken centroids: selecting the genes



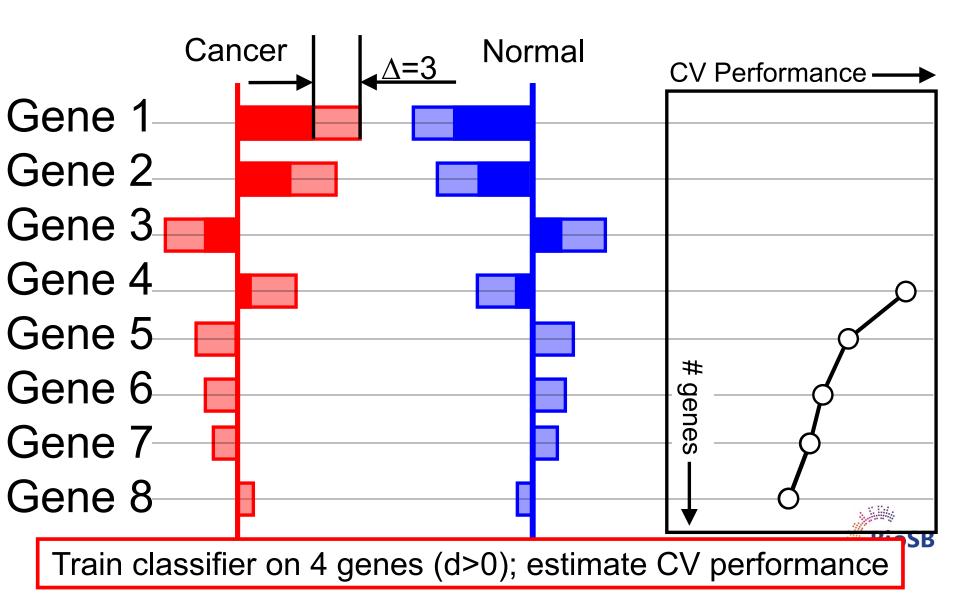
# Shrink all d by $\Delta$ =1: reduce length by 1



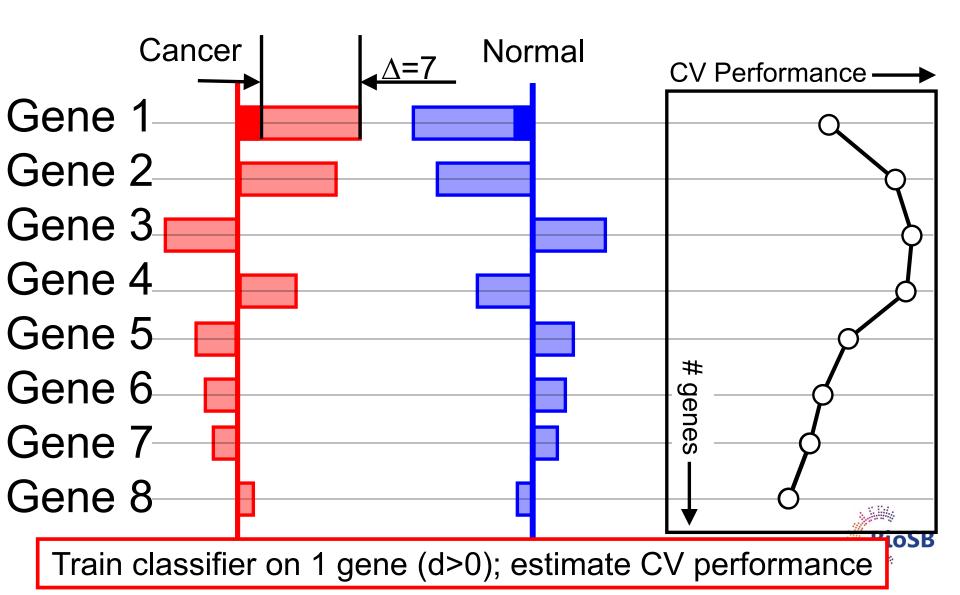
# Shrink all d by $\Delta$ =2: reduce length by 2



# Shrink all d by $\Delta$ =3: reduce length by 3



# Shrink all d by $\Delta$ =7: reduce length by 7



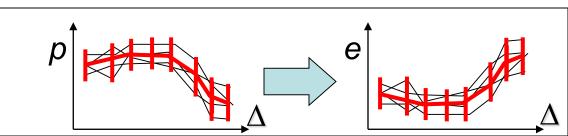
## Determining the optimal $\Delta$

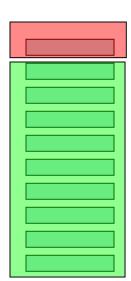
- 1. Split the data (X) in 10 equal parts  $(x_1,...,x_{10})$
- 2. For each of the 10 folds (i=1,2,...,10)
- 3. On the training set  $(X \setminus x_i)$ 
  - 1. Compute the class and overall centroids
  - 2. For a range of  $\Delta$  ( $\Delta$  = [0,0.5,...,7])
    - i. Shrink d for all genes
    - ii. Compute 'shrunken centroids' on training set

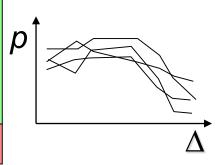
iii. Test the resulting classifier on the test set  $(x_i)$ 

3. Result: 10 Curves of performance vs.  $\Delta$ 

- 4. Average all 10 curves and compute std. dev. at each  $\Delta$
- 5. Pick the  $\Delta$  where the performance is maximal (error min.)

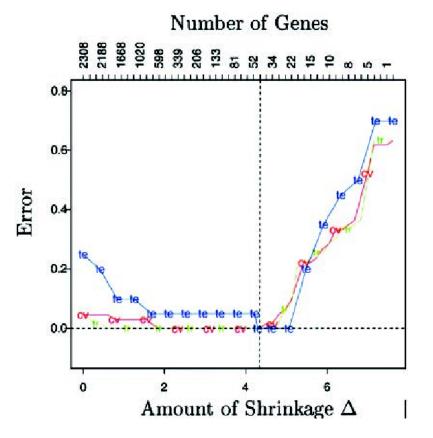






#### PAM

- For the Khan datatset; 4 classes: BL, EWS, NB, RMS
- At optimal  $\Delta$  : 43 genes *not* shrunk away

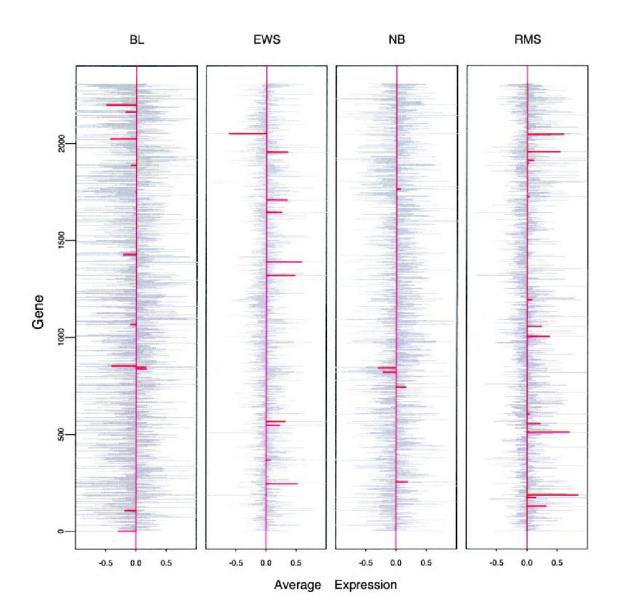


Neuroblastoma (NB) Rhabdomyosarcoma (RMS) Burkitt lymphoma (BL) Ewing family of tumors (EWS),



R. Tibshirani *et al.* (2002) PNAS 99(10):6567-6572, 2002.

PAM (2)



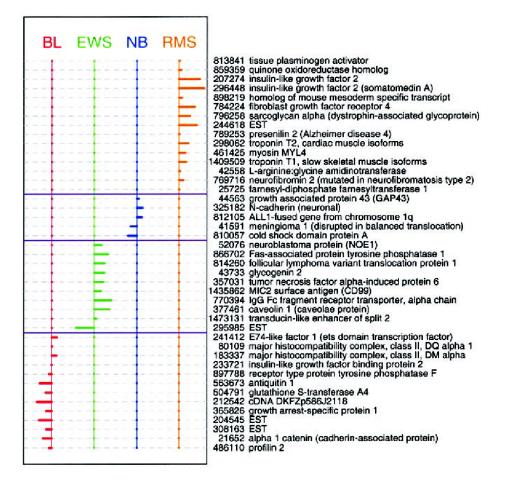






### PAM (3)

#### At optimal $\Delta$ : 43 genes *not* shrunk away



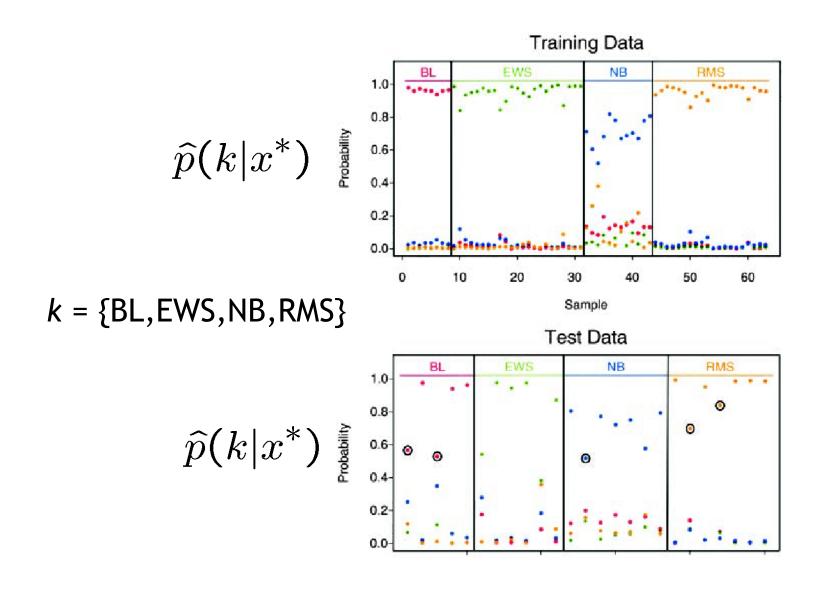
Neuroblastoma (NB)

- Rhabdomyosarcoma (RMS)
- Burkitt lymphoma (BL)
  - Ewing family of tumors (EWS),



R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

#### Scoring samples by posterior prob's





## Shrinkage

- PAM determines a weight for every gene based on the predictive capacity of the gene (type of t-statistic)
- This weight determines role of the gene in a DLDA classifier (weights can be zero, i.e. no participation)
- Weights of all genes are shrunk by the same amount ( $\Delta$ )
- PAM computes effect of shrinkage on error rate, and chooses shrinkage (=number of genes) with lowest error
- PAM: implicit simultaneous error and complexity minimisation
- Other approach: regularisation, combine error and penalty for number of genes explicitly



## Shrinkage (2)

• Model: 
$$y = \beta_0 + \sum_{i=1}^p \beta_i x_i + \varepsilon$$

- Penalised (*aka* regularised) least squares:
  - Ridge regression:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left[ \sum_{j=1}^{n} \left( y_j - \beta_0 - \sum_{i=1}^{p} \beta_i x_{j,i} \right)^2 + \lambda \sum_{i=1}^{p} \beta_i^2 \right]$$

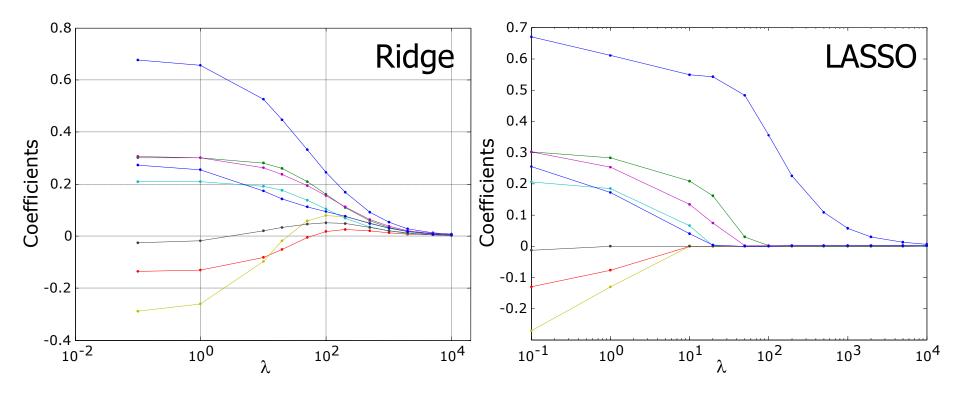
• LASSO: minimise

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left[ \sum_{j=1}^{n} \left( y_j - \beta_0 - \sum_{i=1}^{p} \beta_i x_{j,i} \right)^2 + \lambda \sum_{i=1}^{p} |\beta_i| \right]$$



#### LASSO

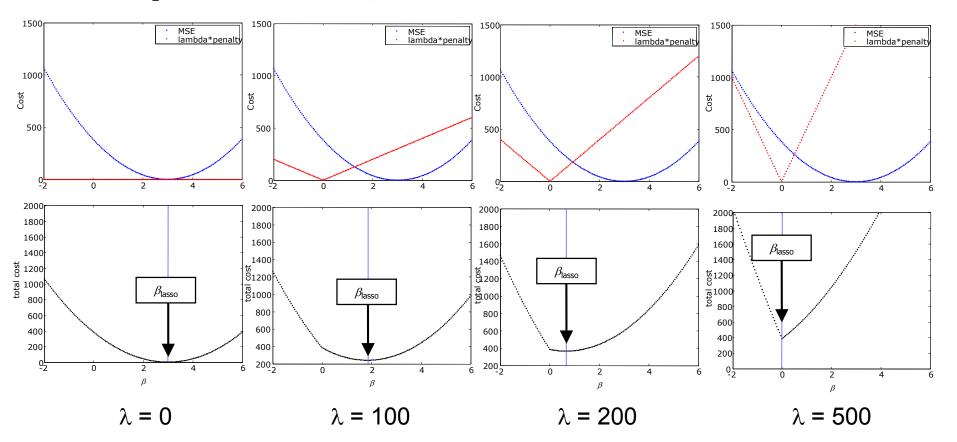
• Difference seems small, but effect of LASSO is that genes are no longer used (like in PAM!)





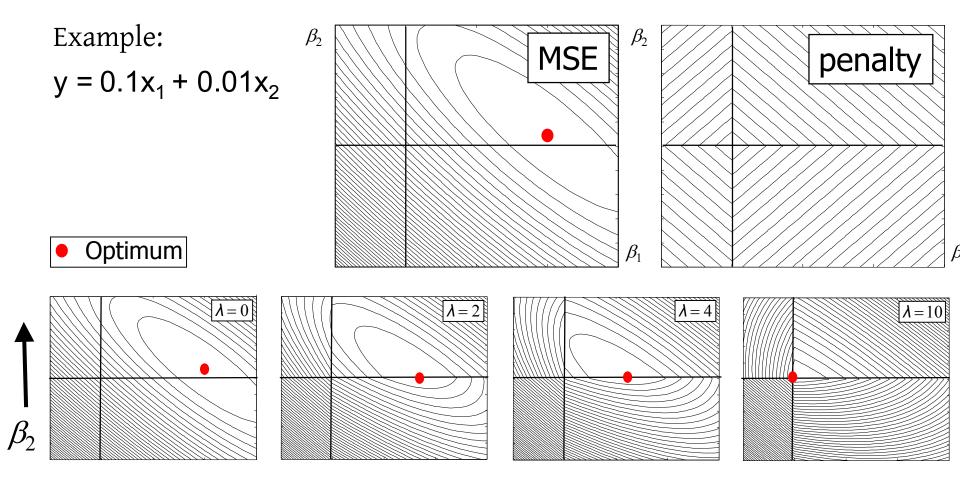
## LASSO (2)

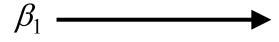
• Example: true function **y** = 3**x** 





#### LASSO (3)







# Final summary

- Feature extraction:
  - Linear:
    - PCA,
    - Fisher
  - Non-linear
    - MDS
- Feature selection:
  - Criteria
  - search algorithms
    - forward,
    - backward,
    - branch & bound.
- Sparse classifiers:
  - Ridge,
  - LASSO

