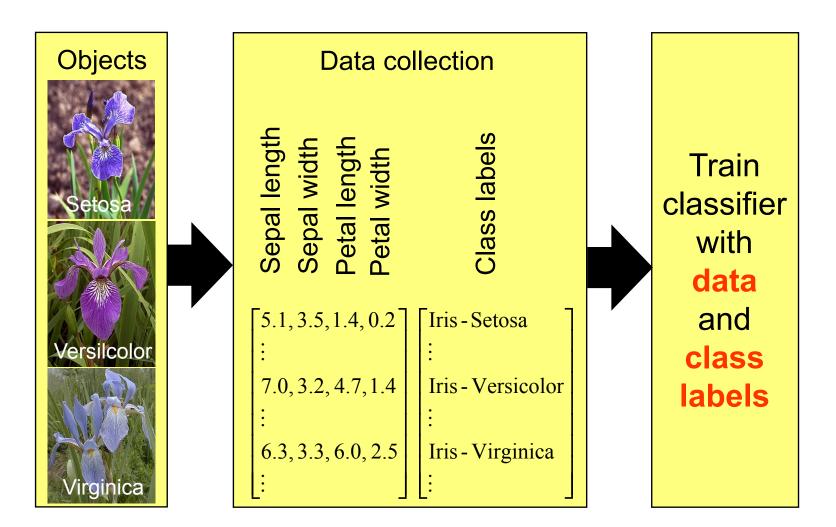


Machine Learning for Bioinformatics & Systems Biology

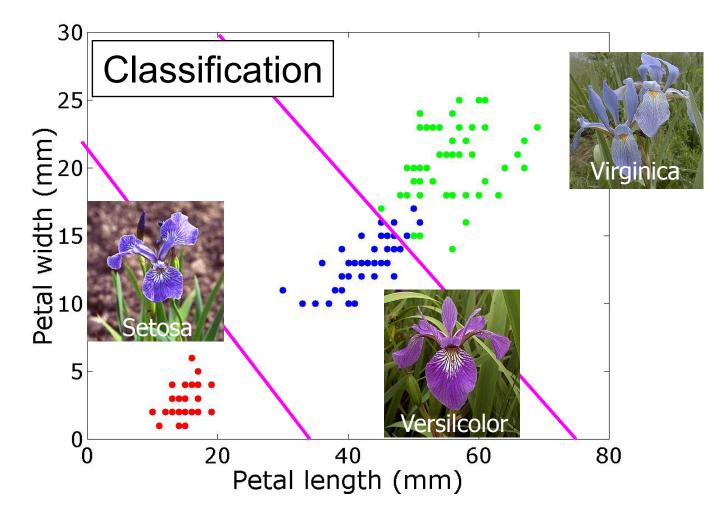
4. Clustering & hidden Markov models

Perry MoerlandAmsterdam UMC, University of AmsterdamMarcel ReindersDelft University of TechnologyLodewyk WesselsNetherlands Cancer Institute

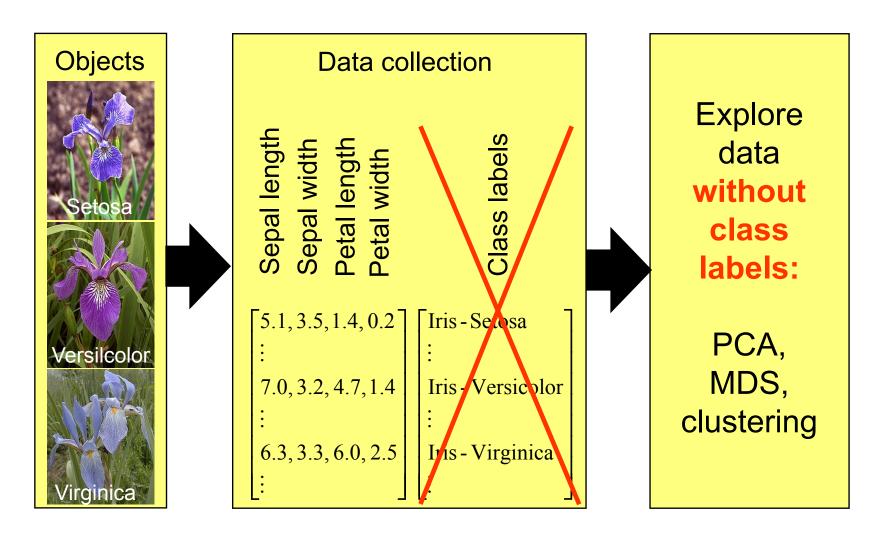

Some material courtesy of Robert Duin and David Tax

Clustering

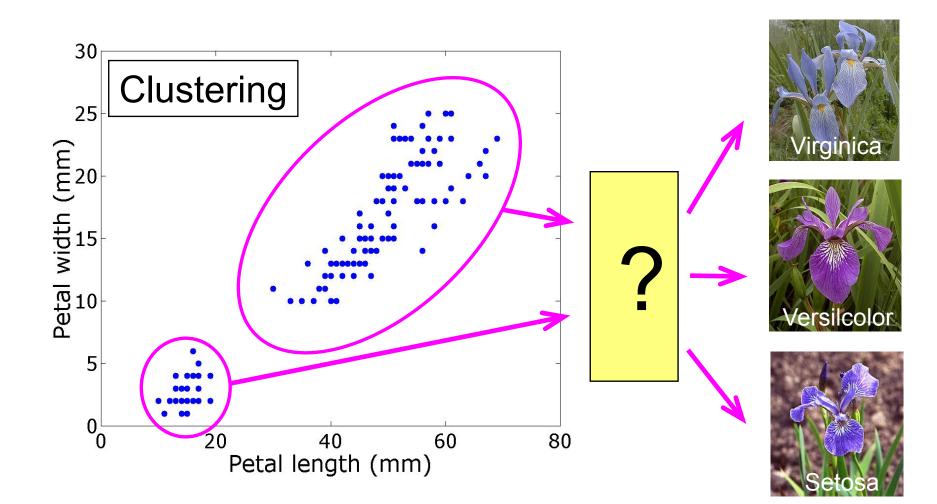
- Supervised vs. unsupervised learning
- Hierarchical clustering
- Sum-of-squares clustering (*k*-means)
- Cluster validation
- Mixtures-of-Gaussians clustering (EM algorithm)



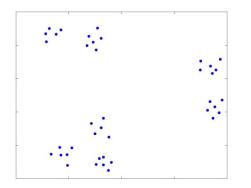
Supervised learning



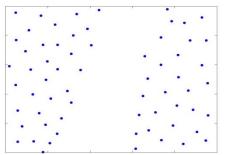
Supervised learning (2)

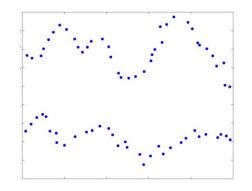


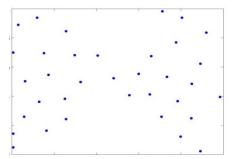
Unsupervised learning

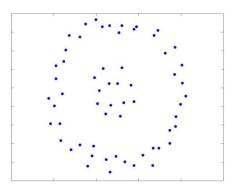


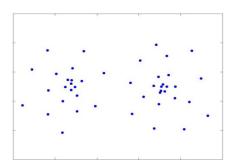
Unsupervised learning (2)




What is a cluster?


Shape: compact, convex Separation: large

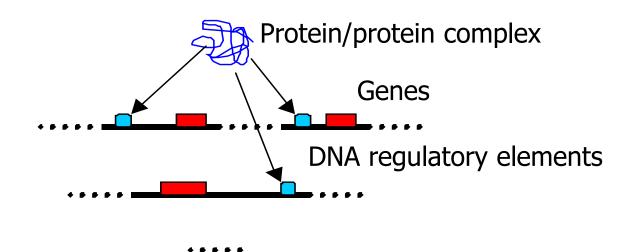

Shape: ? Separation: large?


Shape: strings Separation: large?

Shape: loose, convex Separation: small

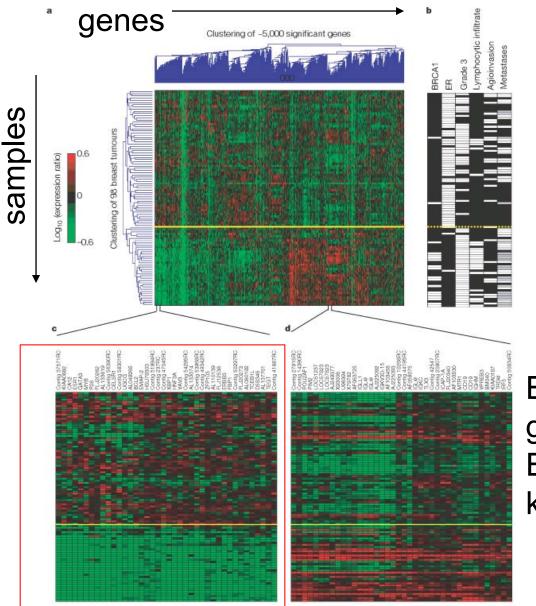
Shape: convex and circular Separation: large?

Shape: loose, convex Separation: small


What is a cluster? (2)

- Clustering: finding natural groups in data...
 - which themselves are far apart
 - in which objects are close together
- Define what is "far apart" and "close together":
 - Need a distance measure or dissimilarity measure
 - This measure should capture what we think is important for the grouping
 - The choice for a certain distance measure is often the most important choice in clustering!
- There is no such thing as *the objective clustering*

What is a cluster in bioinformatics?

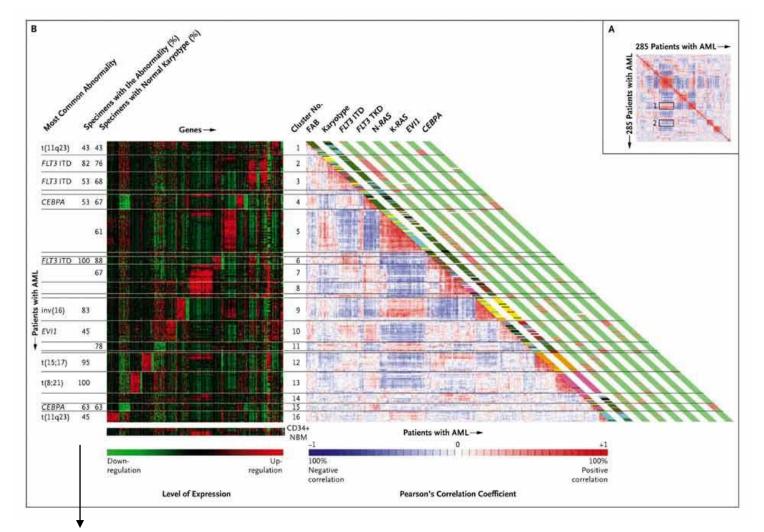

- Clustering gene expression data:
- Genes: similar ~ co-expression ~ co-regulation ~ same pathway / same function

- Samples: similar ~ same type of tissue
- Used for discovery of new subclasses (subtypes) in tumors

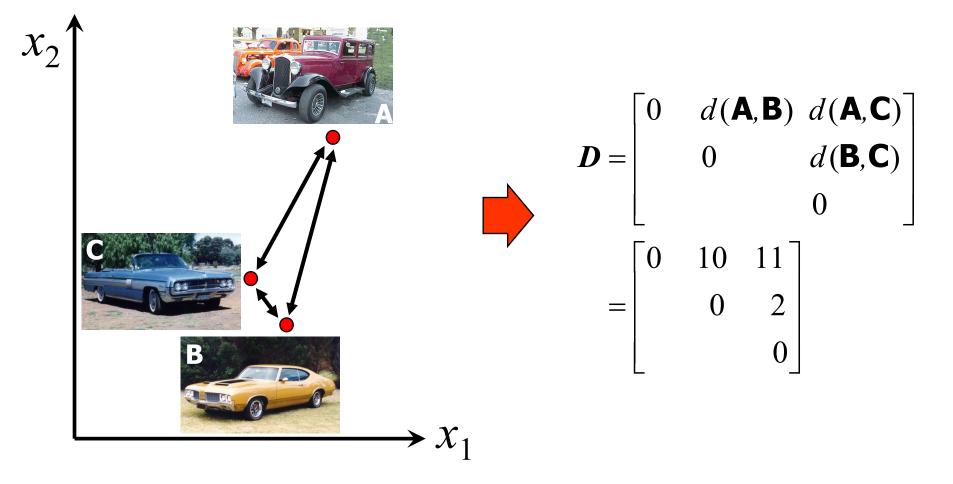
Example: genes (and samples)

negativepositive

histopathological data

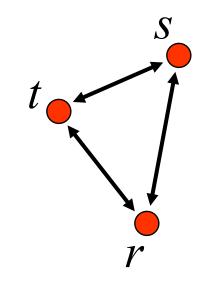

ER gene *(ESR1)* and genes co-regulated with ER, some of which are known ER target genes

Van 't Veer et al, Nature 415: 530-536 (2002)


Example: samples

Valk et al, N Engl J Med. 2004 Apr 15;350(16):1617-28.

Identified 16 groups of patients with acute myeloid leukemia

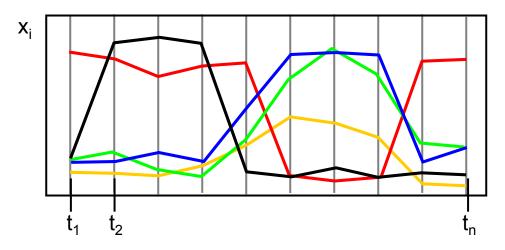

- Let d(r,s) be the dissimilarity between objects r and s
- Formally, dissimilarity measures should satisfy

$$d(r,s) \ge 0, \forall r,s$$
$$d(r,r) = 0, \forall r$$
$$d(r,s) = d(s,r), \forall r,s$$

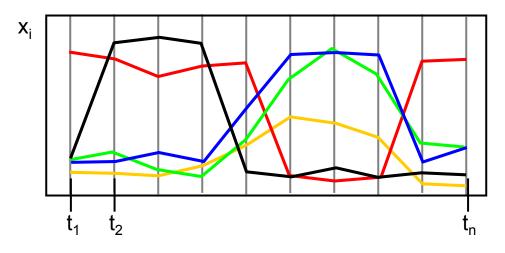
• If in addition, the triangle inequality holds, the measure is a *metric*

$$d(r,t) + d(t,s) \ge d(r,s), \forall r,s,t$$

Most often used: Euclidean distance (metric)



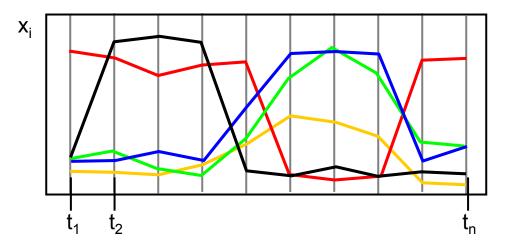
• Example: time series data


Euclidean distance

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{t=1}^{n} (x_{i,t} - x_{j,t})^{2}$$

 Example: time series data

Euclidean distance match exact shape

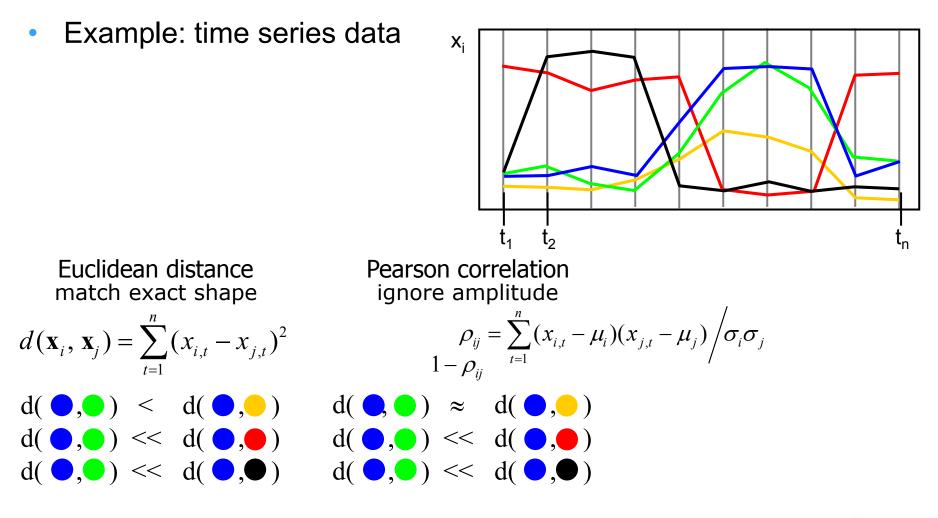

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{t=1}^{n} (x_{i,t} - x_{j,t})^{2}$$

$$d(\bigcirc, \bigcirc) < d(\bigcirc, \bigcirc)$$

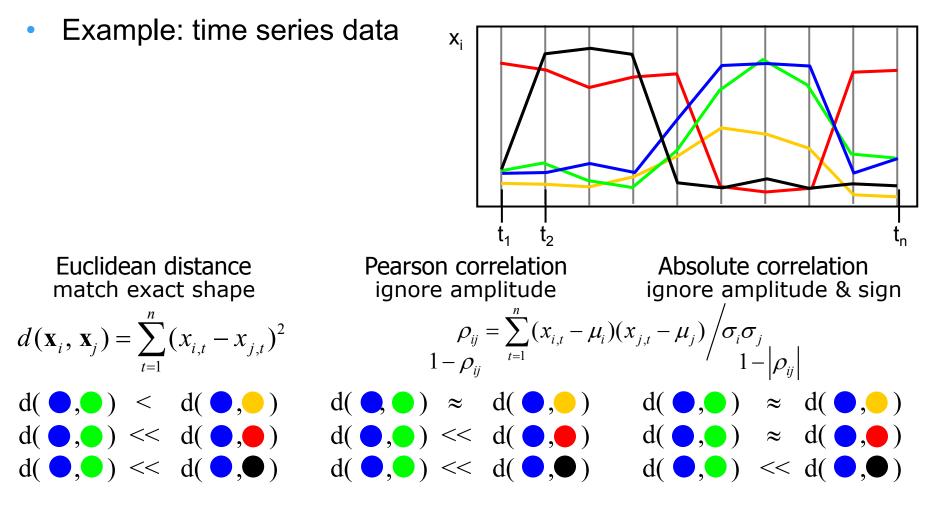
$$d(\bigcirc, \bigcirc) << d(\bigcirc, \bigcirc)$$

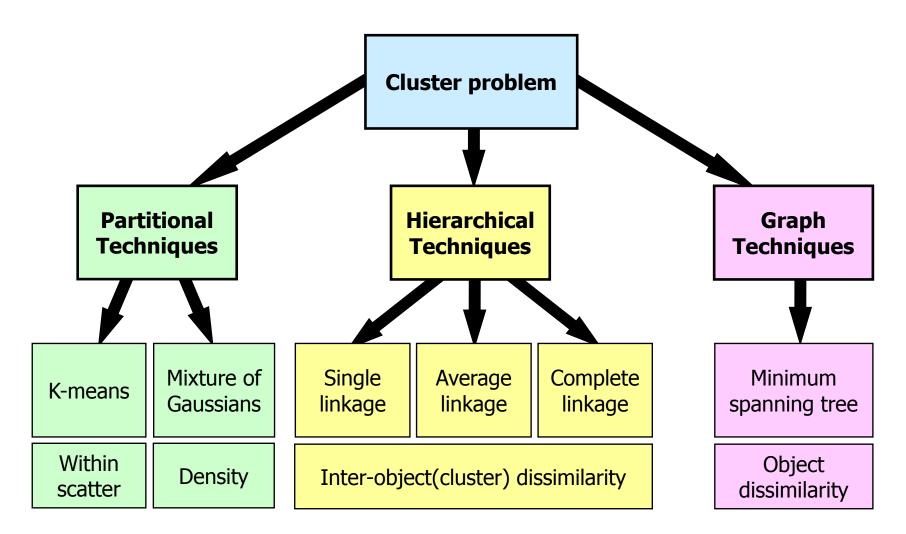
$$d(\bigcirc, \bigcirc) << d(\bigcirc, \bigcirc)$$

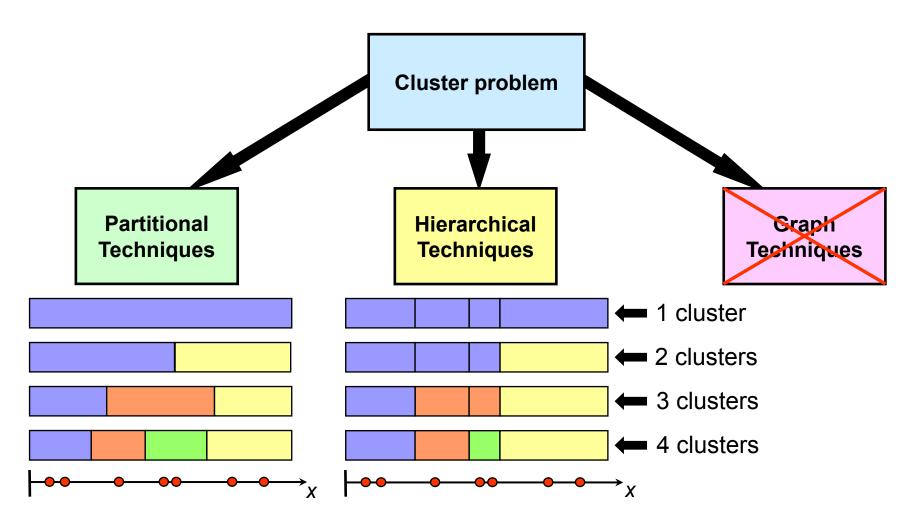
$$d(\bigcirc, \bigcirc) << d(\bigcirc, \bigcirc)$$


• Example: time series data

Euclidean distance match exact shape

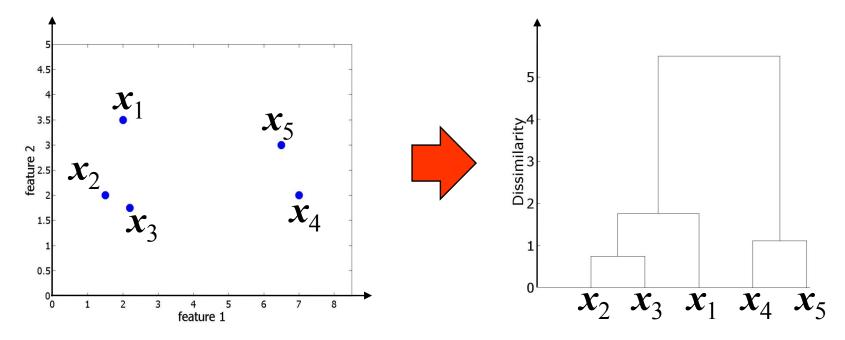

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{t=1}^{n} (x_{i,t} - x_{j,t})^{2}$$





Clustering techniques

Clustering techniques (2)

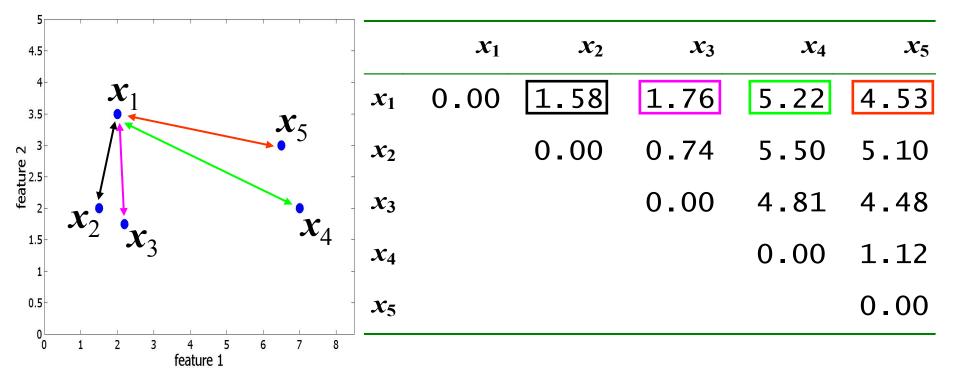

Hierarchical clustering

Input:

- dataset, $X: [n \times p]$, or directly:
- dissimilarity matrix, **D**: [n x n]
- linkage type

dendrogram

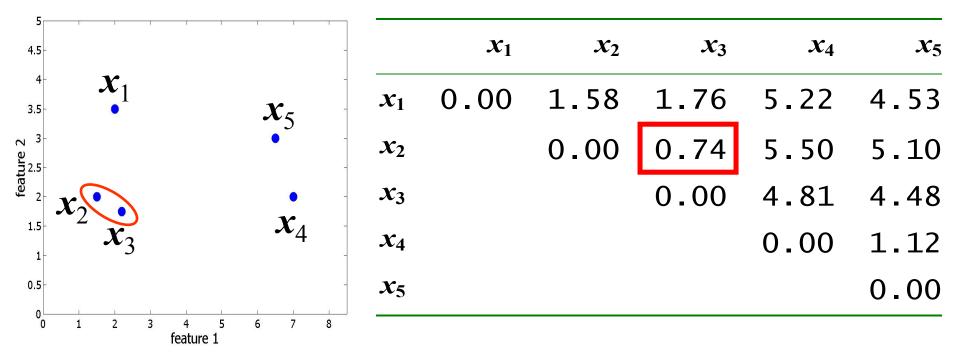
Hierarchical clustering (2)


- Algorithm (agglomerative clustering)
 - Start: all objects of X in a separate cluster
 - Clustering: combine the 2 clusters with the shortest distance in dissimilarity matrix, *D*
 - Distance between clusters is based on linkage type:
 - single, complete, average, ...
 - Repeat until only 1 cluster is left

Hierarchical clustering (3)

Dataset

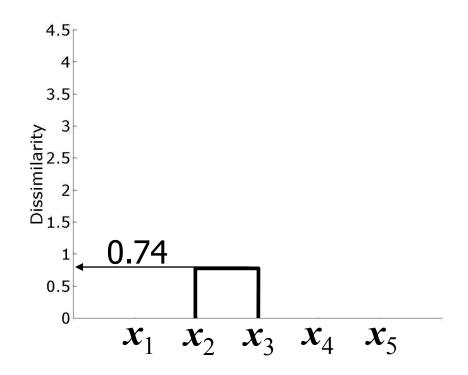
Euclidean distance matrix, **D**



Hierarchical clustering (4)

• Step 1:

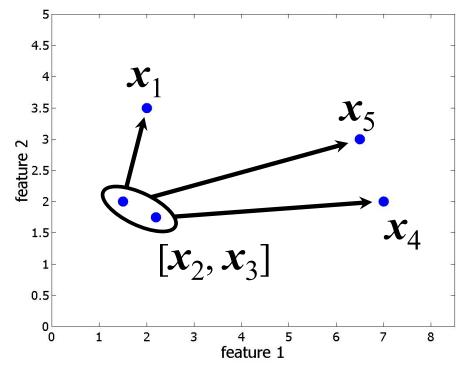
Find the most similar pair of objects: $\min_{(i,j)} \{d(i,j)\} = d(2,3)$



Hierarchical clustering (5)

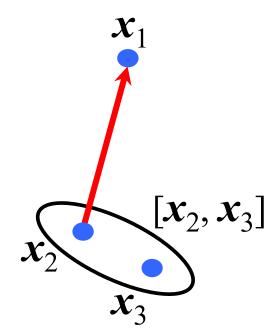
• Step 2:

Merge x_2 and x_3 into a single object, $[x_2, x_3]$;



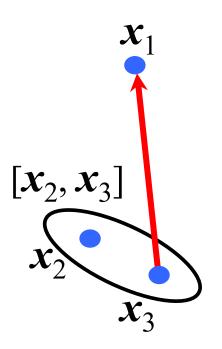
Hierarchical clustering (6)

- Step 3:
 - Recompute D –


what is the distance between $[x_2, x_3]$ and the rest?

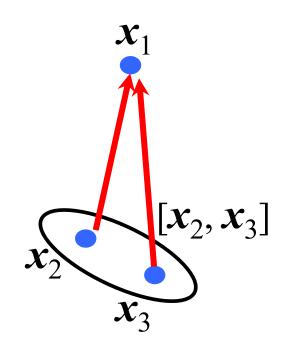
Hierarchical clustering (7)

• Step 3: Recompute D – single linkage: $d([x_2, x_3], x_1) = \min(d(x_1, x_2), d(x_1, x_3))$



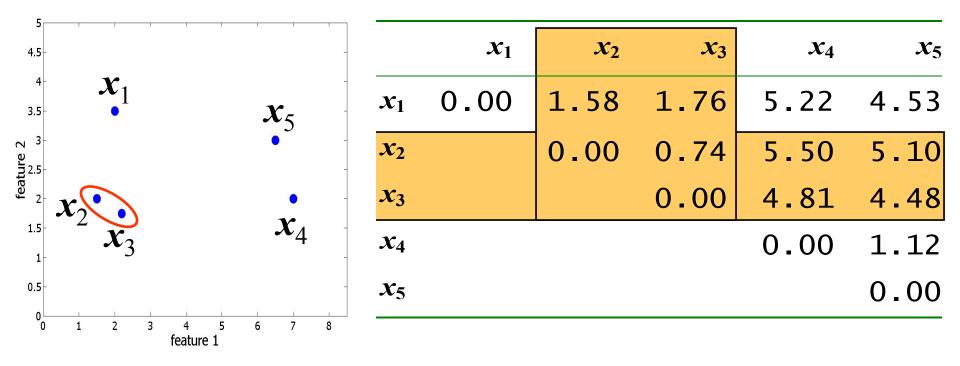
Hierarchical clustering (8)

Step 3:
 Recompute *D* –


complete linkage: $d([x_2, x_3], x_1) = \max(d(x_1, x_2), d(x_1, x_3))$

Hierarchical clustering (9)

• Step 3: Recompute D – average linkage: $d([x_2,x_3],x_1) = mean(d(x_1,x_2),d(x_1,x_3))$



Hierarchical clustering (10a)

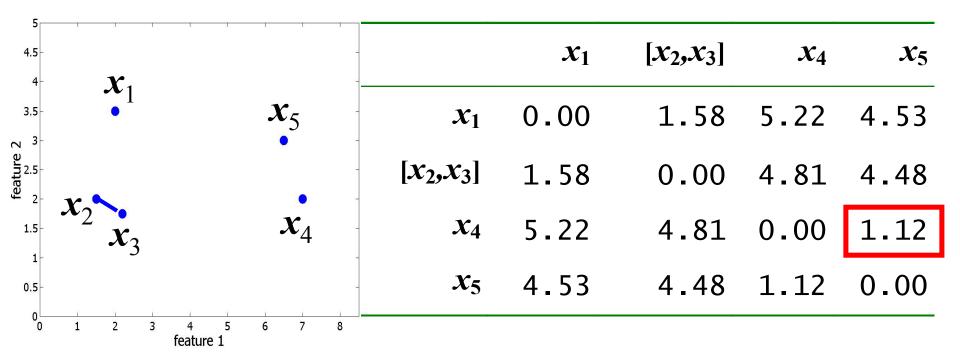
• Step 3:

Recompute *D* – single linkage:

Hierarchical clustering (10b)

• Step 3:

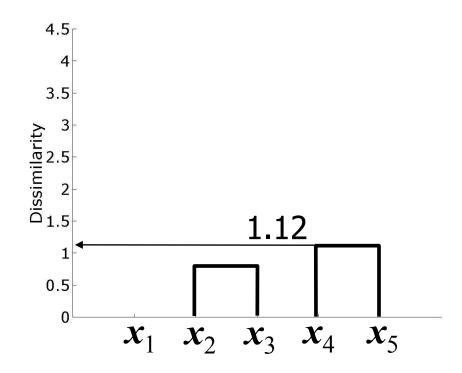
Recompute *D* – single linkage:


x_1	$[x_2, x_3]$	<i>x</i> ₄	<i>x</i> ₅
$x_1 0.00$	1.58	5.22	4.53
$[x_2, x_3]$	0.00	4.81	4.48
x_4		0.00	1.12
<i>x</i> ₅			0.00

Hierarchical clustering (11)

• Repeat, step 1:

Find the most similar pair of objects: $\min_{(i,j)} \{d(i,j)\} = d(4,5)$

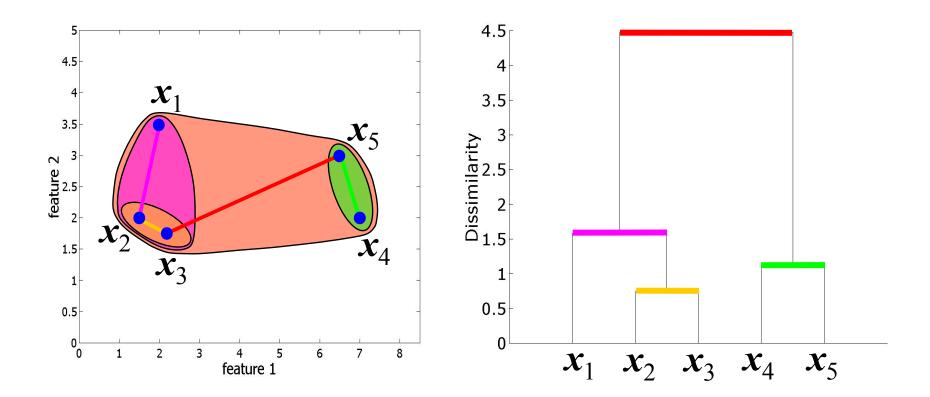


Hierarchical clustering (12)

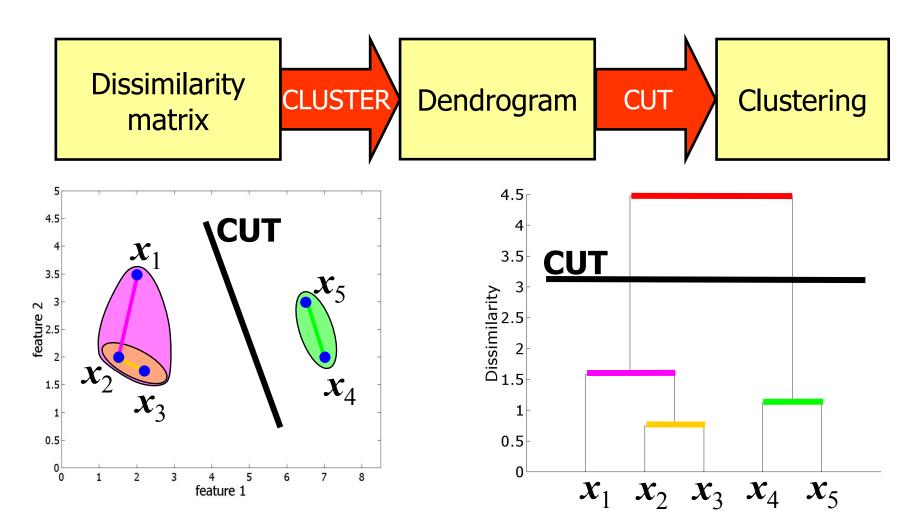
• Repeat, step 2:

Merge x_4 and x_5 into a single object, $[x_4, x_5]$;

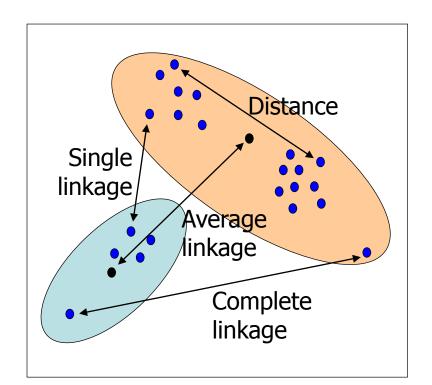
Hierarchical clustering (13)

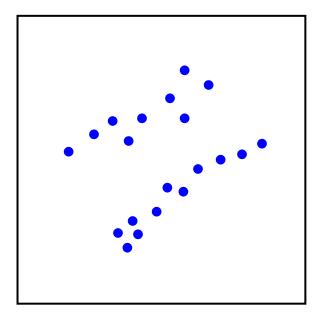

• **Repeat, step 3:** Recompute *D* (single linkage):

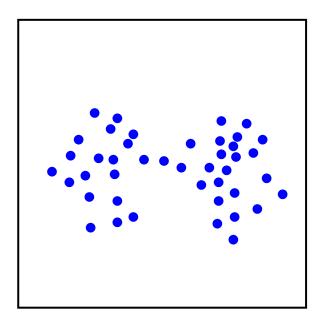
	x_1	$[x_2, x_3]$	$[x_4, x_5]$
x_1	0.00	1.58	4.53
$[x_2, x_3]$		0.00	4.48
$[x_4, x_5]$			0.00

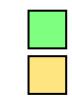

Hierarchical clustering (14)

• Repeat steps 1-3 until a single cluster remains

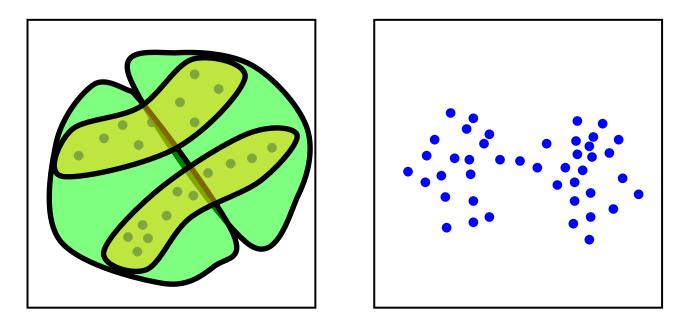

Hierarchical clustering (15)

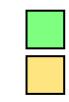

Hierarchical clustering (16)


- Hierarchical clustering: repeatedly group closest clusters
- Important choices:
 - Distance measure between objects: Euclidean, correlation, Hamming, Minkowski, ...
 - Linkage between clusters: single, average, complete



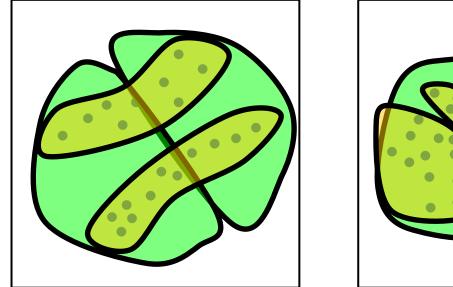
Linkage and cluster shape

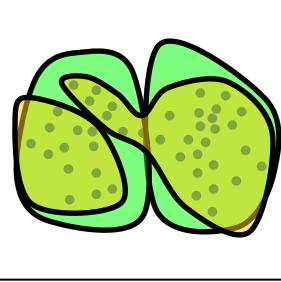



Complete linkage

Single linkage

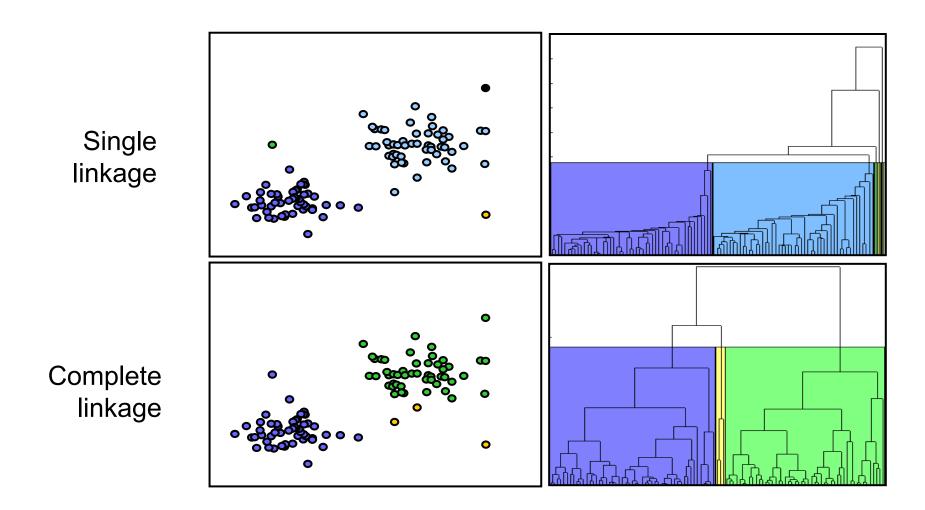
Linkage and cluster shape (2)




Complete linkage

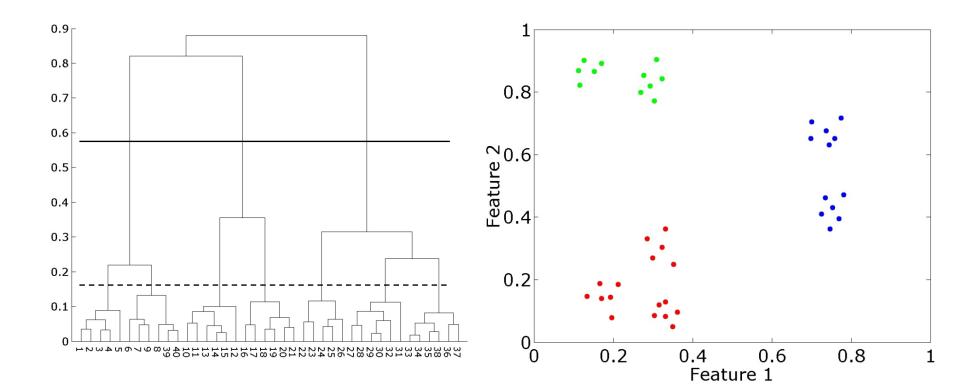
Single linkage

Linkage and cluster shape (3)

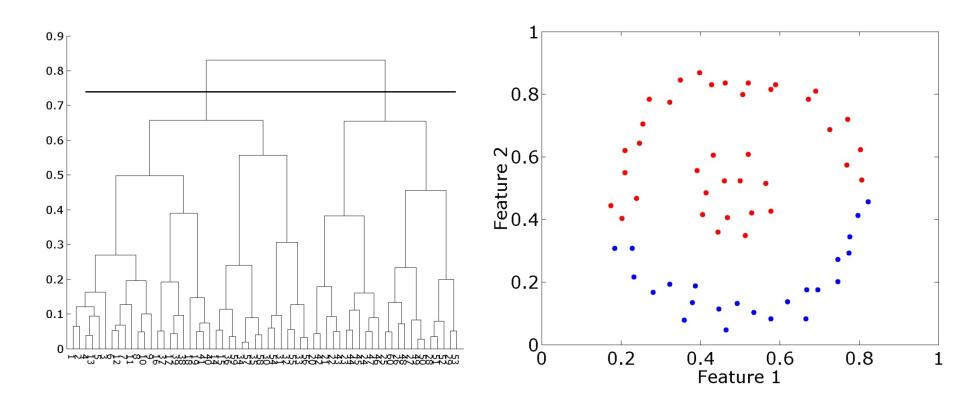


Complete linkage

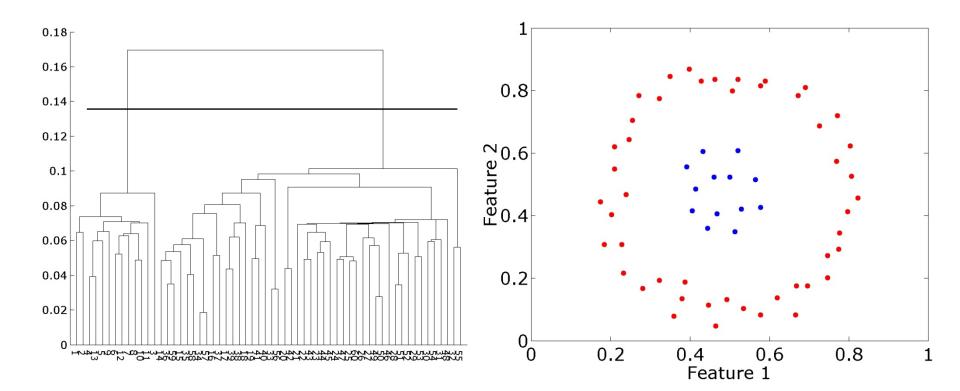
Single linkage


Linkage and outliers

Hierarchical clustering examples


Euclidean, complete linkage

Hierarchical clustering examples (2)


Euclidean, complete linkage

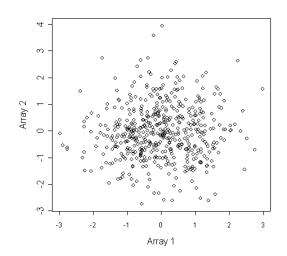
Hierarchical clustering examples (3)

Euclidean, single linkage

Hierarchical clustering (17)

- Advantages:
 - dendrogram gives overview of all possible clusterings
 - linkage type allows to find clusters of varying shapes (convex and non-convex)
 - different dissimilarity measures can be used
- Disadvantages:
 - computationally intensive:
 O(n²) in complexity and memory
 - clusterings limited to "hierarchical nestings"

Hierarchical clustering: warning


Dendrogram (Euclidian distance)

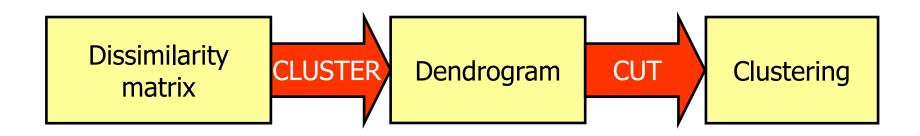
• Cluster 500 genes, 5 arrays:

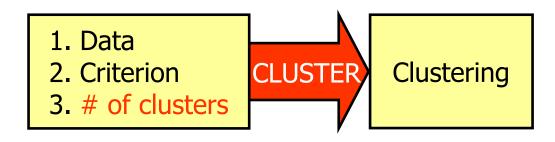
8 50 CUT 40 Height 30 20 6 6 clusters

> dist(t(data.reduced))^2 compete linkage

Data were random ...

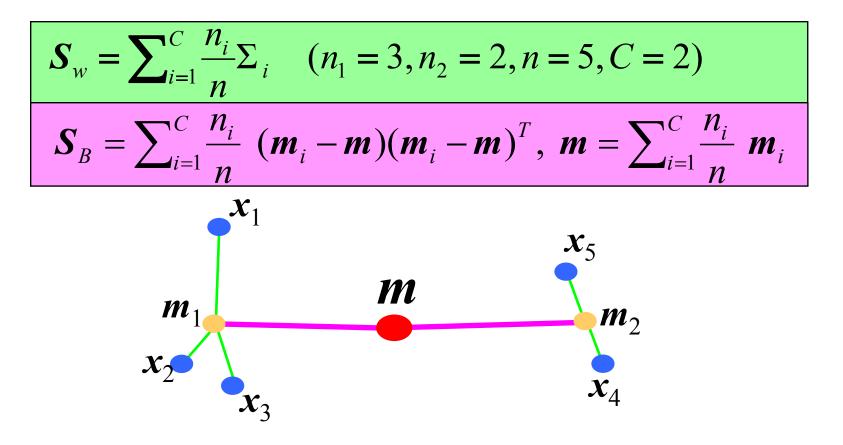
Validation is needed

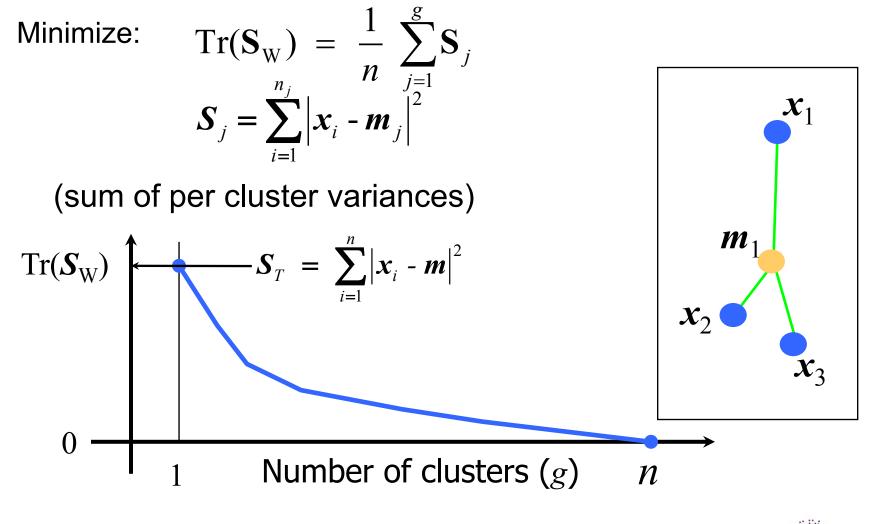



10min break Exercise 4.1-4.7

Sum-of-squares clustering

• Hierarchical:

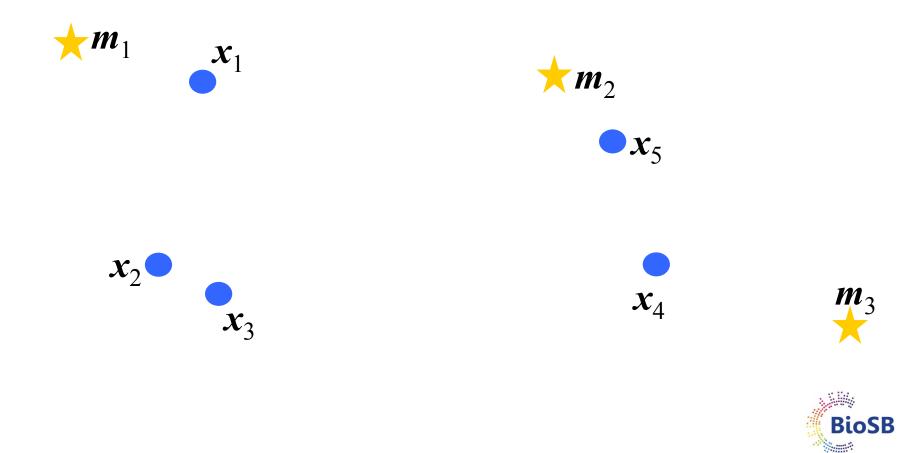

• Sum-of-squares:


Sum-of-squares clustering (2)

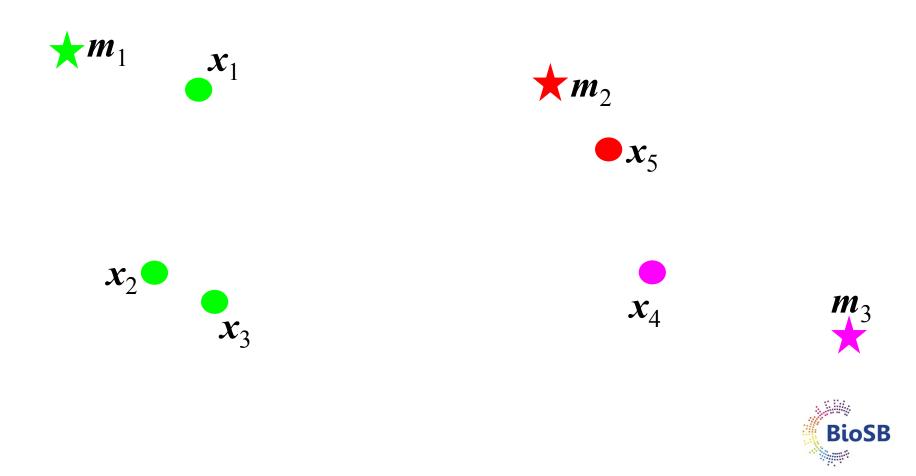
• Recall from Day 2 (& 3) (Fisher: within and between scatter):

K-means

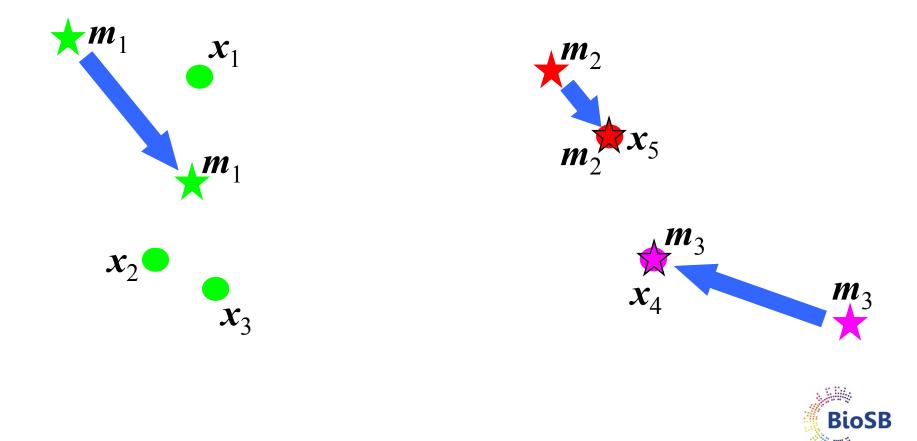
K-means (2)


- Iterative procedure to search for $min(Tr(S_W))$:
 - 1. choose number of clusters (g)
 - 2. position prototypes $(m_j, j=1, ..., g)$ randomly
 - 3. assign samples to closest prototype
 - 4. compute mean of samples assigned to same prototype: new prototype position

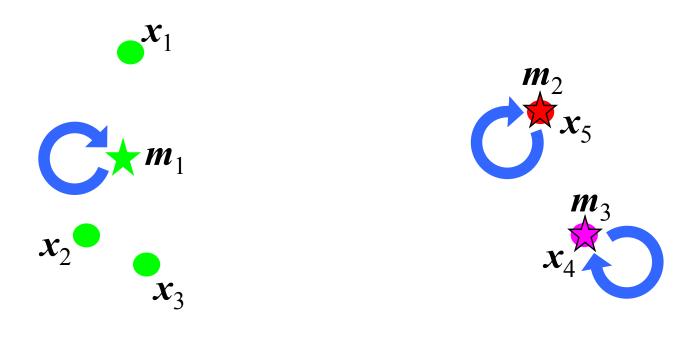
Repeat steps 3 and 4 as long as prototypes move


K-means (3)

- **Step 1:** Choose number of clusters/prototypes
- **Step 2:** Position prototypes randomly


K-means (4)

• **Step 3:** Assign samples to closest prototype

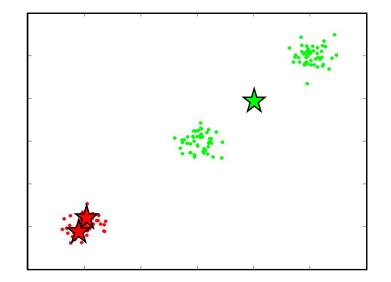

K-means (5)

• **Step 4:** Compute mean of samples assigned to same prototype: new prototype positions

K-means (6)

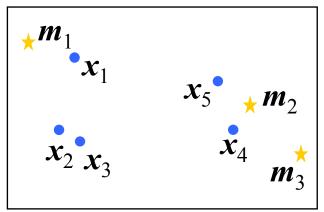
- **Repeat** as long as prototype positions change:
 - Step 3: Assign samples
 - **Step 4:** Recompute prototype positions

K-means problems



K-means problems (2)

- Algorithm can get stuck in local minima
- Solution:
 - start from *I* different random initialisations
 - keep the best clustering (lowest Tr(S_W))



 For high-dimensional data, many restarts can be necessary (e.g. *I* = 100)

K-means problems (3)

Clusters can loose all samples

- Possible solution:
 - remove cluster and continue with g-1 means
 - alternatively, split largest cluster into two or add a random cluster to continue with g means

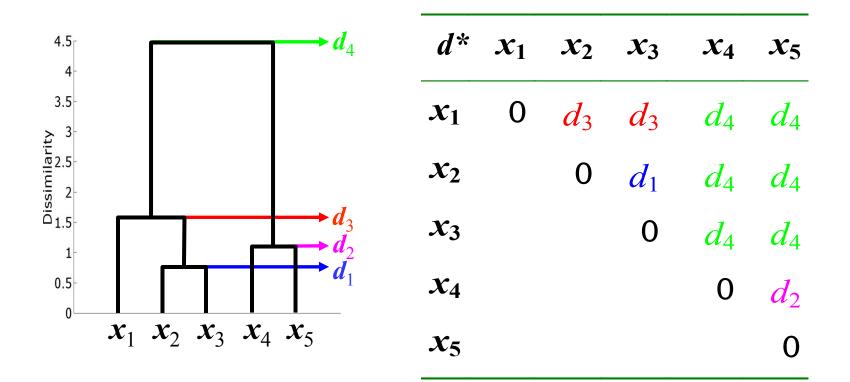
K-means example

Advantages/disadvantages: K-means

- Disadvantages:
 - Finds only convex clusters ("round shapes")
 - Sensitive to initialization
 - Can get stuck in local minima
- Advantages:
 - Very simple
 - Fast

Recapitulation

- Clustering is way to detect *natural* groups in data
- What is natural is partly subjective
- We looked at:
 - Hierarchical clustering
 - Sum of squares (k-means) clustering
- Hierarchical clustering:
 - *dendrogram* shows a complete hierarchy of possible clusterings
 - computionally intensive
- K-means
 - fast
 - sensitive to initialization and local minima


Cluster validation

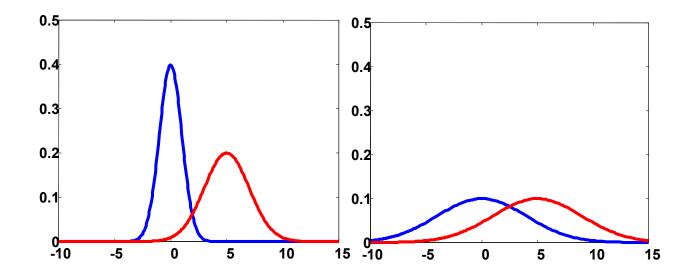
- Cluster validation:
 - Checking whether grouping is really present
 - Choosing the optimal number of clusters
- A difficult problem the ground truth is not known (since we do not know the object labels)!
- Methods:
 - Distortion measures:
 - Does clustering approximate structure in data?
 - Validity measures:
 - Davies-Bouldin index
 - Fusion graph
 - Gap statistic

Distortion measures

• How well does a dendrogram capture structure in data?

Distortion measures (2)

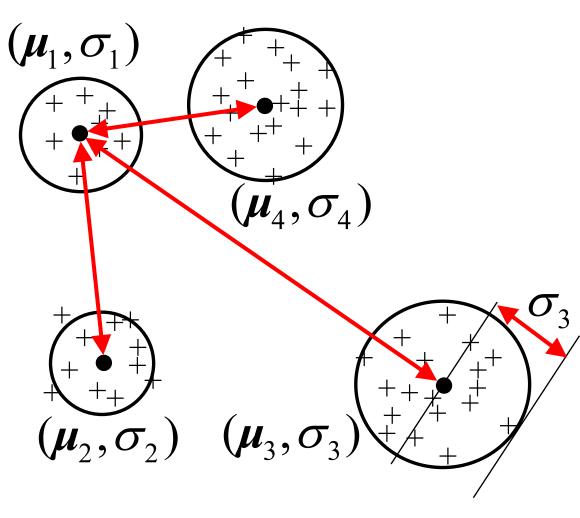
• Measure of distortion: Pearson correlation of *d* and *d**


$$\rho(\boldsymbol{d}, \boldsymbol{d}^*) = \frac{\operatorname{cov}(\boldsymbol{d}, \boldsymbol{d}^*)}{\sqrt{\operatorname{var}(\boldsymbol{d})\operatorname{var}(\boldsymbol{d}^*)}} \in [-1, 1]$$

d							<i>d*</i>					
	x_1	x_2	x_3	x_4	x_5		x_1	x_2	x_3	x_4	x_5	
x_1	0.00	1.58	1.76	5.22	4.53	x_1	0	d_3	d_3	d_4	d_4	
x_2		0.00	0.74	5.50	5.10	$ x_2 $		0	d_1	d_4	d_4	
x_3			0.00	4.81	4.48	$ x_3 $			0	d_4	d_4	
x_4				0.00	1.12	$ x_4 $				0	d_2	
x_5					0.00	x_5					0	

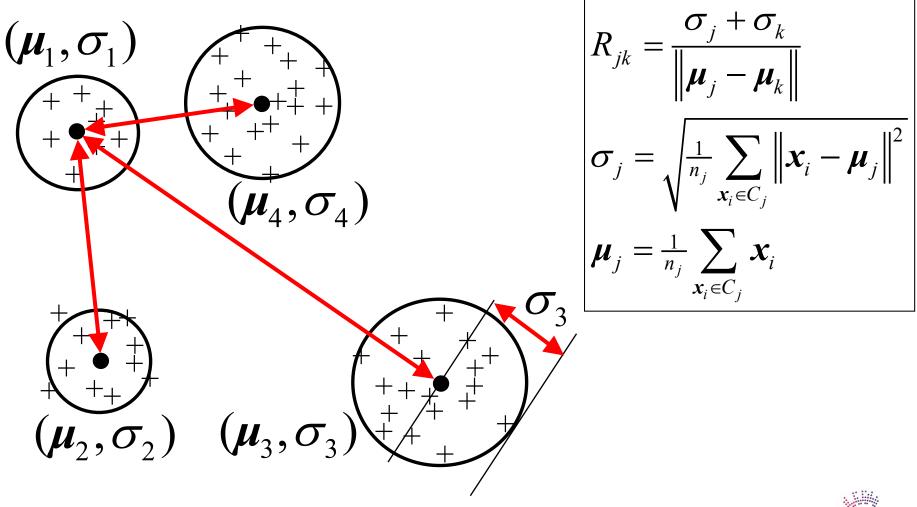
Validity measures

- Many are based on within and between group scatter
- The larger the between group scatter and the smaller the within group scatter, the better
- Example: Davies-Bouldin

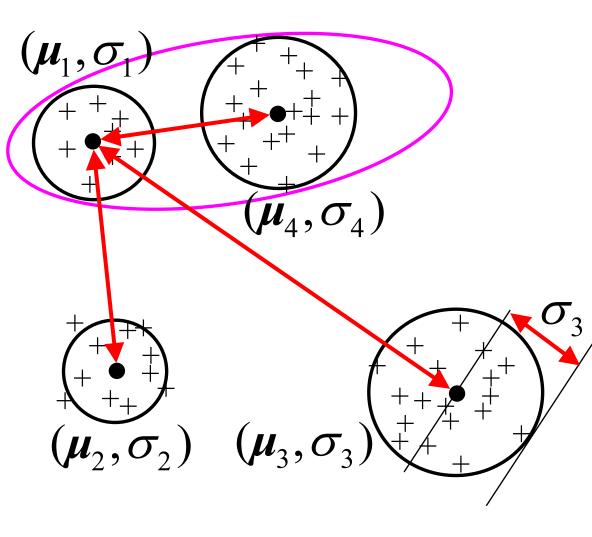


Davies-Bouldin index

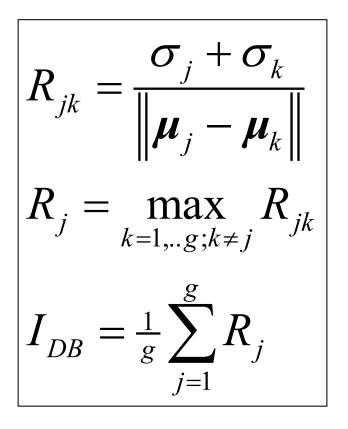
- Assumption: clusters are spherical
- For a good clustering, it should hold that:
 - objects are compactly organized within a cluster
 - clusters are far apart
- D.L. Davies and D.W. Bouldin, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, pp. 224-227, 1979


Davies-Bouldin index (2)

$$\sigma_{j} = \sqrt{\frac{1}{n_{j}} \sum_{\boldsymbol{x}_{i} \in C_{j}} \left\| \boldsymbol{x}_{i} - \boldsymbol{\mu}_{j} \right\|^{2}}$$
$$\boldsymbol{\mu}_{j} = \frac{1}{n_{j}} \sum_{\boldsymbol{x}_{i} \in C_{j}} \boldsymbol{x}_{i}$$

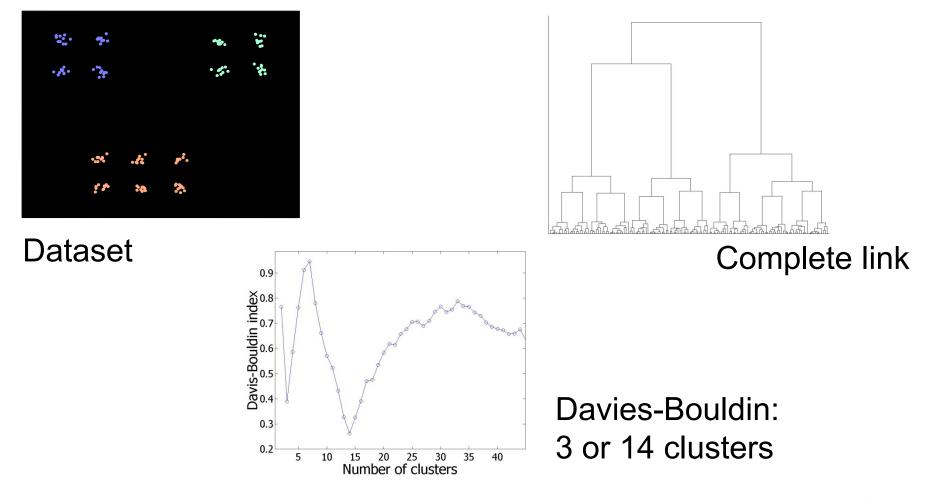


Davies-Bouldin index (3)


Davies-Bouldin index (4)

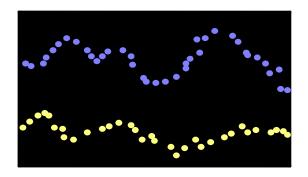
$$R_{jk} = \frac{\sigma_j + \sigma_k}{\left\|\boldsymbol{\mu}_j - \boldsymbol{\mu}_k\right\|}$$
$$R_j = \max_{k=1,\dots,g; k \neq j} R_{jk}$$

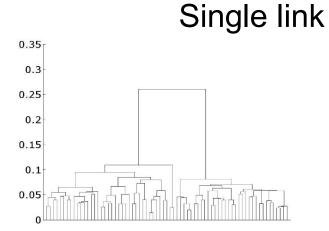
Davies-Bouldin index (5)

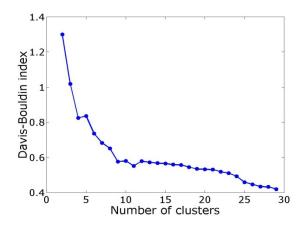

Paired cluster criterion

Worst-case value per cluster

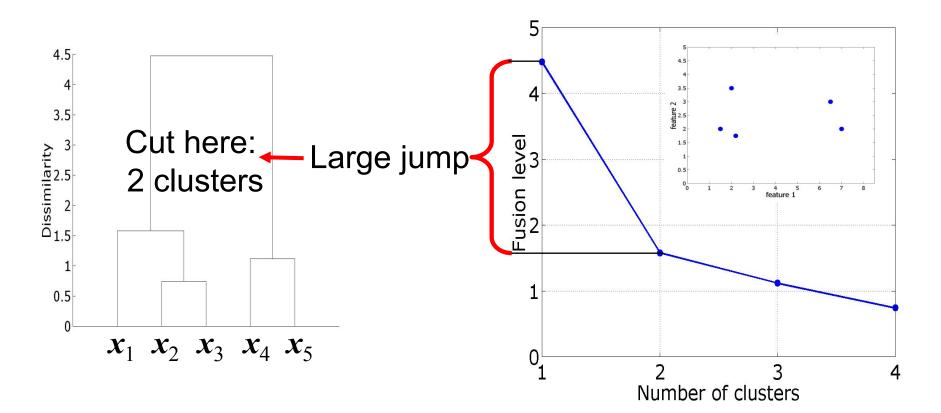
Average worst-case



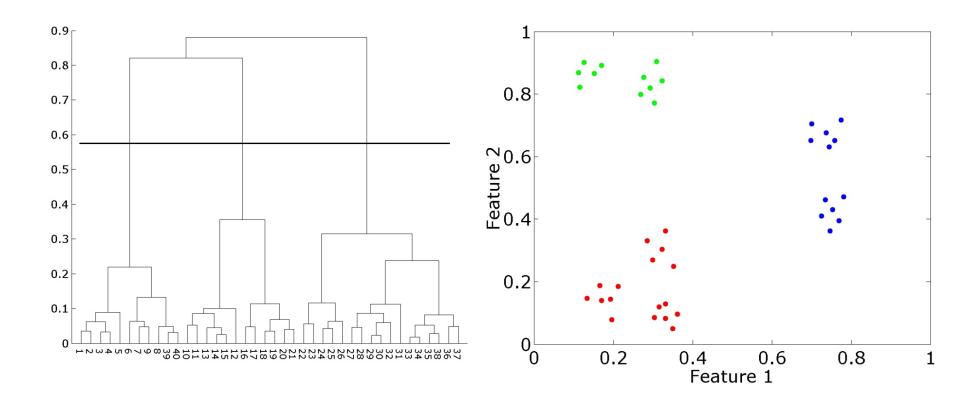

Davies-Bouldin index (5)



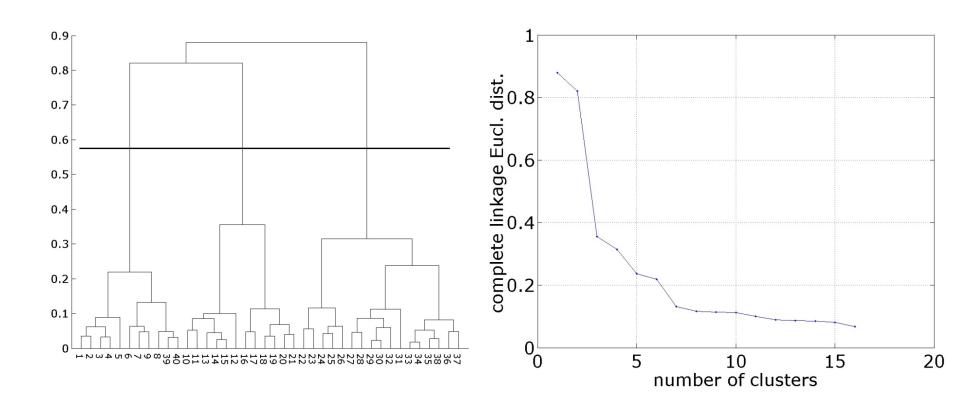
Davies-Bouldin index (7)


Davies-Bouldin:

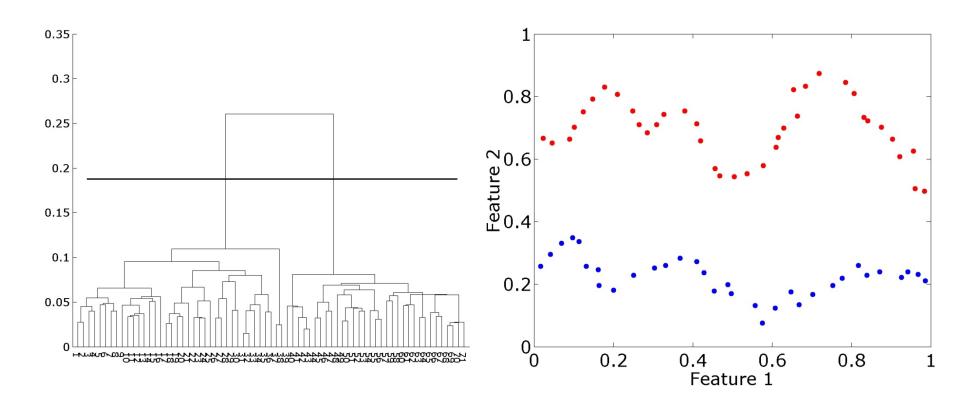
Fusion graph


Heuristic approach: fusion level

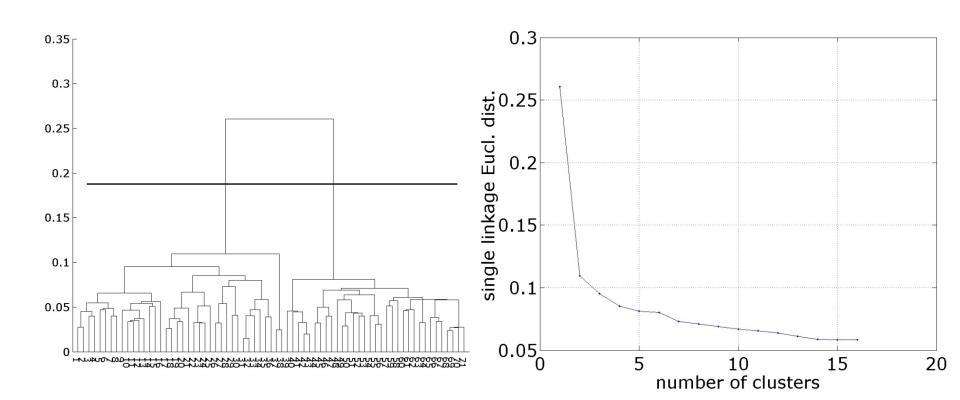
Fusion graph (2)


(Euclidean; complete linkage)

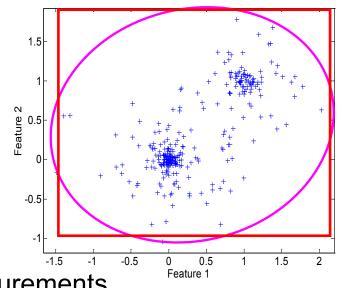
Fusion graph (3)


(Euclidean; complete linkage)

Fusion graph (4)


(Euclidean; single linkage)

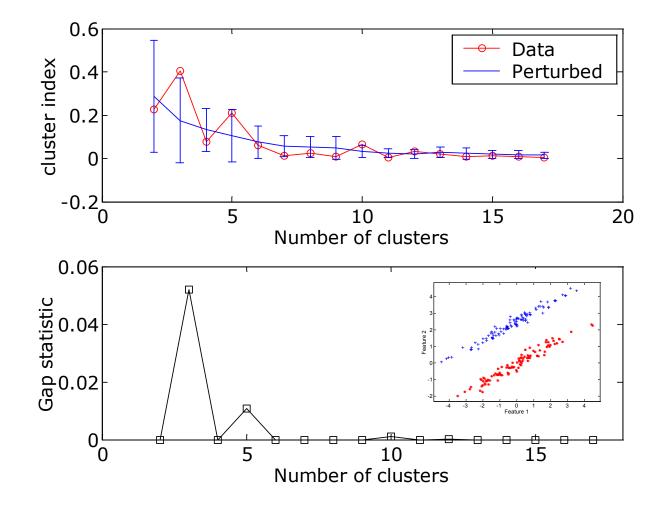
Fusion graph (5)


(Euclidean; single linkage)

What is a large jump?

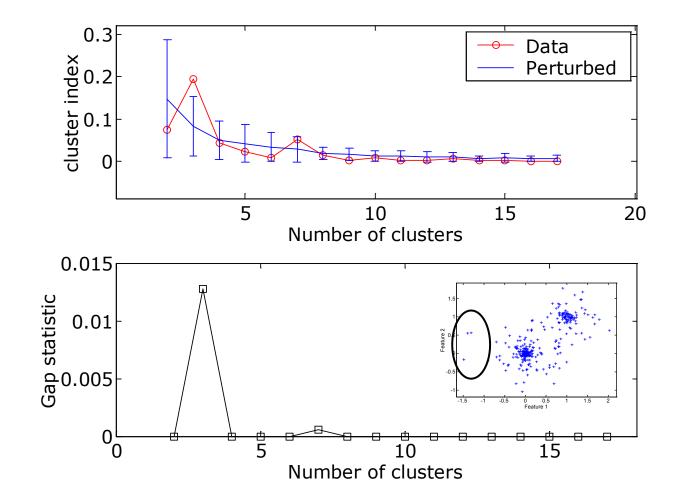
- Compare the fusion graph of the dataset with a null hypothesis, i.e. a dataset where the clustering structure has been destroyed
- Different approaches:
 - Generate random data within bounding box or convex hull of data;
 - Preferable to shuffle data, i.e.
 not generate new data, but
 perturb relationships between measurements
 - For example, randomly match feature values, i.e. permute values within columns

The gap statistic


- **1.** Generate dendrogram and extract fusion graph, f_i
- 2. Repeat r times
 - 1. Perturb columns
 - 2. Generate dendrogram and fusion graph, $f_{j,r}^*$
- 3. Compute average μ_j^* and standard deviation σ_j^* of these perturbed graphs
- 4. Compute the difference between the data fusion graph and the average perturbed fusion graph (*gap statistic*):

$$g_{j}^{gap} = \max\left\{f_{j} - \mu_{j}^{*}, 0\right\}, j = 1, 2, ..., g$$

5. Look for large values of gap statistic $g_j^{gap} = f_j$



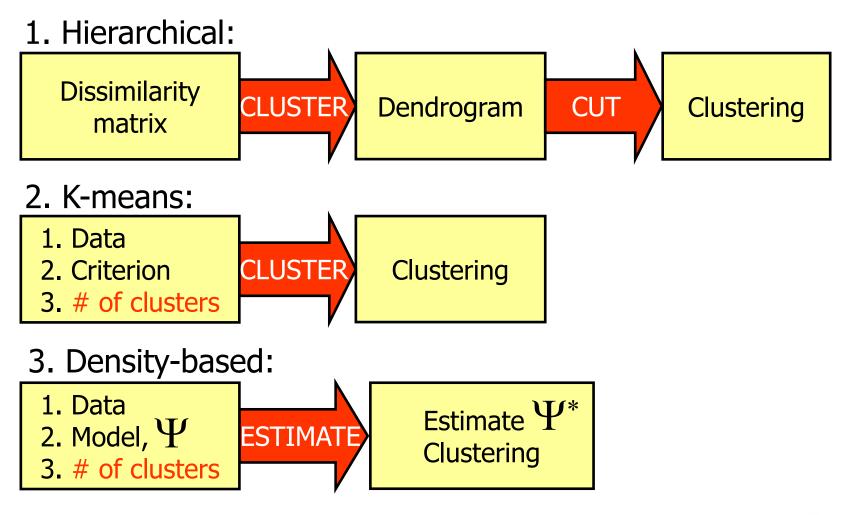
Gap fusion graph (single linkage)

Gap fusion graph (single linkage) (2)

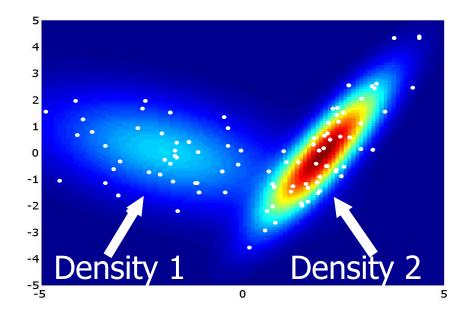
DBI vs. fusion graphs

	2 1 2 1 2 4 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.9 0.9 0.7 0.8 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	S S S C S S S S S S S S S S S S S	2 02 03 04 02 03 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05
DBI (s)	?	3/4	?	4	4+
DBI (c)	8+	2	5+	4	8+
Gap fusion graph (s)	3	3	2	3	2
Gap fusion graph (c)	2 (?)	2	4	3	3

Recapitulation

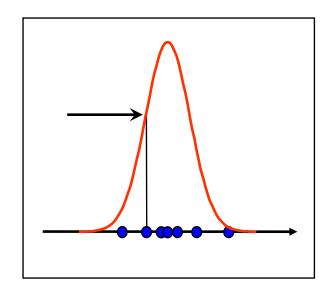

- Cluster validation is used for:
 - Assessing clustering
 - Deciding on the number of clusters
- Methods:
 - Distortion measures (dendrogram)
 - Davies-Bouldin index
 - Fusion graph and gap statistic
- When applying cluster validation, one also needs to define what a good cluster is – like in clustering itself.
 There's no free lunch...

Lunch break Exercise 4.8-4.16


Clustering overview

Density-based clustering

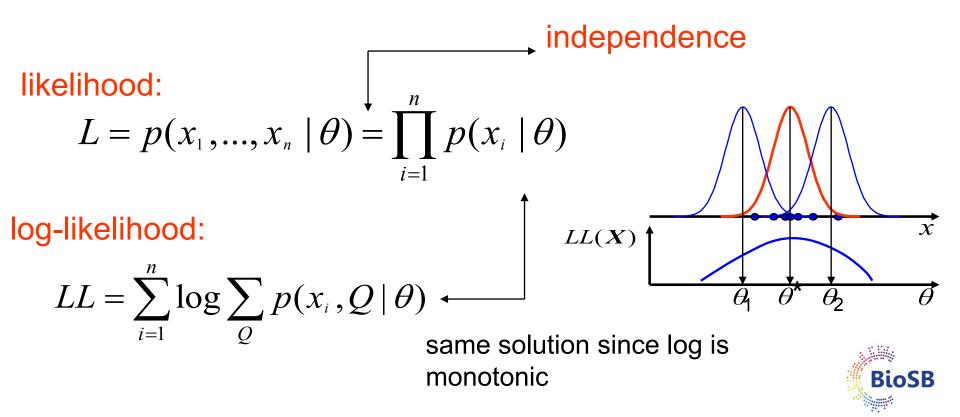
- Each cluster is described by a probability density function
- Total dataset described by a *mixture* of density functions
- Clustering = maximizing the mixture fit
- Clusters are based on *a posteriori probabilities*



Density-based clustering (2)

- Given:
 - *n* independent objects: $\{x_1, ..., x_n\}$
 - probability density function model:

 $p(\boldsymbol{x} \mid \boldsymbol{\theta}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$


- Estimate parameters θ = {μ, Σ} such that model *fits* data
- Use *likelihood* as criterion: probability of observing the data set, given the model (as on Day 1, for kernel width *h* in Parzen density estimation)

Estimation: maximum likelihood

- General method to estimate parameters θ of probability distribution from data $D = \{x_1, ..., x_n\}$. How?
- Maximize joint probability of the data

Estimation: maximum likelihood (2)

Two possible outcomes: x = 0 or x = 1. Success (x = 1) occurs with probability p

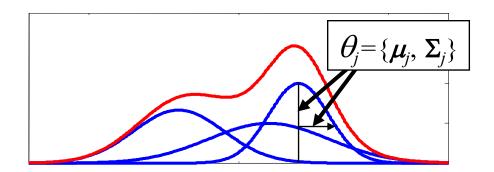
Bernoulli distribution: $P(x) = p^{x}(1-p)^{1-x}$

Likelihood:
$$P(X_1 = x_1, ..., X_n = x_n | p) = p^{x_1} (1-p)^{1-x_1} ... p^{x_n} (1-p)^{1-x_n}$$

$$= p^{n_1} (1-p)^{n-n_1}$$

$$\frac{d(p^{n_1} (1-p)^{n-n_1})}{dp} = 0$$
of successes

Maximum at $p = n_1/n$


Mixture-of-Gaussians

• Choose Gaussian as component density $p(x; \theta_i)$:

$$p(\boldsymbol{x};\boldsymbol{\theta}_j) = \frac{1}{\sqrt{2\pi^p \det(\boldsymbol{\Sigma}_j)}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_j)^{\mathrm{T}}\boldsymbol{\Sigma}_j^{-1}(\boldsymbol{x}-\boldsymbol{\mu}_j)\right)$$

• Describe complete data set as a mixture of $p(x; \theta)$'s:

$$p(\mathbf{x}; \Psi) = \sum_{j=1}^{g} \pi_j p(\mathbf{x}; \theta_j)$$
 with $\sum_{j=1}^{g} \pi_j = 1$

Mixture-of-Gaussians (2)

$$p(\mathbf{x}; \Psi) = \sum_{j=1}^{g} \pi_j p(\mathbf{x}; \theta_j) \text{ with } \sum_{j=1}^{g} \pi_j = 1$$

- Parameters:
 - Set number of clusters, *g*
 - Estimate other parameters by maximum-likelihood:

i=1

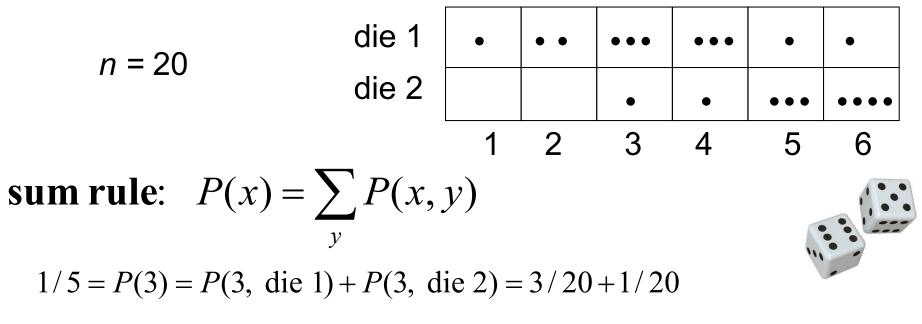
$$\Psi = (\pi, \theta = \{\mu_j, \Sigma_j\}_{j=1...g})$$

mixture coefficients $\Box = \Box = \Box = \Box = \Box = \Box = \Box = \Box$ component density parameters
log-likelihood: $LL(X; \Psi) = \sum_{i=1}^{n} \log \sum_{j=1...g}^{g} \pi_j p(\mathbf{x}_i; \theta_j)$

$$\sum_{j=1}^{\infty} \pi_j p(\mathbf{x}_i; \theta_j)$$

EM algorithm

- **Problem:** need to simultaneously estimate two interdependent things...
 - Cluster membership of each object


$$\pi_j, \mu_j, \Sigma_j$$

- Expectation-Maximization algorithm:
 - General class of algorithms for this type of problem
 - Repeatedly:
 - Recalculate cluster membership of each object (E)
 - Recalculate density parameters of each cluster (M)
- Introduce a hidden variable z to explicitly indicate mixture components

$$\pi_j = p(z=j)$$

Intermezzo: probabilities

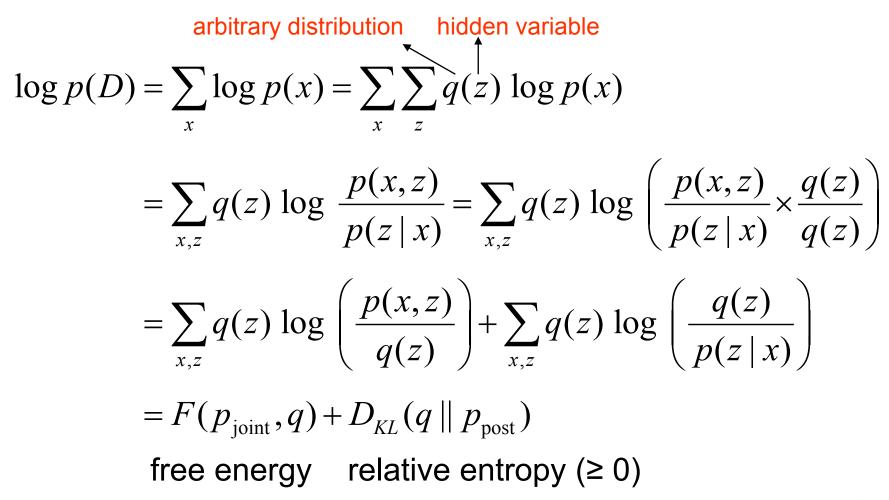
product rule: P(x, y) = P(x | y)P(y) = P(y | x)P(x)

3/20 = P(3, die 1) = P(3 | die 1)P(die 1) = (3/11)(11/20) = 3/20= P(die 1 | 3)P(3) = (3/4)(4/20) = 3/20

Intermezzo: Bayes' theorem

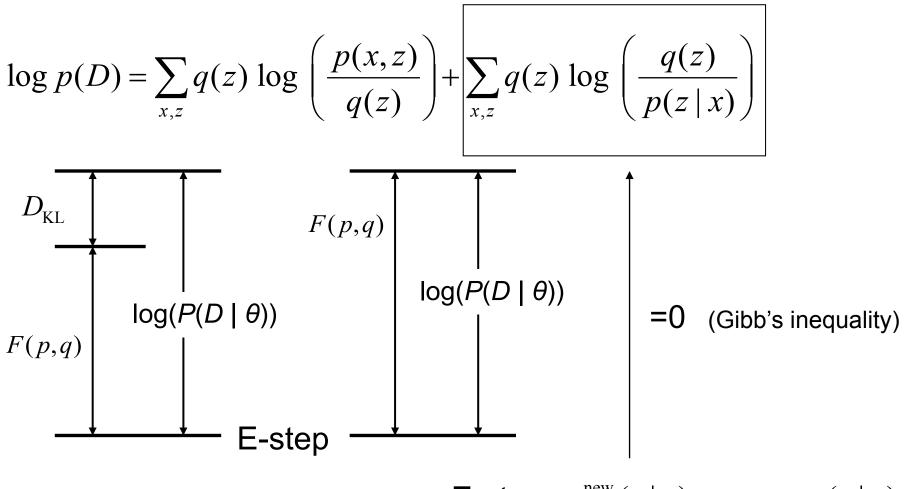
From product rule

$$P(x \mid y)P(y) = P(y \mid x)P(x)$$



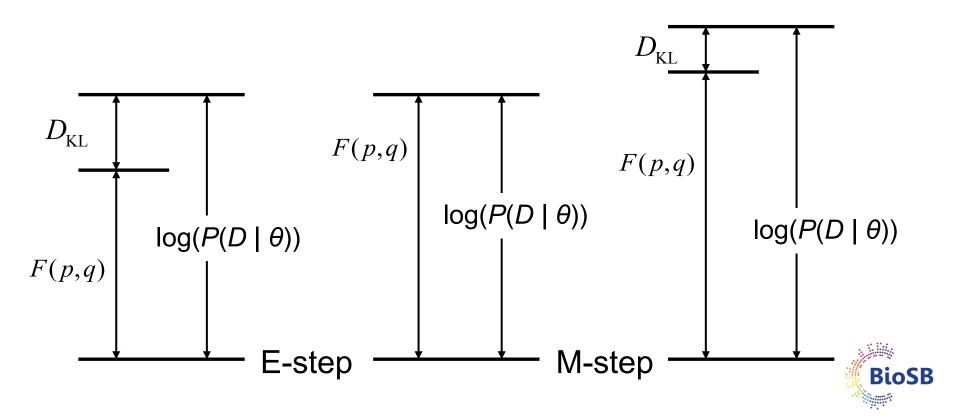
Bayes:
$$P(x | y) = \frac{P(y | x)P(x)}{P(y)} = \frac{P(y | x)P(x)}{\sum_{x} P(y | x)P(x)}$$

 $P(\text{die 1}| 3) = \frac{P(3 | \text{die 1})P(\text{die 1})}{P(3)} = \frac{(3/11)(11/20)}{4/20} = 3/4$



EM algorithm (2)

EM algorithm: E-step



E-step:
$$q^{\text{new}}(z \mid x) = p_{\text{post}} = p(z \mid x)$$

BioSB

EM algorithm: M-step

$$\log p(D) = \sum_{x,z} p(z \mid x) \log \left(\frac{p(x,z)}{p(z \mid x)}\right)$$

M-step: maximize log[p(D)] with respect to the parameters

EM algorithm (3)

Iterate to maximize likelihood:

E-step:
$$p_{\text{post}} = p(z | x, \theta)$$

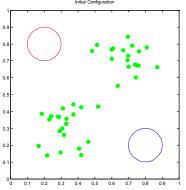
Calculate the distribution of the hidden variables given the data and the model parameters

M-step:
$$\theta^{new} = \underset{\theta}{\arg \max} \sum_{x,z} p(z \mid x) \log p(x, z \mid \theta)$$

Maximize the expected (with respect to hidden variables) log-likelihood of the complete data.

Compare M-step with MoG log-likelihood: $\sum_{i=1}^{n} \log \sum_{j=1}^{g} \pi_{j} p(\mathbf{x}_{i}; \theta_{j})$

M-step is easier: log within sum

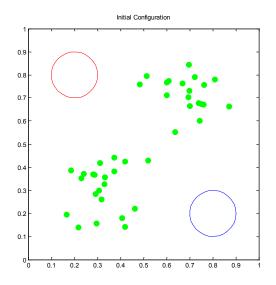

EM: mixture model

Very simple example of a model with hidden variables:

2-component mixture model

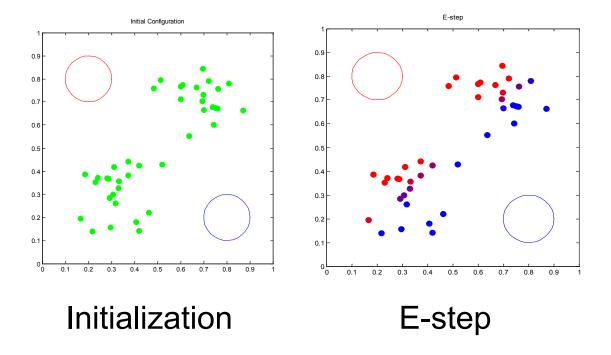
$$p(x) = \pi_1 p_1(x \mid \theta) + \pi_2 p_2(x \mid \theta)$$

hidden variable z = 1,2 - component label



E-step:
$$p(z = j | x, \theta) = \frac{p(z = j | \theta) p(x | z = j, \theta)}{p(x | \theta)} = \frac{\pi_j p_j(x | \theta)}{p(x)}$$

M-step: maximize $\sum_{x,z\in\{1,2\}} p(z \mid x) \log p(x,z \mid \theta)$


EM: mixture model (2)

Initialization

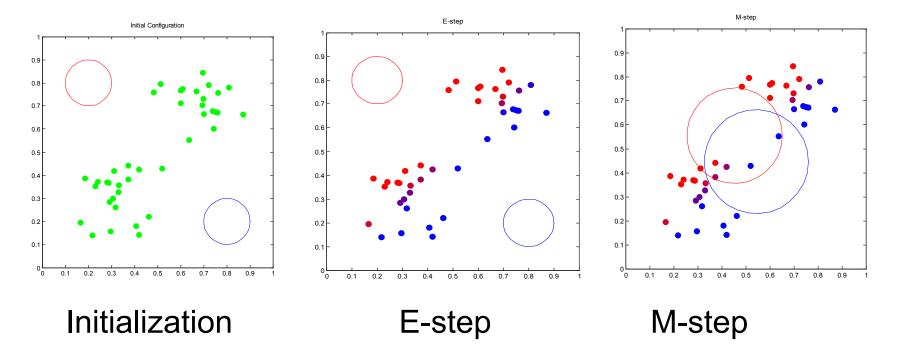
EM: mixture model (3)

EM: mixture model (4)

• **M-step**: Maximization

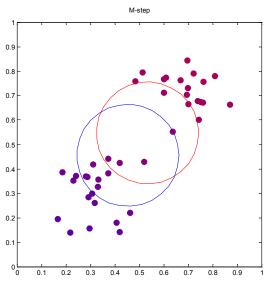
Maximize the expected complete LL by updating

- mixture coefficients π_i
- cluster means and covariances $\theta_j = \{\mu_j, \Sigma_j\}, j = 1, ..., g$:

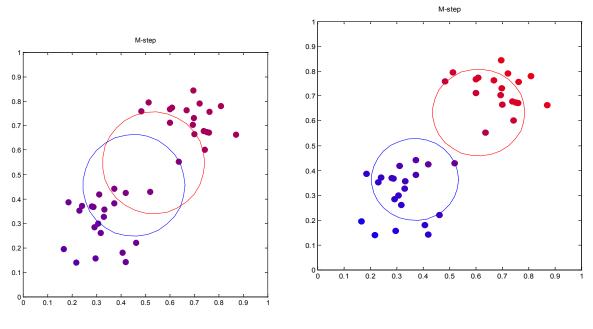

$$\hat{\pi}_{j} = \frac{1}{n} \sum_{i=1}^{n} p(z = j \mid x_{i}) = \frac{1}{n} \sum_{i=1}^{n} w_{ij}$$
 "total membership"

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} w_{ij} x_{i}}{\sum_{i=1}^{n} w_{ij}}$$

$$\hat{\Sigma}_{j} = \frac{\sum_{i=1}^{n} w_{ij} (x_{i} - \hat{\mu}_{j}) (x_{i} - \hat{\mu}_{j})^{T}}{\sum_{i=1}^{n} w_{ij}}$$
 weighted sums

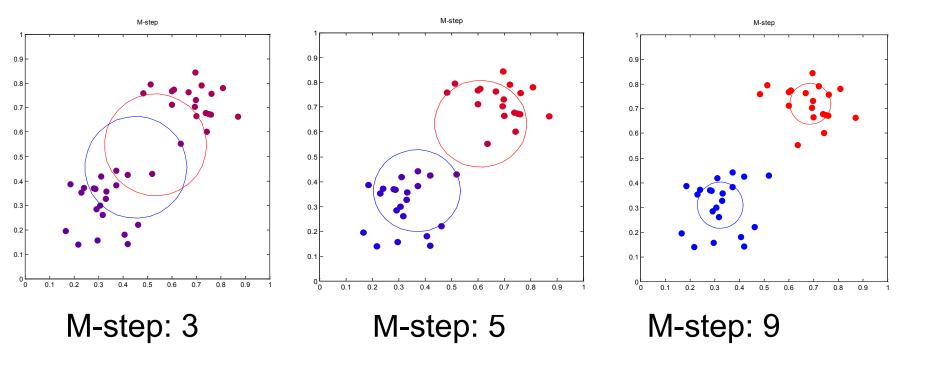


EM: mixture model (5)


EM: mixture model (6)

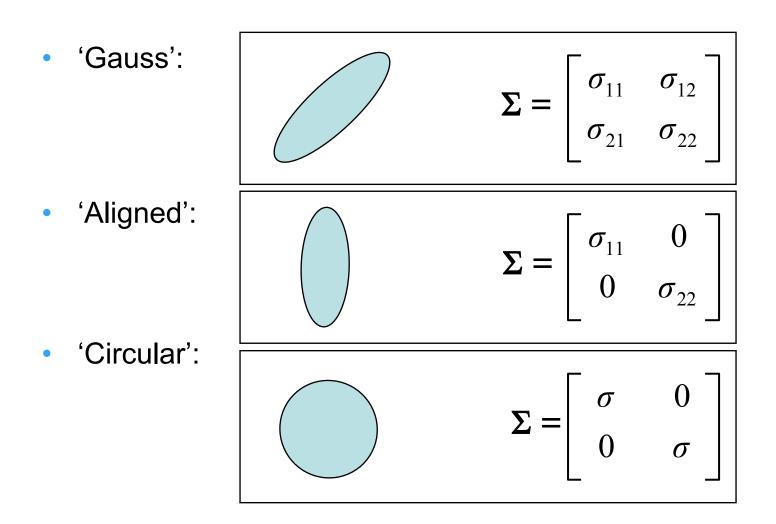
M-step: 3

EM: mixture model (7)



M-step: 3

M-step: 5



EM: mixture model (8)

Mixture-of-Gaussians (3)

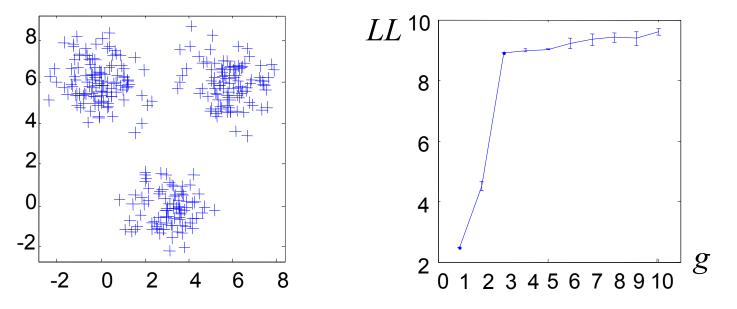
EM: mixture model (9)

• If...

- all clusters are spherical
- the variance of each cluster is infinitely small

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\varepsilon}^2 & 0 & 0 \\ 0 & \boldsymbol{\varepsilon}^2 & 0 \\ 0 & 0 & \boldsymbol{\varepsilon}^2 \end{bmatrix}, \quad \boldsymbol{\varepsilon} \to 0$$

then the EM algorithm simplifies to the *K*-means algorithm (samples are always assigned to the closest cluster!)


EM algorithm (4)

- Disadvantages:
 - can get stuck in local minima
 - depends on initial conditions
 - convergence can be slow
 - problems with covariance estimates: if too few samples are members of a cluster, there will not be enough data to base estimate on
- Advantages:
 - simple to implement

Cluster validation: log-likelihood

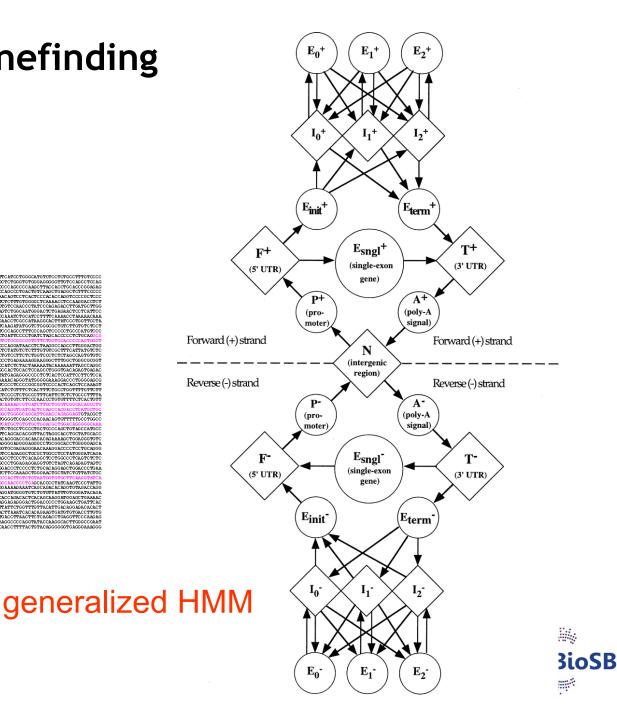
- For probabilistic models (e.g. mixture-of-Gaussians):
 - Log-likelihood will probably not increase anymore when too many clusters are used
 - Look for "plateau" in log-likelihood graph

Problem: when g = n, the log-likelihood is infinite;
 Solution: information criteria (Day 5)

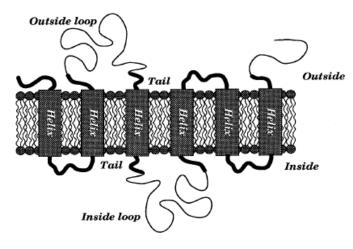
Recapitulation

- Density based clustering:
 - Assume a probability density function per cluster
 - Train using the *EM algorithm*
- Example:
 - Mixture of Gaussians
 - But many probability densities fit in the same framework principal component analysis, factor analysis, ...
- EM algorithm:
 - problem *decomposition*: simple to implement
 - sensitive to local minima

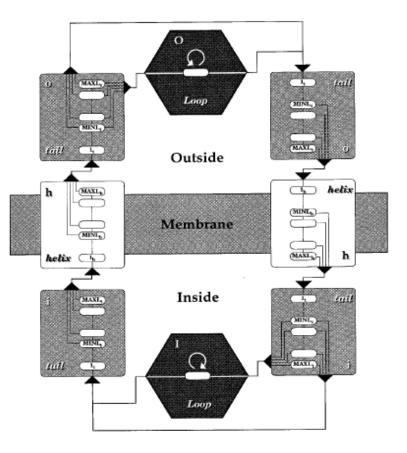
15min break Exercise 4.17


Hidden Markov models

- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding



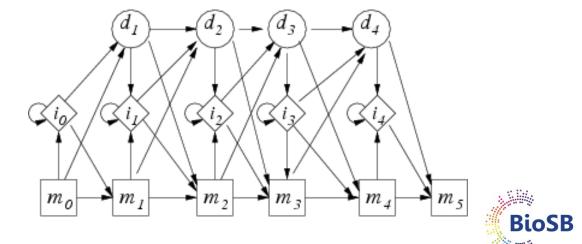
Application: genefinding


Application: transmembrane proteins

 Amino acid seq:
 MGDVCDTEFGILVA...SVALRPRKHGRWIV...FWVDNGTEQ...PEHMTKLHMM..

 State seq:
 00000000hhhhh...hhhhiiiiiiihhh...hhho00000...0000000hhh..

HMM



Application: protein domains

<u>Q21978/165-314</u> Q20638/74-216 Q19601/54-189 <u>Q18311/32-17</u> 018209/233-37)9ZAX1∕42-162 GB1 MEDSA/7-14 LGB1 LUPLUZ7-149 IBP1 CASGL/6-145 GLP1 GLYDI/7-141 GLB1 GLYDI/6-14: GLB_TUBTU∕6-139 GLB3 LAMSP/7-14: GLB2 TYLHE/9-142 GLB2 LUMTE/8-141 GLB1 TYLHE∕7-136 TYLHE/8-143 SLB3 TYLHE/8-143 GLB4 LUMTE/11-146 GLB_CERRH/6-146 GLB BUSCA/6-146 GLBB ANATR/16-15: GLB APLJU/6-139 GLBX CHITH/11-14 CHITH/23-15 GLB6 CHITH∕22-156 CHITH/9-143 GLB2 CHITH/22-15 CHITH/20-147

SCEVVADSWELVESRSAATSACFGIFVEORVESKIPHLRPIFG I SESDDVFDIEDNHFVREHARIFTSI EKELIRATWSDEFD .NIVEGSAIVCVIEDHNPCKCUCFP F. JSKYOCBUKUESKERSOALKEVOT ERILLEQSWEKTRKT GADHIGSKIFFMVIT AQPDIKAIFG I EK.IFTGRIKVDPREROHALVYTKT TKKUVIGUEREVLA .QCFELFTEUHHKSAT .RSTSIKLAFG I AE N.ESPMONAFLGISSTIOAF OIHLVRALWROVTT .KGFTVIGASIYHRUFA .LDASVRDIFP .DKGOROAAFGOALHWY OEATWNSSWEAFKO .NIPEVSWFFTVHUE .KAPAAKGIFS F. IKNSAEVODSPOLOAHAEKVFGI QVALVKSSFEEENA .NIPKNTHRFFTIVIE .IAPGAAKDIFS F. IKNSAEVODSPOLOAHAEKVFGI QEALVVRSUSAKKR .NAGEGIKFFIKITE .IAPGAAKDIFS F. IKNSAEVODSPOLOAHAEKVFGI QEALVVRSUSAKRPNGGOLGENTKYFH AAPGAKVFS F. IKNSAEVODSPOLOAHAEKVFGI QEALVVRSUSAKRPNGGOLGENTKYFIKITE .IAPGAAKDIFS F. IKNSAEVODSPOLOAHAEKVFGI QEALVKSUSAKRPNGGOLGENTKYFIKITE .IAPGAAKDIFS F. IKNSAEVODSPOLOAHAEKVFGI QEALVKSUSAKRPNGGOLGENTKYFIKITE .IAPGAAKDIFS F. IKNSAEVODSPOLOAHAEKVFGI QEALVKSUSAKRPNGGOLGENTKYFIKITE .IAPGAAKDIFS F. LAILHSSKICHHEKVIIDO QEALVKSUSAKRPNAGGOLGENTKYFIKITE .APGAAKDFF SGSDGYAATGAKVIAO QERKVKHQWAAFGT .SHHRLDFGIKLWNSIFR .DAPEIRGLFKRVGGDI .ASDGYAATGAKVIAO QRFKVKHQWAAFGT .GHDREFGHFINTHVFK .DAPSARDEFKRVGGDI .HTPAFRAHARVIG QRILKVKOWAAAYGS .GHDREEFGHFINTHVFK .DAPSARDEFKRVGDDI .SHPAFIAHAERVIGG QRILKVKOWAAYGS .GHDREEFGHFINTHVFK .DAPSARDEFKRVHGDDI .SHPAFIAHAERVIGG QRILKVKOWAAYGS .GHDREEFGHFINTHVFK .DAPSARDEFKRVHGDDI .SHPAFIAHAERVIGG QRILKVKOWAAYGS .GHDREAFGAAURATFA .QVPESRJFKWHGDDI .SHPAFIAHAERVIGG QRILKVKOWAAYGS .GHDREAFSOAURATFA .QVPESRJFKWHGDDI .SHPAFIAHAERVIGG QRILKVKOWAAYGS .GHDREAFSOAURATFA .QVPESRJFKWHGDDI .SHPAFIAHAERVIGG QRILKVKOWAAYGS .GHDREAFSOAURATFA .QVPESRJFKWHDDDI .HSPEFAHARVVFMG QRILKVKOWAAYYS .ESTDRAULVANGALFGELFA .LDPNAKGVFGRNNVDK .PSEADMKAHVFMG QRILKVGAUKAYYSA .HTGRIFFELTE .TINDRS.LFREVKINDE .SECKSHIVWIG DREDKININDVYSS .FTDRVAUGAALFGELFA .LDPNAKGVFGRNVNDK .PSEADMKAHVFMG QRILKVGAUKAYSU .DEFTLIGALLFELFE .TINDRS.LFREVKINDE .SECKSHIVWYMA DREDKAUKJIGAD .GTMMKMGSLIFGLIFK .TYPDIKKHFFKH .DDATFAAMDTTGVGAHAWAFSG QKTAIKSSWFIAKD .AATIONAGSIFGLIFGLIFK .TYPDIKKHFKHF.DDATFAAMDTGVGAHAVFASG QK
ERLIECSWERTERT. GADELGSKIFFMYLT. AOPDIKÅIFG I EK IFTGELKVIDERERGHAUVTÄT TKKLVIQEWERVLA. OCPELFTEIWHKGAT. RSTSIKLAFG I AK. N. ESPMONAAFIGLSSTIQAF OIHLVRALWRQVYTT. KCPTVIGASIYHLCFKNVMVKCHKQVE IAK. N. ESPMONAAFIGLSSTIQAF DALEVLQNAFKI. DDPELVREFYAHWEA LDASVRDIFP.P. DMGAQRAAFGOALHWV QEALVNSSWEAFKQ. NIPRYSWFFYTVVE KAPAAKGLFS F.LK.GSEVPQONPOLQAHAGKVFGI QVALVKSSFEEFNA NIFKNTHRFFILVIE TAFGAACDFS F.LK.GSEVPQONPOLQAHAGKVFGI QEALVVKSVSAMKP. NAGCLGLEMFTLKIFE IAFGAACDFS F.LK.GSEVPQNPDLQAHAGKVFGI QEALVKSSVEVKQ. NIFKNTHRFFILVIE TAFGAACDFS F.LK.GSEVPQNPDLQAHAGKVFGI QEALVKSSVEVKQ. NIFKNTHRFFILVIE TAFGAACDFS F.LK.GSEVPQNPDLQAHAGKVFGI QEALVKSSWEVKQ. NIFKNTHRFFILVIE TAFGAACDFS F.LK.D.SNVFLENNPKLKAHAAVIFKT QEALVKSSWEVKQ. NIFKNTHRFFILVIE TAFGAACDFS F.LK.D.SNVFLENNPKLKAHAAVIFKT QEALVKSSWEVKQ. NIFKNTHRFFILVIE TAFGAACDFS F.LK.D.SNVFLENNVKLKAHAAVIFKT QEALVKSSWEVKQ. NIFGECHTKTKYFH ENPOMMFIFG SGR.T.EALKHSKLWAHAKTKT QEALVKSWEVSAG DGGACLGIEMFTKVFH ENPOMMFIFG SGR.T.EALKHSKLWAHAKTKT QRIKVKQWAAKAYGV
TKKLVIGEWERVLA CCEPLFTEINHKSAT RSTSIKLAFG IAEN ESPRONAARLGISSITOAR OIHLVRALWROWYTT KCPTVIGASIVHRLCFKNVMVKEONKOVE LPPKE ON RDNFIKAHCKAVAEL DALRVLONAFKL DDEEUVREFVAHVFA LDASVDLOHFP DMGACRAFGOALHWW QEALVNSSWEAFKO NIPRVSVFFTTVVIE KAPAAKGIFS F.LKNSAEVODSPOIOAHAEKVFGI QVALVKSSFEEFNA NIPRVSVFFTTVVIE KAPAAKGIFS F.LKNSAEVODSPOIOAHAEKVFGI QVALVKSSFEEFNA NIPRVNTRFFTTVIE IAPGAKLFS F.LKNSAEVODSPOIOAHAEKVFKI QEALKOSWEVIKO NIPRAHSRELALITE AAPESKYPS IKD. SNUPIERNPKIKAHAAVIFKI QVALKASVEVSAG DGGACICLENTKVFH ENPOMMFIG VSR.T EALKKISKOHEKVILO QVALKASVEVSAG DGGACICLENTKVFH. ENPOMMFIG VSR.T EALKNESKOHKVKINDHEK QVALKASVEVSAG DGGACICLENTVFVH. ENPOMMFIG VSR.T EALKHSKOHKAVISCHHEKVFL QVALKASVEVSAG DGGACHAVIKH DGACICLENTVFVH. AAPEARAVIFKO AVSAEFERNVICO QVALKASVEVSAG DGGACHAVIKH DGACALENVKHKAAAVIFKI DOCALKAVISCOHK
QIHLVRALUROVYTT. KCPTVIGASIYHRLCFKNVMVKEQMKQVE.LPPKR_QN. EDNFIKAHCKAVAEL DALRVLQNAFKI. DDPELVRRFVAHUFA. LDASVRDLFP.P. DMGAQRAAFGQALHUV QEALVNSSWEAFKQ. NLPRYSWFFYTVVIE. KAPAAKGLFS.F.LKNSAEVQOSPCIQAHAEKVFGI. QVALVKSSFEEFNA. NIPKNTHRFFTLVIE. IAPGAKDEFS.F.LKNSAEVQOSPCIQAHAEKVFGI. QEALVNSSWEAFKQ. NAGELGIKFFIKIFE. IAPGAKDEFS.F.LKNSAEVQOSPCIQAHAEKVFGI. QEALVKSSFEEFNA. NIPKNTHRFFTLVIE. IAPGAKDEFS.F.LKN_SSEVPONPPLQAHAEKVFGI. QEALKOSWENKQ. NIFAHSERLFALIFE. IAPSAKVFS.FLKD. SNEIPENNPKIKAHAAVFFI. QEALVKSWEAMKP. NAGELGIKFFIKIFE. IAPSAKUFS.FLKD. SNEIPENNPKIKAHAAVFKIKVID. QVALKASWEPVSAG. DGGACIGEMETKVFH. ENPOMAFUE.S.S. ASDPGVAALGAKVIAO. QROVIAAIKASWEPVSAG. DGGACIGEMETKVFH. ENPOMAFUE.S.S. ASDPGVAALGAKVIAO. QROVIAKASWEPVSAG. DGGACIGEMETKVFH. DAPEIRGLFKRVGCDI. MTPAFRAHATRVIGG QROVIAKAVGVGAVGVS. GEBREFGHITHVFK. DAPEIRGLFKRVHCDI. MTPAFRAHATRVIGG QRIKVKOQWAAVGVS. GHEREFGHITHVFK. DAPEIRGLFKRVHCDI. HTPAFRAHATRVIGG QRIKVKOQWAAVGS. GHDREAFSQAIWRATA. QVPESRSLFKRVMCDI. HTPAFRAHATRVIGG QRIKVKOQWAAV
DALRVIONAFKI DDPEIVERFYAHURA LDASVRDEPP DMGAORAAEOALHUV QEALVNSSWEAFKO NIPRYSWFFYTVULE KAPAAKGIFS F.LKNSAEVQOSPOLQAHAEKVFGI QVALVKSSFEEFNA NIPRYSWFFYTVULE KAPAAKGIFS F.LKNSAEVQOSPOLQAHAEKVFGI QVALVKSSFEEFNA NIPRYSWFFYTVULE IAPGAALGFS F.LKNSAEVQOSPOLQAHAEKVFGI QVALVKSSFEEFNA NIPRYTHRFFITULE IAPGAAUFS F.LKNSSEVQOSPOLQAHAEKVFGI QEALVVKSWSAMRP NASELGIKFFIKIFE IAPGAQVFS FLKD.SNVPLERNPKIKSHANSVFLM QVALKASWPEVSAG DGAQCIGIEMFTKVFH ENPOMMFIFG YSGR.T. EALKHSSKLOHHGKVI IDO QVALKASWPEVSAG DGACIGIEMFTKVFH ENPOMMFIFG YSGR.T. EALKHSSKLOHHGKVI IDO QVALKASWPEVSAG DGACIGIEMFTKVFH DAPEIGEKRVDGD N 4YSGAEFEAHAERVIGG QRFKVKHOWAEAFGT SHIRLPGGIKLUNSIFR DAPEIGEKRVDGD N 4YSGAEFEAHAERVIGG QRLKVKOWAKAYGS GHDREAFSOAIVRATA QUNDARDLFKRVHGDD SPAFEAHAARVIGG QRLKVKOWAKAYGS GHDREAFSOAIVRATA QUNDARDLFKRVHGDD SHSPAEFAHARVIGG QRLKVKOWAKAYGS GHDREAFSOAIVRATA QVPESKEKKVNGDD SHSPAEFEAHARVIGG QRILVKOWAAKYGS
OEATVNŠSUEAFKO. NIPRYSVFYTVUTE. KAPAAKGIPS.F. LKNSAEVODŠPÓLOAHAČKVFLI QVALVKSSEEENA. NIPKNTHRFFILVIE IAPGAKDIPS.F. LKNSAEVODŠPÓLOAHAČKVFLI QEALVVKSVSAMKP. NAGLGIKKFILKIFE IAPGAKDIPS.F. LKNSAEVONPDLOAHAČKVFLI QEALVVKSVSAMKP. NAGLGIKKFILKIFE IAPGAKDIPS.F. SNVPLERNPKLKSHAMSVFLM QEALVKSVSAMKP. NAGLGIKKFILKIFE IAPSACKIFS.F. SNVPLERNPKLKSHAMSVFLM QVALKASVEPCSA. DCGACUCIENTKYH. ENPOMMFTG.YSGR.T. EALKHSKICHHKVHIDO QVALKASVEPCSA. DCGACUCIENTKYH. DAPEIRGLEKKVRCDIN. AYSAEFEAHAERVIGO QRIKVKROVAEAFGT. SHRLDFGIKLUNSIFR. DAPEIRGLEKKVRCDIN. AYSAEFEAHAERVIGO QRIKVKROVAEAYGS. GUBREAFSOATURATTA. ODNDARDLEKKVRCDN. MSPAEFEAHARVENG QRIKVKOVAAVYS. GESRTDFALDVENNFFR. TNPDRS.LENRVNDDN. HSPAEFEAHARVENG QRIKVKOWAQVYSV. GESRTDFALDVENNFFR. TNPDRS.LENRVNDDN. HSPAEFEAHAVENGA QRREVQALWSIVSAE. FTGRRVALGCAIFOCELEA. IDPNAKVPODT. HSPAEFEAHAVENGA QRREVGAUWSS. FTGRRVALGCAIFOCELEA. IDPNAKVPODT. HSPAEFEAHAVENVFAG DRRED
QVALVKSSFEERNA NIFKNTHRFFTLVIE IAPGAKDEFS F.K. SSEVPONNPDLQAHAGVYKI QEALVVKSWSAMKP NAGELGIKFFIKIFE IAPSAQKIFS FIKD. SNVPIERNPKIKSHAMSVFIN QEALKQSWEVIKQ NIFAHSIRIFALTIE IAPSAQKIFS FIKD. SNVPIERNPKIKSHAMSVFIN QVAAIKASWEPUSAG DGGAQLGIEMFTKVFH ENPQMMFIFG YSGR T. EAIKHSSKIQHEGKVUIDQ QRVIAATWKDIAGA DNGACVGKDCIKFIS AHPQMAAVFS FIKD. SNETFENPKIKSHARSVIFKU QRVKHQWAEAFG SUDGAQLGIEMFTKVFH ENPQMAFIFG YSGR T. EAIKHSSKIQHEGKVUIDQ QRFKVKHQWAEAFG SUDREEFGHFINTHVFK DAPEIGGIFKRVDGD N. AYSAEFEAHAERVIGG QRIKVKQWAEAYGS GUDREEFGHFUTHVFK DAPEIGGIFKRVDGD N. AYSAEFEAHAERVIGG QRIKVKQWAAXYGV GHERVELGIALUKSHFA ONDNARDIFKRVHGDD M. HYPAFEAHAERVIGG QRIKVKQWAAXYGS GHDREAFSQATURATFA ONDNARDIFKRVHGDD M. SPEREAHNARVVFG QRIKVKQWAAXYSS GESRTDFATDVENNFFR TNPDRS. EFNRVNGDNV YSPERKAHNVFYAG DRREVQALWRSIVSAE DTGRRTUGAIFOEFFAH IDPAKGVFGRVNVD K SPEREAHVARVVFG DRREVALWRSIVSAE DTGRRTUGAIFOEFFAH IDPAKGVFGRVNVD K SPEREAHVARVVFG DRREVALWRSIVSAE DTGRRTUGAIFOEFFAH LDPAKGVFGRVNVD K SPERAMKAHVVFG DRREVALWRSS
OEALVYKSUSAMKE NAGELGIKFILKIFE IAPSAQKIFS FIKD SNYPIERNPKLKAHASVFLM QEALIKQSWEVIKQ NIPAHSIRIFALITE AAPESKYVFS FIKD SNYPIERNPKLKAHASVFFM QVAALKASWEVSAG DGGAQUCHENTIKVFH ENPOMMIFUG YSGR.T EALKHSSKUCHHGKVIIDO QVAALKASWEVSAG DGGAQUCHENTIKVFH ENPOMMIFUG YSGR.T EALKHSSKUCHHGKVIIDO QRIKVKROWAEAYGS DNGAGVGKOCLIKTIS AHPQMAAVFG FG ASDFGVAALGAKVIAO QRIKVKROWAEAYGS GNDREEFGHFIWTHVFK DAPSARDLFKRVRGDNI HTPAFRAHATRVIGG QRLKVKOWAEAYGS GHDREAFGOAIVRATEA OUNDARDLFKRVRGDV HSPAFEAHARVYIGG QRLKVKOWAEAYGS GHDREAFGOAIVRATEA OUVESSEKRRVNGDNV YSPEKKAHLWRVFGG QRIKVKOQWACYSV GESRTDFAIDVENNFFR TNPDRS LFNRVNGDNV YSPEKKAHLWRVFGG QRREVQALWRSIWSAE DTGRTTLIFEELFE IDGATKGLFKRVNDDT HSPEFEAHURVFAG DRREVQALWRSIWSAE TGRTVAIGOAIFOELFA LDPNAKCHFKRVNDD HSPEFEAHURVFAG DRREVQAUWSS FTGRRVAIQOAIFOELFA LDPNAKCHFKRVNDD SEGEKKSHLWRVNG DRREDUNINGTWSAE FTGRRVAIQOAIFOELFA LDPNAKCHF
OEALIKOSWEVIKO, NIPAHSIRIFALIIE AAPESKYVFS, FIKD, SNEIPENNPKLKAHAAVIFKT QVAALKASWPEVSAG, DGAQLGENFTKVFH ENPOMMFIFG, YSGR, T. EALKHSSKICHHGKVIDO QROVIAAIKASWPEVSAG, DGAQLGENFTKVFH ENPOMMFIFG, YSGR, T. EALKHSSKICHHGKVIDO QROVIAAIKASWPEVSAG, DNGAQVGKDCIKKIS, AHPOMAMPFG, F. SG. ASDFOYAALGAKVIAO QRFKWKHQWAFAFG, SHRRLDFGIKUWSIFR DAPSARDLFKRVRGDN AYSAEFEAHAERVIGG QRLKWKQWAFAYGS, GHDREEFGHFUTHVFK DAPSARDLFKRVRGDN HSPAFEAHAERVIGG QRLKWKOWAFAYGS, GHDREAFSOAURATFA OWDOBACHFKRVHGDDT SHPAFIAHAERVIGG QRLKWKOWAFYG, GENREFGAURATFA OWDOBACHFKRVHGDDT SHPAFIAHAERVIGG QRLKWKOWAFYG, GENREFGAURATFA OWDOBACHFKRVHGDDT SHPAFIAHAERVIGG QRLWKSEWGRAYGS, GHDREAFSOAURATFA OWDOBACHFKRVHCDDT SHPAFIAHAERVIGG QRLWKOWAOVYSV, CSSRTDFAIDVENNFFR TNPDRS, LFNRVNGDDN YSPERKAHMVEVFAG DREEVQALWSISAE, DTGRRTILGRLFEELFE IDGATKGFKRWNDD, K PSERDWKAHVVKG DREEVLDNWGSUSAE, FTGRRVALQAWFDDLFK HYPTSKALFERWKIDEP ESEFEKHLWVNG DREEVLDNWGSUSAE, FTGRRVA
OVAAIKASVEEVSAG DCGAOLGIENTIKVEH ENPOMMFIFG VSGR.T EALHSKLOHEKVIDO ORVIAATWKDIAGA DNGACVGKDCIIKFIS AHPOMAAVFG F.SG. ASDFGVAALGAKVLOO ORFKVKHQWAEAFGT SHHRLDFGIKLUNSIFR DAPEINGEKRVDGD N AYSAEFEAHAERVIGG ORIKVKHQWAEAFGS GUDREEFGHFIUTHVEK DAPEINGEKRVGDI HTPAFRAHATRVIGG ORIKVKQWAKAYGV GHERVELGIALWKSMFA OUNDARDLFKRVHGEDV HSPAFEAHAERVIGG ORIKVKOQWAKAYGV GHERVELGIALWKSMFA OUNDARDLFKRVHGEDV HSPAFEAHAERVIGG ORIKVKOQWAKAYGV GHERVELGIALWKSMFA OUNDARDLFKRVHGEDV HSPAFEAHHARVIGG ORIKVKOQWAKAYGV GHERVELGIALWKSINGA OUNDARDLFKRVHGEDV HSPAFEAHHARVIGG ORIKVKOQWAKAYGV GHERVELGIALWKSINGA OUNDARDLFKRVNGEDV HSPAFEAHHARVIGG ORIKVKOQWAKAYGV GHERVELGIALWKSINGAL SESRITVIGAN HYPERFEFEFEFE DREVQALWKSINGAE TORRVAIGAIFOELFE IDGATKGIKKNNDD HSPEFEHVIRVNGD DRHEVLDNWKGINSAE FTGRRVAIQAIFOELFE IDGATKGIKKNVDD HSPEFEHVIRVNGD DREKEVALWSSINGAE AATIGNAVEDDLFK HYPTSKALFERVINDEF HSGREKKHVIND HSGREKKHVIND SKSAILASSWTILAKD AATIGNGATHESLIFK
QRQWIAATWKDIAGA DNGAGVGKDCLIKFIS AHPQMAAVFG SG ASDFGWAALGAKVIAQ QRFKWKHQWAEAFGT SHHRLDFGIKIWNSIFR DAPEIRGIFKRWRGDN AYSAFFEAHAERVIGG QRLKWKRQWAEAYGS GUDREEFGHFINTHWFK DAPSARDIFKRWRGDNI HTPARAHATRVIGG QRLKWKRQWAEAYGS GUDREEFGHFINTHWFK DAPSARDIFKRWRGDNI HTPARAHATRVIGG QRLKWKRQWACAYGS GUDREAFGOAIWANTFA ODWDARDIFKRWRGDNI SFPAFFIAHARVYNG QRLKWKQQWACWYS GESRTDFAIDWENNFFR TMPDRS LENRWNGDNU SFPAFFIAHARVYNG QRREVQAIWRSIWSAE DTGRTKILFEELFE IDGATKGIFKRWNVDDT HSPEFFAHVIRVNG DRHEVLDNWGIVSAE FTGRTVAIGQAIFQELFA LDPNAKGVFGWNVDZ PSEEDWKAHWINKYNG DRREDRINNGGINSS FTGRTVAIQQAIFQELFA LDPNAKGVFGWNVDZ PSECKKSHIWRWNG DRREDRINNGGINSS FTGRTVAIQAIFQELFK HYPTSKALFFERVIDEP DEGEKKSHIWRWNG SKSALASSWUTIAKD AATIONGATIFSILFK CPPDTMKWFTHF DATFAAMDTTGVGKAHSVAVFSG QKTAIKESWKVIGAD GTHMKNGSILFGILFK TYPDTKKHFKHF DATFAAMDTTGVGKAHSVAVFSG QKTAIKESWKVIGAD GTHMKNGSILFGILFK TYPDTKKHFKHFL DATFAAMDTTGVGKAHSVAVFSG
ORFKVKHQWAEAFGT SHHRLDFGLKLWNSIFR DAFEIRGLEKRVRGD N AYSAEFEAHAERVLGG OR ORLKVKRQWAEAYGS GHDREEFGHFUTHVFK DAFSARDEFKRVRGDNI HTPARAHATRVLGG ORLVKOQWAEAYGS HDREAFGAIUTHVFK DAFSARDEFKRVRGDNI HTPARAHATRVLGG ORLVKOQWAEAYGS GHDREAFGAIUNTHVFK DAPSARDEFKRVRGDNI HTPARAHATRVLGG ORLVKOQWAEAYGS GHDREAFSQAIURATFA OVPORACIFKRVRGDDT SHPAFIAHAERVLGG ORLVKOQWAEAYGS GHDREAFSQAIURATFA OVPORACIFKRVRGDDT SHPAFIAHAERVLGG ORLVKOQWAEAYGS GESRTDFAIDEFNFR TNPDRS LFNRVNGDDN YSPEFKAHMRVFAG DREVQALWRSIWSAE DTGRRTILGRLIFEELFE IDCATKCIFKRVNVDDK MSPEFAHVIRVVNG DREFERATVIRVVNG DREFERATVVNG DSEFADIVAHVVNG DREFERATVVNG DSEFADIVAHVVNG DREFERATVVNG DSEFADIVAHVVNG DSEFADIVAHVVNG DSEFADIVAHVVNG DSEFADIVAHVRVNG DSEFADIVAHVRVNG <t< td=""></t<>
ORLKVKRÖVARAYES ONDREEFGHFIUTHVEK DAPSARDLEKKVRGONI HTPARRAHATRVLGG ORLKVKOWAKAYEV GHERVELGIALUKSMFA ODNDARDLEKKVHGEDV HSPAFEAHMARVFNG DELKVKSEWGRAYES GHDREAFSQAIVRATFA OVPESREJEKKVHGEDT SHPAFIAHARVFNG ORLKVKOWAKAYEV GESRTDFAIDVENNFFR TNPDRS LENRVNGDNV YSPEKAHLVRVFAG DRERVQALWESIVSAE DTGRRTILGELIFELFE IDCATKCIKKRVNVDJ HSPEFAHVIRVVNG DRHEVLDNVKGIWSAE FTGRRVAIGQAIFOELFA LDPNAKGVFGRVNVD K PSEADWKAHVIRVING DRHEVLDNVKGIWSAE DATTARVINGATIFSLIFK OPPDTRVMVTH DESEKSHLVRVANG GKXAHSAWFAG GKSAILASSWTILAKD ATIONGATIFSLIFK TYPDIKKHKHKH DATTAANDTOKGAHFAWFAG GKDNSKURGHSTILMANFK GKDLIRLSWEVIGAD GPTMMKNGSLIEGLIEK TYPDIKKHKKHKH DATTAANDTOKGAHFASTILMANFK GKSAINSKURGHSTILMAR
ORLKVKQQWAKAYGV CHERVELGIALWKSMFA ODNDARDLFKRVHGEDV HSPAFEAHHARVFNG EGIKVKSEWGRAYGS GUDREAFSQAURATFA OVPESRSEKKVHGEDT SHPAFIAHARVIGG ORIVKOGWAQVSV GESRTPFAIDVENNFFR TNPDRS.LFNRVNGDNV YSPEKAHHVRVFAG DRREVQALWRSIWSAE DTGRRTLIGRILFEELFE IDGATKGLFKRVNVDDT HSPEFAHVIRVVNG DRREVQALWRSIWSSE FTGRRVALGAIFOELFA LDPNAKGVFCRVNVD K PSEADWKAHVIRVING DRRELRH WDDWWSS FTGRRVALGAIFOELFA LDPNAKGVFCRVNVD K PSEADWKAHVIRVING DRRELRH WDDWWSS FTGRRVALGAIFOELFA LDPNAKGVFCRVNVD K PSEADWKAHVIRVING SKSALASSWKTLAKD AATIONGATLFSLEK OPPDTRVHTHF ENGS FKSHLWRVAG GKKJALKSSWKVLGAD GPTMMKNGSLIEGLIFK TYPDTKKHFKH DATFAAMDTGVGKAHSWAVFAG GKDINKLRGHSITIMYA DAGLIAOSWAPUS4 DMEGILMHANLFK TSSAAFKFARL GVS AGKDNSKIRGHSITIMYA DAGLAOSWAPVFA NSDANGASFLVALFT COPPSARTNFNDF, KG GKSLAOVSKIRGHSITIMYA
DCLKWKSEVGRAYES CHDREAFSOAUWAATFA OWPESRSLFKWHGODT SHPAFIAHAERVIGG QRIKWKOQWAQVYSV CESRTDFAIDVENNFFR TNPDRS LENRVNGDDV YSPEFKAHNVRVFAG DRREVQALWRSIVSAE DTGRRTLIGRLIFEELFE IDGATKGLFKRVNVDD HSPEFAHVLRVVNG DRREVLDNUKGIVSAE FTGRRVALGOAIFOELFA LDPANAKGVFGRVNVD K PSEADMKAHVLRVING DRREVLDNUKGIVSAE FTGRRVALGOAIFOELFA LDPANAKGVFGRVNVD K PSEADMKAHVLRVING DRREZRHINDDVWSSS FTDRRVALVRAVGDUFK HYPTSKALFERVKIDEP ESGEFKSHLVRVANG SKSALASSWKTLAKD AATIQNNGATLFSLIFK OPPDTRNVFTHF GNNS DAEKHTTGVKAHSMAVFAG QKTALKESWKVIGAD GPTMMKNGSLIFGLIFK TYPDTKKHFKHF DATFAAMDTTGVKAHSMAVFAG QKDINSKLFGHSTILMAN QKDLIRLSWGVISV DHECTGINIMANLFK TSSAARTKFARL GDVS AGKDNSKLFGHSTILMAN DAGLAQSWAPVFA NSDANGASFLVALFT OPPRENTRING KG GKSLADIQASFKLØVSKTFAR
ORIVVKOQVAOVYSV GESRTDFAIDVENNFFR TNPDRS LENRVNGDNV YSPEEKAHURVVAG DRREVQALWRSIVSAE DTGRRTLIGRILFEELFE IDGATKGLFKRVNVDT HSPEEFAHVIRVVAG DRHEVLDNVKGIVSAE FTGRRVAIGOATFOEIFA IDDPAKGVFGVNVD K PSEADUKAHVIRVING DRREDINIVGIVSAE FTGRRVAIGOATFOEIFA LDPNAKGVFGVNVD K PSEADUKAHVIRVING DRREDINIVGIVSAE FTGRRVAIVAVRDDIFK HYPTSKALFERVINDEP DSGEKKSHLVRVANG SKSALASSWUTIAKD AATIONGATLFSLIFK OPPDTRVNFTHF GNNS DAEKTTGVKAHSVAVFAG OKTAIKESWUVGAD GPTMMKNGSLIFGLIFK TYPDIKKHFKHF DATFAANDTGVGKAHSVAVFAG GKONSKURGHSITHVA OKTAIKESWUVGAD MEGTGINLANDFK TSSAARTKFARL DATFAANDTGVGKAHSVAVFAG GKONSKURGHSITHVA OKTLIKESWUVGAD MEGTGINLANDFK TSSAARTKFARL DATFAANDTGVGKAHSVAVFAG GKONSKURGHSITHVA
DRREVQALWRSIWSAE.DTGRRTLIGRLIFEELFE. IDGATKGLFKRWNVDDT. HSPEEFAHVLRWVNG DRHEVLDNWKGIWSAE.FTGRRVALGQAIFQELFA. LDPNAKGVFGRWNVD.K. PSEADWKAHVIRVING DRREIRHIWDDWVSS.FTDRRVALURAVFDDLFK. HYPTSKALFERVKIDEP ESGEFKSHLVRVANG SKSALASSWKTLAKD AATIQNNGATLFSLLFK. OFPDTRNYFTHF.GNMS.DAEMKTTGVGKAHSMAVFAG QKTALKESWKVLGAD.GPTMMKNGSLLFGLLFK. TYPDTKKHFKHF.DDATFAAMDTTGVGKAHSMAVFAG QKDLLRLSWGVLSV. DMECTGLMIMANLFK. TSSAARTKFARL.GDVS.AGKDNSKLRGHSITLMYA DAGLAQSWAPVFA.NSDANGASFLVVLFT.OFPESDFRVDF.KG.KSLADIQASFKLRDVSSRTFAR
DRHEVIDNUKGIUSAE FTGRRVAIGOAIFOEIFA. LDPNAKGVEGRVNUD K. PSEADUKAHVIRVING DRREIRHIWDDWSSS.FTDRRVAIVRAVFDDLFK. HYPTSKALFERVKIDEP. ESGEFKSHLVRVANG SKSALASSWKTLAKD. AATIONNGATLFSLIFK. OPPDTRVHTHF.GNNS.DAENKTTGVGKAHSMAVFAG OKTAIKESWKVIGAD. GPTMMKNGSLIFGLIFK. TYPDIKKHFKHF.DDATFAANDTTGVGKAHSWAVFAG OKDLIRLSWGVISV. DHEGTGIMIMANLFK. TSSAARTKFARI.GDVS.AGKUNSKIRGHSITIHYA DAGILAOSWAPVFA. NSDANGASFLVALFT. OPPESANFNDF.KG.KSLADIQASFKURDVSSRIFAR
DRREIRHIWDDVWSSS.FTDRRVAIVRAVFDDLFK. HYPTSKALFERVKIDEP ESCEFKSHLVRVANG SKSALASSWKILAKD. AATIQNNGÄTLFSLFK. OPPDTRVYFTH GNNS.DAENKITGVGKAHSMAVFAG OKTALKESWKVLGAD. GPTMMKNGSLLFGLLFK. TYPDTKKHFKHF.DDAFFAAMDTTGVGKAHGVAVFSG OKDLIRLSWGVISV. DMEGTGLNIAMALFK. TSSAARTKFARL.GDVS. A&KDNSKLGHSITLMYA DAGLLAQSVAPVFA. NSDANGASFIVALFT. OFPESANFFNDF.KG.KSLADIQASPKLRDWSSRIFAR
SKSÄLASSWKTLAKD. AATIQNNGATLFSLLFK. OFPDTRNYFTHF.GNMS.DAEMKTTGVGKAHSMAVFAG OKTALKESWKVLGAD. GFTMMKNGSLLFGLLFK. TYPDTKKHFKHF.DATFAAMDTTGVGKAHGVAVFSG OKDLIRLSVGVISV. DMEGTGLMIMANLFK. TSSAARTKFARL.GDVS.AGKDNSKLRGHSITLMYA DAGLLAQSWAPVFA. NSDANGASFLVALFT. OFPESANFNDF.KG.KSLADIQASFKLRDVSSRTFAR
OKTAIKESWKVIGAD. GPTMMKNGSLIFGIIFK. TYPDIKKHFKHF. DATFAAMDTIGVGKAHGVAVFSG OKDIIRISWGVISV. DMEGTGIMIMANIFK. TSSAARTKFARI.GDVS.AGKDNSKIRGHSITIMYA DAGIIAQSWAPVFA. NSDANGASFIVALT. OFPESANFFNDF.KG.KSIADIQASFKIRDWSSRIFAR
OKDLIRISWGVISVDHEGTGIMIMANIFKTSSAARTKFARI.GDVSAGKDNSKIRGHSITIMYA DAGIIAQSWAPVFANSDANGASFIVAIFTQFPESANFFNDF.KG.KSIADIQASPKIRDVSSRIFAR
DAGLLAQSWAPVFANSDANGASFLVALFTQFPESANFFNDF.KG.KSLADIQASPKLRDVSSRIFAR
EVEOVOATWKAVSH
EASLVQSSWKAVSHNEVDILAAVFAAVPDIQAKFPQF.AG.KDLASIKDTGAFATHATRIVSF
QADLVKKTWSTVKFNEVDILYAVFKAYPDIMAKFPQF.AG.KDLDSIKDSAAFATHATRIVSF
QLALFKSSWNTWKHNEVDILYAWFKANPDIQAKFPQF.AG.KDLDSIKDSADFAVHSCRIVGF
EASLVRGSWAQVKHSEVDILYYIFKANPDIMAKFPQF.AG.KDLETLKGTGQFATHAGRIVGF
QISTVQASFDKVKGDPVGILYAVFKADPSIMAKFTQF.AG.KDLESIKGTAPFEIHANRIVGF

Profile HMM

Outline

- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding

Sites

- Site: short sequence containing some signal

Examples: intron splice sites, transcription start site, transcription factor binding sites

Goals: - give a mathematical description (model) of a site

- find possible sites in a long sequence

Consensus sequence

A C A A T G

T C A A T C A C A A G C

A G A A T C

A C C A T C

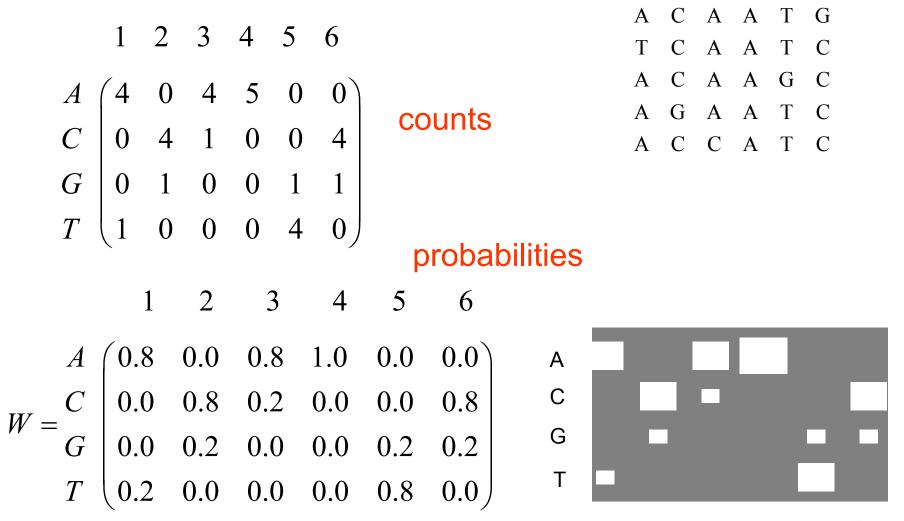
majority vote:

ACAATC

		М	A/C
WSMAKS	from IUPAC code:	R	A/G
		W	A/T
		S	C/G
		Y	C/T
		K	G/T
		В	C/G/T
		D	A/G/T
		Н	A/C/T
		V	A/C/G
		Ν	A/C/G/T

Regular expressions

- A C A A T G


[AT][CG][AC]A[TG][GC]

$\ensuremath{\mathsf{ACAATC}}$, but also $\ensuremath{\mathsf{TGCAGG}}$

See also http://prosite.expasy.org

Weight matrices

aka position specific score matrix

Weight matrices (2)

Sequence: $x = x_1 x_2 \dots x_N$

$$P(x_1 x_2 \dots x_N \mid W) = \prod_{i=1}^N w_{x_i,i} = \prod_{i=1}^N P_i(x_i \mid W)$$

 $P(\text{ACAATC} | W) = P_1(A)P_2(C)P_3(A)P_4(A)P_5(T)P_6(C)$ $= 0.8 \times 0.8 \times 0.8 \times 1 \times 0.8 \times 0.8 = 0.33$

Weight matrices (3)

Sequence: $x = x_1 x_2 \dots x_N$

$$P(x_1 x_2 \dots x_N \mid W) = \prod_{i=1}^N w_{x_i,i} = \prod_{i=1}^N P_i(x_i \mid W)$$

 $P(\text{CCAATC} | W) = P_1(\text{C})P_2(\text{C})P_3(\text{A})P_4(\text{A})P_5(\text{T})P_6(\text{C})$ $= 0 \times 0.8 \times 0.8 \times 1 \times 0.8 \times 0.8 = 0$

Weight matrices: pseudocounts

 $P(x) = \frac{\#x+1}{\sum_{i}(\#i+1)}$ pseudocount (Laplace) A C A A T GA C A A T CA C A A C C C A C

 $P(\text{ACAATC} | W') = P_1(\text{A})P_2(\text{C})P_3(\text{A})P_4(\text{A})P_5(\text{T})P_6(\text{C}) = 0.56^5 \times 0.67 = 0.037$ $P(\text{CCAATC} | W') = P_1(\text{C})P_2(\text{C})P_3(\text{A})P_4(\text{A})P_5(\text{T})P_6(\text{C}) = 0.11 \times 0.56^4 \times 0.67 = 0.0072$ BioSB

Bayes' rule: odds

class A: sites class B: non-sites

x is assigned to class $A \iff \frac{P(x \mid \text{class } A)P(A)}{P(x)} > \frac{P(x \mid \text{class } B)P(B)}{P(x)}$ $\Leftrightarrow \frac{P(x \mid \text{class } A)}{P(x \mid \text{class } B)} > \frac{P(B)}{P(A)} \longrightarrow \text{ priors}$ $\frac{P(x \mid \text{class } A)}{P(x \mid \text{class } B)} > 1 \iff \log\left(\frac{P(x \mid \text{class } A)}{P(x \mid \text{class } B)}\right) > 0$ equal priors: odds log-odds unequal priors, e.g.: $\log \frac{P(B)}{P(A)} = \log \frac{0.7}{0.3} = 1.22$

BioSB

Weight matrices: odds

W: weight matrix, R: background model (independent of position)

$$\frac{P(x_{1}x_{2}...x_{N} | W)}{P(x_{1}x_{2}...x_{N} | R)} = \frac{\prod_{i=1}^{N} P_{i}(x_{i} | W)}{\prod_{i=1}^{N} P(x_{i} | R)}$$

$$\log_{2}\left(\frac{P(x_{1}x_{2}...x_{N} | W)}{P(x_{1}x_{2}...x_{N} | R)}\right) = \log_{2}\left(\frac{\prod_{i=1}^{N} P_{i}(x_{i} | W)}{\prod_{i=1}^{N} P(x_{i} | R)}\right) = \sum_{i=1}^{N} \log_{2}\left(\frac{P_{i}(x_{i} | W)}{P(x_{i} | R)}\right)$$

$$\log_{2}\left(\frac{P_{i}(x_{i} | W)}{P(x_{i} | x_{2}...x_{N} | R)}\right) = \log_{2}\left(\frac{\prod_{i=1}^{N} P_{i}(x_{i} | R)}{\prod_{i=1}^{N} P(x_{i} | R)}\right) = \sum_{i=1}^{N} \log_{2}\left(\frac{P_{i}(x_{i} | W)}{P(x_{i} | R)}\right)$$

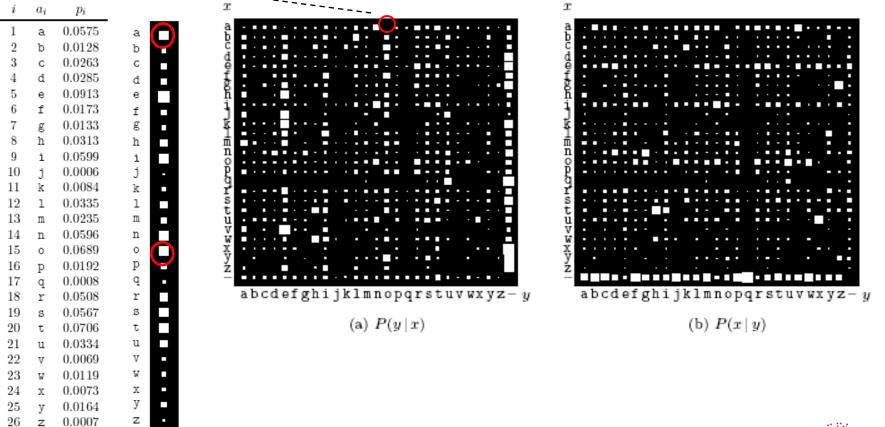
Weight matrices: log-odds

R uniform:
$$P(A|R) = P(C|R) = P(G|R) = P(T|R) = 0.25$$

log-odds(ACAATC) = 1.16 + 1.16 + 1.16 + 1.42 + 1.16 + 1.16 = 7.22log-odds(TGCAGG) = -0.17 - 0.17 - 0.17 + 1.42 - 0.17 - 0.17 = 0.57 $log-odds(CTTGAT) = 6 \times -1.17 = -7.02$

Outline

- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding



Dependencies: language

27

0.1928

Probability (in English) of "o" given that previous letter is "a"

Dependencies: biology

- P_i : probability of nucleotide *i*
- P_{ij} : probability of dinucleotide ij

$$s_{ij} = \frac{P_{ij}}{P_i P_j}$$

independent $\Leftrightarrow s_{ij} = 1$

M. jannaschii

BioSB

$$A \quad C \quad G \quad T$$

$$A = \begin{pmatrix} A \\ 1.13 & 0.73 & 1.10 & 0.94 \\ 1.03 & 1.37 & 0.32 & 1.11 \\ 1.05 & 1.12 & 1.39 & 0.71 \\ 0.83 & 1.05 & 1.13 & 1.14 \end{pmatrix}$$

Markov chains

Sequence: $q = q_1 q_2 \dots q_N$

$$P(q_N, q_{N-1}, ..., q_1) = P(q_N | q_{N-1}, ..., q_1) P(q_{N-1} | q_{N-2}, ..., q_1) ... P(q_1) = \prod_{t=2}^N P(q_t | q_{t-1}, ..., q_1) P(q_1)$$

Only dependent on previous symbol:

$$P(q_N, q_{N-1}, ..., q_1) = \prod_{t=2}^{N} P(q_t \mid q_{t-1}) P(q_1)$$
 First-order Markov chain

state: value of q_i

transition probability: $P(q_t = j | q_{t-1} = i)$

Markov chains: language

Zero-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.

First-order Markov (transition probabilities as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

Second-order Markov (transition probabilities as in English).

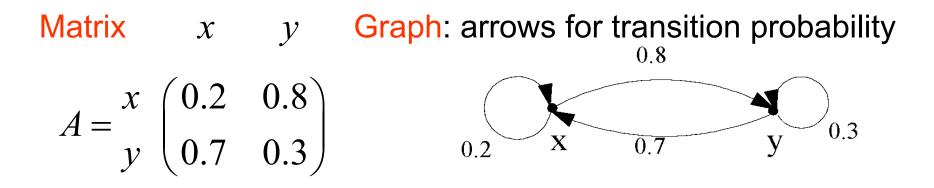
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

Markov chains: language

Zero-order word approximation. Words are chosen independently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THT Α TN CAME THE TOOF TΟ TO FURNISHES EXPERT GRAY COME THE LINE MESSAGE HAD BE THESE.

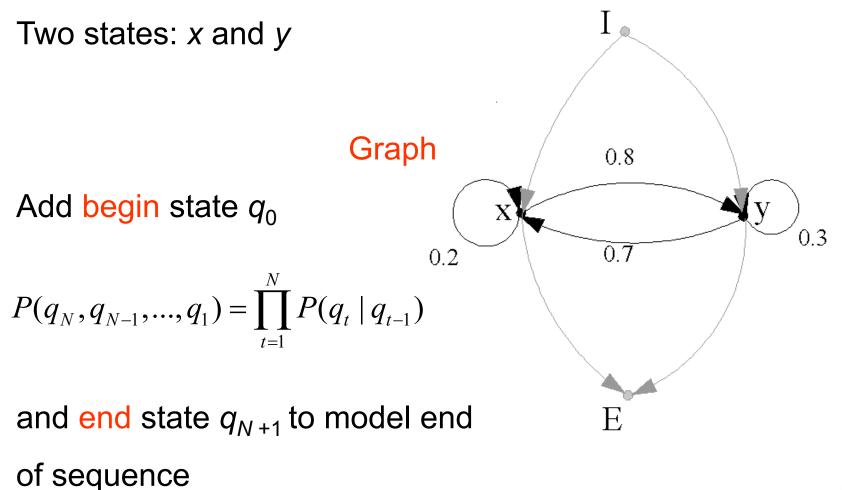
First-order Markov (on words). Word transition probabilities are as in English.


FRONTAL ATTACK ON AN ENGLISH WRITTER THE HEAD AND ΤN THAT CHARACTER OF THIS POINT IS THEREFORE ANOTHER THE METHOD FOR THE LETTERS ΤΗΑΤ ΤΗΕ ТТМЕ OF WHO EVER TOTD PROBLEM FOR AN UNEXPECTED. THT

C.E. Shannon (1948)

Markov chain: graphical representation

Two states: *x* and *y*


 a_{ij} : transition probability from *i* to *j*

Generative model (example): xyyxyxyyxxyxxx...

 $P(xyyxy) = P(x)P(y | x)P(y | y)P(x | y)P(y | x) = P(x) \times 0.8 \times 0.3 \times 0.7 \times 0.8$

Markov chain: graphical representation (2)

Markov chain: estimation

$$a_{ij}$$
: transition probability from *i* to *j*

Estimation: simply by counting

$$a_{ij} = \frac{\text{\# of } t \text{ such that } q_{t-1} = i, q_t = j}{\text{\# of } t \text{ such that } q_{t-1} = i}$$

Begin state:

$$a_{0i} = \frac{\# \text{ of } t \text{ such that } q_t = i}{N}$$

Markov chains: log-odds

Sequence: $x = x_1 x_2 \dots x_N$

A,B: Markov chains for class A and B, respectively

$$\log\left(\frac{P(x \mid \text{class } A)}{P(x \mid \text{class } B)}\right) = \log\left(\frac{\prod_{t=1}^{N} P_A(x_t \mid x_{t-1})}{\prod_{t=1}^{N} P_B(x_t \mid x_{t-1})}\right) = \sum_{t=1}^{N} \log\left(\frac{P_A(x_t \mid x_{t-1})}{P_B(x_t \mid x_{t-1})}\right)$$
$$= \sum_{t=1}^{N} \log\left(\frac{a_{x_{t-1}, x_t}}{a_{x_{t-1}, x_t}}\right)$$

Markov chains: limitations

For biological sequences:

- Mononucleotide repeats (due to polymerase slippage) are more frequent than predicted by Markov chain

Reason: probability of *d* consecutive *i* 's is $(a_{ii})^{d-1}(1-a_{ii})$ (geometric distribution)

- Codon (position) biases are not taken into account

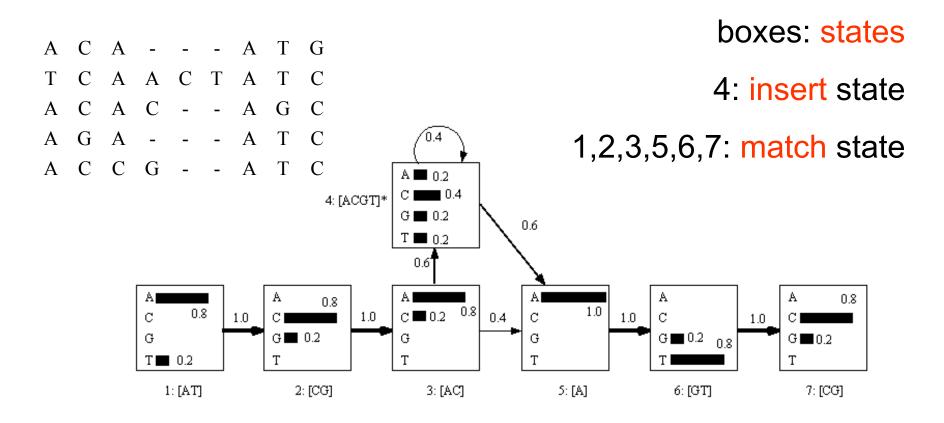
Outline

- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding

Multiple alignment

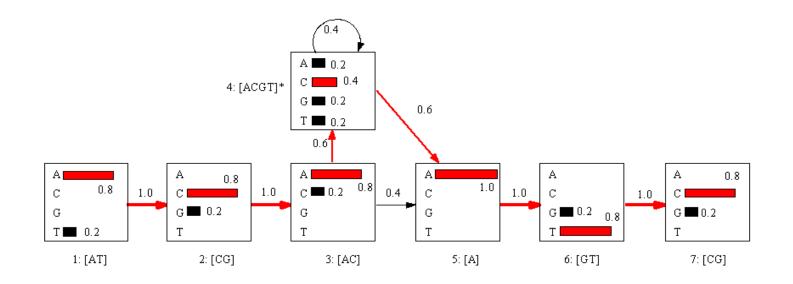
Sequence ensemble as before but now with some insertions

and gaps


A	С	А	-	-	-	А	Т	G
Т	С	А	А	С	Т	А	Т	С
Α	С	А	С	-	-	А	G	С
А	G	А	-	-	-	А	Т	С
A	С	С	G	-	_	А	Т	С

regular expression: [AT][CG][AC][ACGT]*A[GT][CG]

insertions and gaps


A different representation

mix of weight matrices and Markov chains

Probability of consensus sequence

 $P(\text{ACACATC}) = 0.8 \times 1 \times 0.8 \times 1 \times 0.8 \times 0.6 \times 0.4 \times 0.6 \times 1 \times 1 \times 0.8 \times 1 \times 0.8 = 0.047$

Markov chain: one state = one symbol

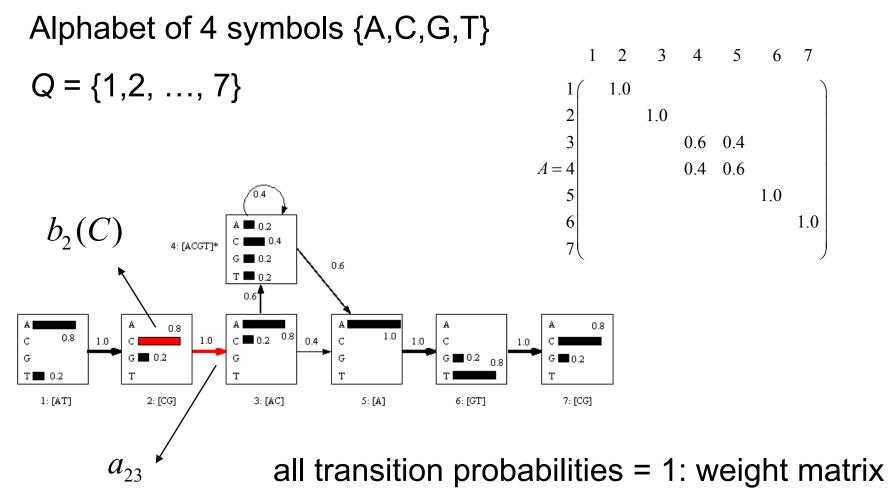
Here: C can be generated by states 2,3,4 or 7 – states are hidden

Hidden Markov models

Alphabet *K* of (observed) symbols

States: $Q = \{0, 1, 2, \dots, S\}$ 0: begin state (non-emitting)

transition probability:


$$a_{ij} = P(q_t = j \mid q_{t-1} = i) \qquad 0 \le i, j \le S$$

emission probability: $b_i(x) = P(x \mid i) \quad x \in K, \ 1 \le i \le S$

 \rightarrow probability of emitting symbol x in state *i*

Hidden Markov models (2)

HMM: three problems

Evaluation: probability of an observed sequence, given the model, e.g., to calculate odds.

Decoding: optimal state sequence for an observed sequence

Estimation: of transition and emission probabilities from a given set of sequences

HMM evaluation: known state sequence

State sequence: $Q = q_0 q_1 q_2 \dots q_N$

Observed sequence: $x = x_1 x_2 \dots x_N$

$$P(x,Q) = P(x \mid Q)P(Q) \xrightarrow{\text{Markov}} P(Q) = \prod_{t=1}^{N} P(q_t \mid q_{t-1})$$

$$\downarrow$$

$$P(x \mid Q) = P(x_N \mid x_{N-1}, ..., x_1, Q)P(x_{N-1} \mid x_{N-2}, ..., x_1, Q)...P(x_1 \mid Q) = \prod_{t=1}^{N} P(x_t \mid q_t)$$

$$P(x,Q) = \prod_{t=1}^{N} P(q_t \mid q_{t-1}) \prod_{t=1}^{N} P(x_t \mid q_t) = \prod_{t=1}^{N} a_{q_{t-1},q_t} \prod_{t=1}^{N} b_{q_t}(x_t)$$

 $P(\text{ACACATC}) = 0.8 \times 1 \times 0.8 \times 1 \times 0.8 \times 0.6 \times 0.4 \times 0.6 \times 1 \times 1 \times 0.8 \times 1 \times 0.8 = 0.047$

HMM evaluation: graphical representation on a trellis

$$P(x,Q) = \prod_{t=1}^{N} P(q_t | q_{t-1}) \prod_{t=1}^{N} P(x_t | q_t) = \prod_{t=1}^{N} a_{q_{t-1},q_t} \prod_{t=1}^{N} b_{q_t}(x_t)$$

state sequence = path
weights:
$$a_{02}b_2(C) a_{21}b_1(A) a_{13}b_3(T) a_{32}b_2(A)$$

HMM evaluation: forward algorithm

State sequence unknown:
$$P(x) = \sum_{Q} P(x,Q)$$

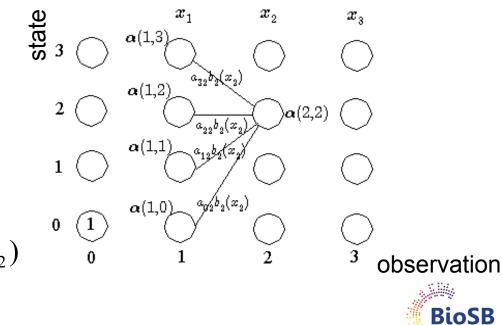
Sum over all paths through trellis: ~ S^N state sequences!

Smarter:
$$P(x) = \sum_{i=0}^{S} P(x, q_N = i) = \sum_{i=0}^{S} \alpha(N, i)$$

 $\alpha(t,i) = P(x_1x_2...x_t, q_t = i)$, that is, probability of having observed $x_1x_2...x_t$ and being in state *i* at step *t*

HMM evaluation: forward algorithm (2)

$$\alpha(t,i) = P(x_1 x_2 \dots x_t, q_t = i)$$


initialization: $\alpha(0,0) = 1$, $\alpha(0,j) = 0$ $1 \le j$

recursion : $\alpha(t,i) = \sum_{j} \alpha(t-1,j) a_{ji} b_i(x_t)$ $1 \le t \le N, 0 \le i, j \le S$

$$P(x) = \sum_{i=0}^{3} \alpha(N, i)$$

Complexity: S×N

$$\alpha(2,2) = \sum_{j=0}^{3} \alpha(1,j) a_{j2} b_{2}(x_{2})$$

Forward algorithm: proof

 $x_{1..t} = x_1 x_2 \dots x_t$

 $1 \le t \le N, 0 \le i, j \le S$

$$\alpha(t,i) = P(x_{1..t}, q_t = i) = \sum_j P(x_{1..t}, q_{t-1} = j, q_t = i)$$
$$= \sum_j P(x_{1..t-1}, q_{t-1} = j) P(x_t, q_t = i \mid x_{1..t-1}, q_{t-1} = j)$$

Observed symbol and the state depend only on previous state:

$$= \sum_{j} P(x_{1..t-1}, q_{t-1} = j) P(x_t, q_t = i | q_{t-1} = j)$$

$$= \sum_{j} \alpha(t-1, j) P(q_t = i | q_{t-1} = j) P(x_t | q_t = i)$$

$$= \sum_{j} \alpha(t-1, j) a_{ji} b_i(x_t)$$

recursion

HMM: three problems

Evaluation: probability of an observed sequence, given the model, e.g., to calculate odds.

Decoding: optimal state sequence for an observed sequence

Estimation: of transition and emission probabilities from a given set of sequences

HMM decoding: Viterbi algorithm

Decoding: find state sequence which best explains observed sequence.

Viterbi: best = most probable $V(x) = \max_{Q} P(Q \mid x) = \max_{Q} \frac{P(x,Q)}{P(x)} = \max_{Q} P(x,Q)$ $V(x) = \max_{Q} P(x,Q) = \max_{i} \left[\max_{Q_{0..N-1}} P(x,Q_{0..N-1},q_{N}=i) \right] = \max_{i} \left[v(N,i) \right]$

$$v(t,i) = \max_{Q_{0..t-1}} \left[P(x_{1..t}, Q_{0..t-1}, q_t = i) \right]$$

probability of having observed $x_1 x_2 \dots x_t$ along most probable path ending in state *i* at step *t*

HMM decoding: Viterbi algorithm (2)

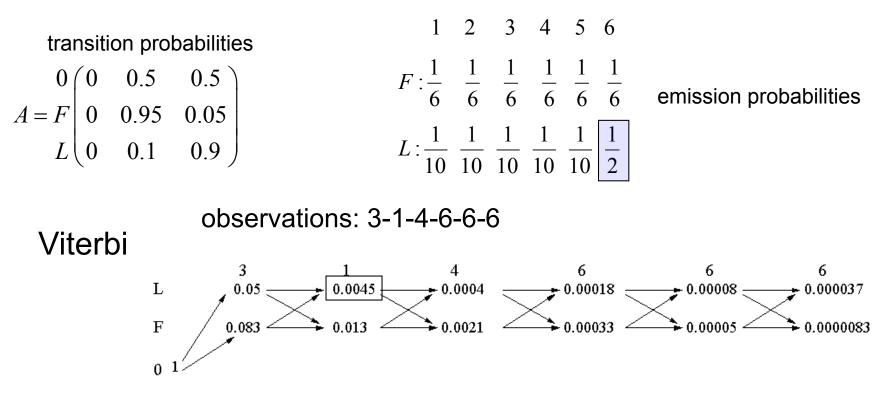
$$v(t,i) = \max_{Q_{0..t-1}} \left[P(x_{1..t}, Q_{0..t-1}, q_t = i) \right]$$

initialization :
$$v(0,0) = 1$$
, $v(0,j) = 0$ $1 \le j$

recursion :
$$v(t,i) = \max_{j} [v(t-1,j)a_{ji}]b_i(x_t)$$
 $1 \le t \le N, 0 \le i, j \le S$
 $p(t,i) = \operatorname{argmax}_{j} [v(t-1,j)a_{ji}]$

end : $V(x) = \max_{i} [v(N, i)]$

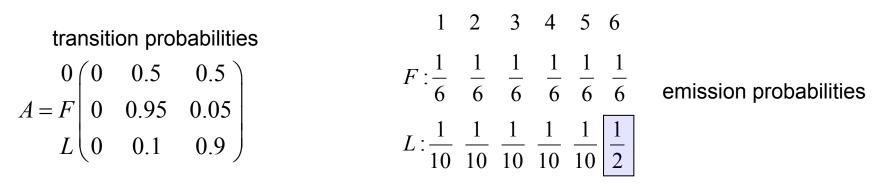
$$q_N^* = \arg\max_i [v(N,i)]$$


backtracking :

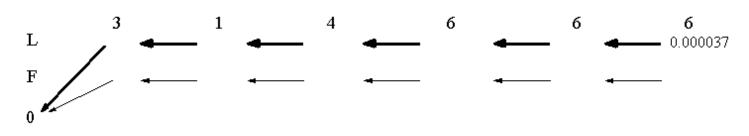
$$q_t^* = p(t+1, q_{t+1}^*)$$

Dishonest casino: Viterbi

Casino switches between a fair (F) die and a loaded (L) die



 $v(2,L) = \max[v(1,F)a_{FL}b_{L}(1), v(1,L)a_{LL}b_{L}(1)]$ = max[(0.083×0.05×0.1, 0.05×0.9×0.1] = 0.0045



Dishonest casino: Viterbi (2)

Casino switches between a fair (F) die and a loaded (L) die

Backtracking

Optimal state sequence: 0-L-L-L-L-L

Outline

- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding

HMM: three problems

Evaluation: probability of an observed sequence, given the model, e.g., to calculate odds

Decoding: optimal state sequence for an observed sequence

Estimation: of transition and emission probabilities from a given set of sequences

HMM: estimation

Sequences: $\{x^1, ..., x^n\}$

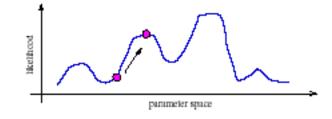
Likelihood:
$$P(x^{1},...,x^{n} | \theta) = \prod_{i=1}^{n} P(x^{i} | \theta)$$
 state sequence

$$= \prod_{i=1}^{n} \sum_{Q} P(x^{i},Q | \theta)$$
Log-likelihood: $\sum_{i=1}^{n} \log \sum_{Q} P(x^{i},Q | \theta)$ same solution since log is monotonic

Maximization of this log-likelihood is difficult because of sum over hidden (state) variables

HMM estimation: EM

- 1. If we know the state sequence, parameter estimation is easy: just counting as in Markov chains
- 2. Can estimate state path using the forward-backward algorithm (not shown)
- 3. EM: estimate (probability of) states, then estimate parameters, re-estimate the states etc.


This maximizes the likelihood (see MoG)

HMM estimation: remarks

See references in lecture notes for EM for HMM (aka Baum-Welch algorithm) in full detail

EM converges only to a local maximum of the likelihood. Good initial values are important!

How to choose the structure of an HMM? Black magic ...

Outline

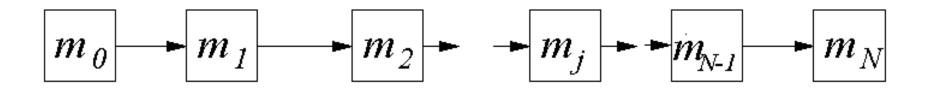
- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding

Profile HMMs

 A
 C
 A
 A
 T
 G

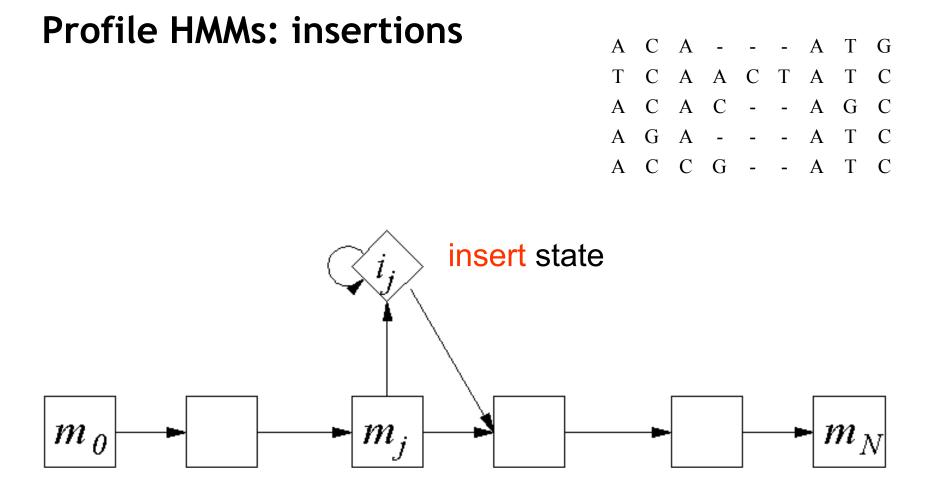
 T
 C
 A
 A
 C
 T
 A
 T
 C

 A
 C
 A
 C
 A
 G
 C

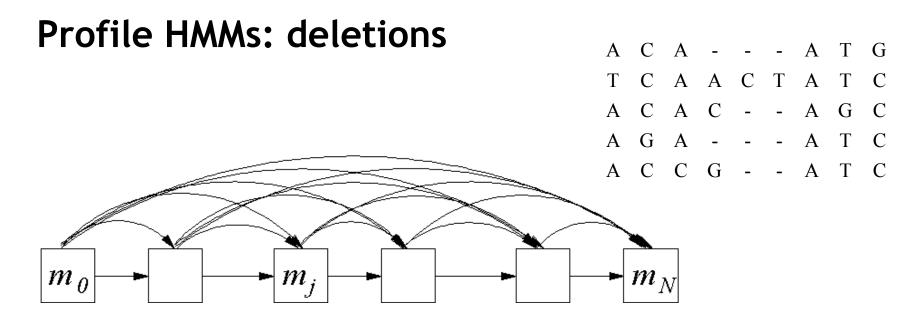

 A
 C
 A
 C
 A
 G
 C

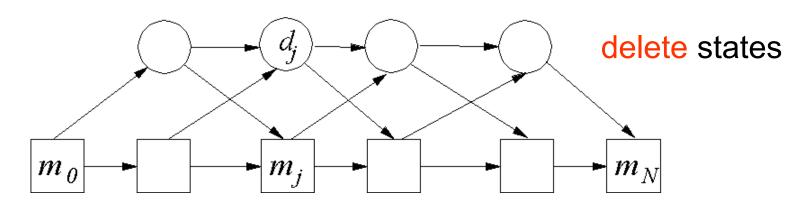
 A
 G
 A
 A
 T
 C

 A
 C
 C
 G
 A
 T
 C

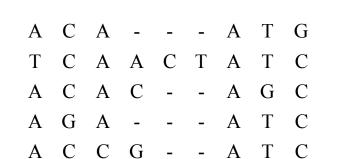

 A
 C
 C
 G
 A
 T
 C

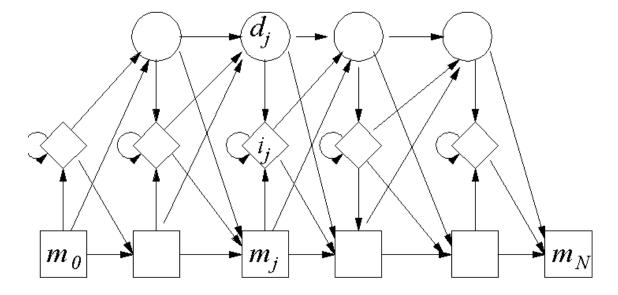
We saw that a weight matrix can be represented as a very simple HMM


transition probabilities = 1



Model insertion(s) between position *j* and *j*+1


Many transitions = many parameters, but limited data Solution: introduce silent (=non-emitting) delete states



Profile HMMs (2)

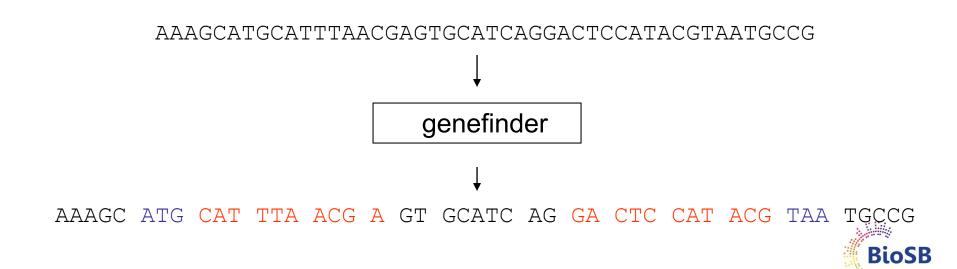
Put everything together:

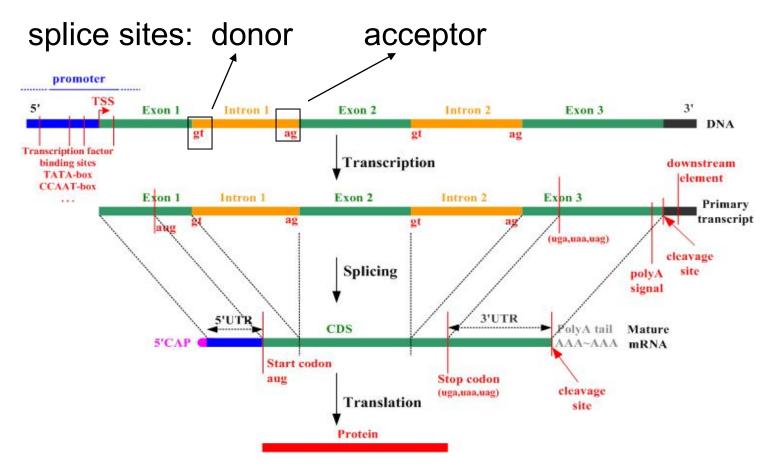
Applications:

http://pfam.xfam.org/

- searching for remote homologs (Forward)
- align a protein to a protein family (Viterbi)

Outline


- Regular expressions & weight matrices
- Dependencies & Markov chains
- Hidden Markov models
- HMMs & EM
- Profile HMMs
- Genefinding


Genefinding

Input: DNA string $S \in \{A, C, G, T\}^*$

Output: annotation of string S showing for each nucleotide whether it is coding or non-coding

Genefinding: eukaryotes

More complex than for prokaryotes: lower coding density (<25% instead of >80%), splicing

Genefinding: many signals

Possible signals: splice sites, promoter, codon bias, polyA site, dinucleotide usage ...

Possible models: everything you've seen before ...

How to integrate all these models in one consistent model that can be used for genefinding?

Solution: HMMs again!

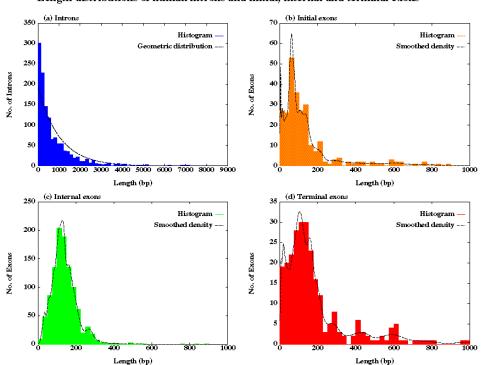
Building blocks (=states): weight matrices, (inhomogeneous, higher-order, interpolated) Markov chains, ...


Genefinding: HMM

Genes have a certain structure/grammar

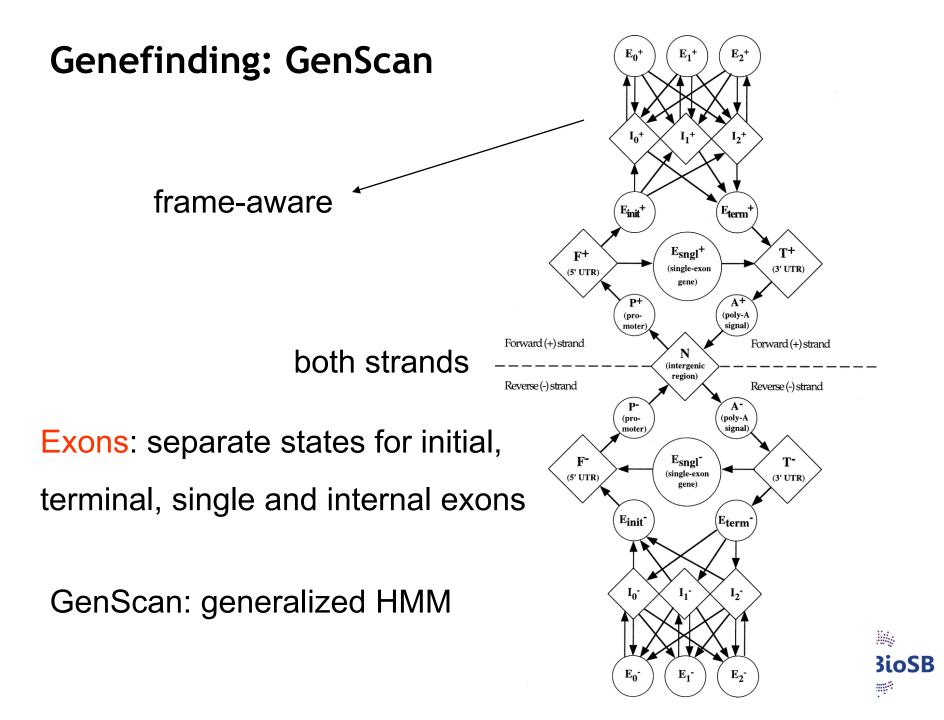
```
... exon – intron – exon – intron – exon ...
```

Regular expression of gene structure:


promoter 5'UTR exon (intron exon)* 3'UTR polyA

Genefinding = annotation with states: Viterbi

Length distributions



Length distributions of human introns and initial, internal and terminal exons

Standard HMM: length ~ geometric distribution

Generalized HMM: states emit sequences + length

Recapitulation

- Hidden Markov models: flexible models for modeling sequences
 - *Evaluation*: forward algorithm
 - *Decoding*: Viterbi
 - Estimation: EM
- Applications:
 - Genefinding
 - Modeling protein families
 - Segmentation of array CGH data
 - SNP imputation in GWAS
 - Error correction in nanopore sequencing data

10min break Exercise 4.18-4.20