Machine Learning for Bioinformatics \& Systems Biology

4. Clustering $\&$ hidden Markov models

Perry Moerland Amsterdam UMC, University of Amsterdam
Marcel Reinders Delft University of Technology
Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin and David Tax

Clustering

- Supervised vs. unsupervised learning
- Hierarchical clustering
- Sum-of-squares clustering (k-means)
- Cluster validation
- Mixtures-of-Gaussians clustering (EM algorithm)

Supervised learning

Supervised learning (2)

Unsupervised learning

BioSB

Unsupervised learning (2)

BioSB

What is a cluster?

Shape: compact, convex Separation: large

Shape: ? Separation: large?

Shape: strings Separation: large?

Shape: loose, convex
Separation: small

Shape: convex and circular Separation: large?

Shape: loose, convex Separation: small

What is a cluster? (2)

- Clustering: finding natural groups in data...
- which themselves are far apart
- in which objects are close together
- Define what is "far apart" and "close together":
- Need a distance measure or dissimilarity measure
- This measure should capture what we think is important for the grouping
- The choice for a certain distance measure is often the most important choice in clustering!
- There is no such thing as the objective clustering

What is a cluster in bioinformatics?

- Clustering gene expression data:
- Genes: similar ~ co-expression ~ co-regulation ~ same pathway / same function

- Samples: similar ~ same type of tissue
- Used for discovery of new subclasses (subtypes) in tumors

Example: genes (and samples)

negative
 positive

histopathological data

ER gene (ESR1) and genes co-regulated with $E R$, some of which are known ER target genes

Example: samples

Valk et al, N Engl J Med. 2004 Apr 15;350(16):1617-28.

Identified 16 groups of patients with acute myeloid leukemia

Dissimilarity measures

BioSB

Dissimilarity measures (2)

- Let $d(r, s)$ be the dissimilarity between objects r and s
- Formally, dissimilarity measures should satisfy

$$
\begin{aligned}
& d(r, s) \geq 0, \forall r, s \\
& d(r, r)=0, \forall r \\
& d(r, s)=d(s, r), \forall r, s
\end{aligned}
$$

- If in addition, the triangle inequality holds, the measure is a metric

$$
d(r, t)+d(t, s) \geq d(r, s), \forall r, s, t
$$

- Most often used: Euclidean distance (metric)

Dissimilarity measures (3)

- Example: time series data

Euclidean distance

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{t=1}^{n}\left(x_{i, t}-x_{j, t}\right)^{2}
$$

Dissimilarity measures (3)

- Example: time series data

Euclidean distance match exact shape

$$
\begin{aligned}
& d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{t=1}^{n}\left(x_{i, t}-x_{j, t}\right)^{2} \\
& \mathrm{~d}(\boldsymbol{O}, \boldsymbol{O})<\mathrm{d}(\boldsymbol{O}) \\
& \mathrm{d}(\boldsymbol{O}) \ll \mathrm{d}(\boldsymbol{O}) \\
& \mathrm{d}(\boldsymbol{O}, \boldsymbol{O}) \ll \mathrm{d}(\boldsymbol{O}, \boldsymbol{O})
\end{aligned}
$$

Dissimilarity measures (3)

- Example: time series data

Euclidean distance match exact shape

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{t=1}^{n}\left(x_{i, t}-x_{j, t}\right)^{2}
$$

Dissimilarity measures (3)

- Example: time series data

Euclidean distance
match exact shape

$$
\begin{aligned}
& d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{t=1}^{n}\left(x_{i, t}-x_{j, t}\right)^{2} \\
& \mathrm{~d}(\boldsymbol{\ominus}, \bigcirc)<\mathrm{d}(\boldsymbol{\bigcirc}, \bigcirc) \\
& d(\boldsymbol{O}, \bigcirc) \ll d(\bigcirc, \bigcirc) \\
& \mathrm{d}(\boldsymbol{\ominus}, \bigcirc) \ll \mathrm{d}(\boldsymbol{\bigcirc}, \boldsymbol{\bullet}) \\
& \underset{1-\rho_{i j}}{\rho_{i j}}=\sum_{i=1}^{n}\left(x_{i, t}-\mu_{i}\right)\left(x_{j, t}-\mu_{j}\right) / \sigma_{i} \sigma_{j} \\
& \mathrm{~d}(\boldsymbol{Q}, \boldsymbol{)} \approx \mathrm{~d}(\bigcirc, \bigcirc) \\
& d(\bigcirc, \bigcirc) \ll d(\bigcirc, \bigcirc) \\
& d(\boldsymbol{\bullet}, \bigcirc) \ll d(\boldsymbol{O}, \boldsymbol{O})
\end{aligned}
$$

Pearson correlation
ignore amplitude

BioSB

Dissimilarity measures (3)

- Example: time series data

Euclidean distance match exact shape

$$
\begin{aligned}
& d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{t=1}^{n}\left(x_{i, t}-x_{j, t}\right)^{2} \\
& \mathrm{~d}(\boldsymbol{O}, \boldsymbol{O})<\mathrm{d}(\boldsymbol{O}) \\
& \mathrm{d}(\boldsymbol{O}) \ll \mathrm{d}(\boldsymbol{O}) \\
& \mathrm{d}(\boldsymbol{O}, \boldsymbol{O})<\mathrm{d}(\boldsymbol{O}, \boldsymbol{O})
\end{aligned}
$$

Pearson correlation
ignore amplitude

Absolute correlation ignore amplitude \& sign

$$
\underset{1-\rho_{i j}}{\rho_{i j}} \sum_{t=1}^{n}\left(x_{i, t}-\mu_{i}\right)\left(x_{j, t}-\mu_{j}\right) / \sigma_{i} \sigma_{j}\left|-\left|\rho_{i j}\right|\right.
$$

Clustering techniques

BioSB

Clustering techniques (2)

BioSB

Hierarchical clustering

Input:

- dataset, $\boldsymbol{X}:[n \times p]$, or directly:
- dissimilarity matrix, $\boldsymbol{D}:[n \times n]$
- linkage type

Output:

- dendrogram

Hierarchical clustering (2)

- Algorithm (agglomerative clustering)
- Start: all objects of \boldsymbol{X} in a separate cluster
- Clustering: combine the 2 clusters with the shortest distance in dissimilarity matrix, \boldsymbol{D}
- Distance between clusters is based on linkage type:
- single, complete, average, ...
- Repeat until only 1 cluster is left

Hierarchical clustering (3)

Dataset
Euclidean distance matrix, D

BioSB

Hierarchical clustering (4)

- Step 1:

Find the most similar pair of objects: $\min _{(i, j)}\{d(i, j)\}=d(2,3)$

\boldsymbol{x}_{1}			x_{1}	x_{2}	x_{3}	\boldsymbol{x}_{4}	x_{5}
	\boldsymbol{x}_{5}	\boldsymbol{x}_{1}	0.00	1.58	1.76	5.22	4.53
		x_{2}		0.00	0.74	5.50	5.10
$\boldsymbol{x}_{2} \cdot$	$\stackrel{\bullet}{\boldsymbol{x}}$	x_{3}			0.00	4.81	4.48
		\boldsymbol{x}_{4}				0.00	1.12
5.		x_{5}					0.00

BioSB

Hierarchical clustering (5)

- Step 2:

Merge x_{2} and x_{3} into a single object, $\left[x_{2}, x_{3}\right] ;$

Hierarchical clustering (6)

- Step 3:

Recompute \boldsymbol{D} -
what is the distance between $\left[x_{2}, x_{3}\right]$ and the rest?

Hierarchical clustering (7)

- Step 3:

Recompute \boldsymbol{D} -
single linkage: $d\left(\left[\boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right], \boldsymbol{x}_{1}\right)=\min \left(d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3}\right)\right)$

Hierarchical clustering (8)

- Step 3:

Recompute \boldsymbol{D} -
complete linkage: $d\left(\left[\boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right], \boldsymbol{x}_{1}\right)=\max \left(d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3}\right)\right)$

Hierarchical clustering (9)

- Step 3:

Recompute \boldsymbol{D} -
average linkage: $d\left(\left[\boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right], \boldsymbol{x}_{1}\right)=$ mean $\left(d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right), d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3}\right)\right)$

Hierarchical clustering (10a)

- Step 3:

Recompute \boldsymbol{D} - single linkage:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{1}	0.00	1.58	1.76	5.22	4.53
		0.00	0.74	5.50	5.10
x_{3}			0.00	4.81	4.48
x_{4}				0.00	1.12
x_{5}					0.00

BioSB

Hierarchical clustering (10b)

- Step 3:

Recompute \boldsymbol{D} - single linkage:

x_{1}	$\left[x_{2}, x_{3}\right]$	\boldsymbol{x}_{4}	x_{5}
$x_{1} 0.00$	1.58	5.22	4.53
$\left[x_{2}, x_{3}\right]$	0.00	4.81	4.48
\boldsymbol{x}_{4}		0.00	1.12
x_{5}			0.00

Hierarchical clustering (11)

- Repeat, step 1:

Find the most similar pair of objects: $\min _{(i, j)}\{d(i, j)\}=d(4,5)$

\boldsymbol{X}_{1}	\boldsymbol{x}_{5}		x_{1}	$\left[x_{2}, x_{3}\right]$	\boldsymbol{x}_{4}	x_{5}
		x_{1}	0.00	1.58	5.22	4.53
$\boldsymbol{x}_{2}{ }_{\underline{x}}^{\boldsymbol{x}_{3}}$		$\left[x_{2}, x_{3}\right]$	1.58	0.00	4.81	4.48
	\boldsymbol{x}_{4}	\boldsymbol{x}_{4}	5.22	4.81	0.00	1.12
		x_{5}	4.53	4.48	1.12	0.00

BioSB

Hierarchical clustering (12)

- Repeat, step 2:

Merge x_{4} and x_{5} into a single object, $\left[x_{4}, x_{5}\right] ;$

Hierarchical clustering (13)

- Repeat, step 3:

Recompute D (single linkage):

	x_{1}	$\left[x_{2}, x_{3}\right]$	$\left[x_{4}, x_{5}\right]$
x_{1}	0.00	1.58	4.53
$\left[x_{2}, x_{3}\right]$		0.00	4.48
$\left[x_{4}, x_{5}\right]$			0.00

Hierarchical clustering (14)

- Repeat steps 1-3 until a single cluster remains

Hierarchical clustering (15)

BioSB

Hierarchical clustering (16)

- Hierarchical clustering: repeatedly group closest clusters
- Important choices:
- Distance measure between objects: Euclidean, correlation, Hamming, Minkowski, ...
- Linkage between clusters: single, average, complete

BioSB

Linkage and cluster shape

\square
\square
\square
Complete linkage
Single linkage

Linkage and cluster shape (2)

Complete linkage
Single linkage

Linkage and cluster shape (3)

Complete linkage
Single linkage

Linkage and outliers

BioSB

Hierarchical clustering examples

Euclidean, complete linkage

Hierarchical clustering examples (2)

Euclidean, complete linkage

Hierarchical clustering examples (3)

Euclidean, single linkage

Hierarchical clustering (17)

- Advantages:
- dendrogram gives overview of all possible clusterings
- linkage type allows to find clusters of varying shapes (convex and non-convex)
- different dissimilarity measures can be used
- Disadvantages:
- computationally intensive:
$\mathrm{O}\left(n^{2}\right)$ in complexity and memory
- clusterings limited to "hierarchical nestings"

Hierarchical clustering: warning

- Cluster 500 genes, 5 arrays:

6 clusters
dist(t(data.reduced) $)^{\wedge} 2$
compete linkage

Data were random ...

Validation is needed

10min break

Exercise 4.1-4.7

Sum-of-squares clustering

- Hierarchical:

- Sum-of-squares:

Sum-of-squares clustering (2)

- Recall from Day 2 (\& 3) (Fisher: within and between scatter):

$$
\begin{array}{|l|l|}
\hline \boldsymbol{S}_{w}=\sum_{i=1}^{C} \frac{n_{i}}{n} \Sigma_{i} \quad\left(n_{1}=3, n_{2}=2, n=5, C=2\right) \\
\boldsymbol{S}_{B}=\sum_{i=1}^{C} \frac{n_{i}}{n}\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)\left(\boldsymbol{m}_{i}-\boldsymbol{m}\right)^{T}, \boldsymbol{m}=\sum_{i=1}^{C} \frac{n_{i}}{n} \boldsymbol{m}_{i} \\
\boldsymbol{x}_{1} & \boldsymbol{m} \\
\boldsymbol{x}_{1} & \boldsymbol{x}_{4} \\
\boldsymbol{x}_{3} & \\
\boldsymbol{x}_{2}
\end{array}
$$

K-means

- Minimize:

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathbf{S}_{\mathrm{w}}\right)=\frac{1}{n} \sum_{j=1}^{g} \mathbf{S}_{j} \\
& \boldsymbol{S}_{j}=\sum_{i=1}^{n_{j}}\left|\boldsymbol{x}_{i}-\boldsymbol{m}_{j}\right|^{2}
\end{aligned}
$$

(sum of per cluster variances)

$\left.m\right|^{2}$

K-means (2)

- Iterative procedure to search for $\min \left(\operatorname{Tr}\left(\boldsymbol{S}_{\mathrm{W}}\right)\right)$:

1. choose number of clusters (g)
2. position prototypes $\left(m_{j} j=1, \ldots, g\right)$ randomly
3. assign samples to closest prototype
4. compute mean of samples assigned to
same prototype: new prototype position
Repeat steps 3 and 4 as long as prototypes move

K-means (3)

- Step 1: Choose number of clusters/prototypes
- Step 2: Position prototypes randomly
\boldsymbol{m}_{1}

\boldsymbol{m}_{2}
\boldsymbol{x}_{5}

K-means (4)

- Step 3: Assign samples to closest prototype
\boldsymbol{m}_{1}

$\star \boldsymbol{m}_{2}$
- \boldsymbol{x}_{5}

\boldsymbol{x}_{4}

K-means (5)

- Step 4: Compute mean of samples assigned to same prototype: new prototype positions

K-means (6)

- Repeat as long as prototype positions change:
- Step 3: Assign samples
- Step 4: Recompute prototype positions

K-means problems

- Clustering depends on initialization

K-means problems (2)

- Algorithm can get stuck in local minima
- Solution:
- start from I different random initialisations
- keep the best clustering
 (lowest $\operatorname{Tr}\left(\boldsymbol{S}_{\mathrm{W}}\right)$)
- For high-dimensional data, many restarts can be necessary (e.g. $I=100$)

K-means problems (3)

- Clusters can loose all samples

- Possible solution:
- remove cluster and continue with $g-1$ means
- alternatively, split largest cluster into two or add a random cluster to continue with g means

K-means example

Advantages/disadvantages: K-means

- Disadvantages:
- Finds only convex clusters ("round shapes")
- Sensitive to initialization
- Can get stuck in local minima
- Advantages:
- Very simple
- Fast

Recapitulation

- Clustering is way to detect natural groups in data
- What is natural is partly subjective
- We looked at:
- Hierarchical clustering
- Sum of squares (k-means) clustering
- Hierarchical clustering:
- dendrogram shows a complete hierarchy of possible clusterings
- computionally intensive
- K-means
- fast
- sensitive to initialization and local minima

Cluster validation

- Cluster validation:
- Checking whether grouping is really present
- Choosing the optimal number of clusters
- A difficult problem - the ground truth is not known (since we do not know the object labels)!
- Methods:
- Distortion measures:
- Does clustering approximate structure in data?
- Validity measures:
- Davies-Bouldin index
- Fusion graph
- Gap statistic

Distortion measures

- How well does a dendrogram capture structure in data?

\boldsymbol{d}^{*}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$	$\boldsymbol{x}_{\mathbf{5}}$
$\boldsymbol{x}_{\mathbf{1}}$	0	d_{3}	d_{3}	d_{4}	d_{4}
$\boldsymbol{x}_{\mathbf{2}}$		0	d_{1}	d_{4}	d_{4}
$\boldsymbol{x}_{\mathbf{3}}$			0	d_{4}	d_{4}
$\boldsymbol{x}_{\mathbf{4}}$				0	d_{2}
$\boldsymbol{x}_{\mathbf{5}}$					0

Distortion measures (2)

- Measure of distortion: Pearson correlation of \boldsymbol{d} and \boldsymbol{d}^{*}

$$
\rho\left(\boldsymbol{d}, \boldsymbol{d}^{*}\right)=\frac{\operatorname{cov}\left(\boldsymbol{d}, \boldsymbol{d}^{*}\right)}{\sqrt{\operatorname{var}(\boldsymbol{d}) \operatorname{var}\left(\boldsymbol{d}^{*}\right)}} \in[-1,1]
$$

d						d^{*}					
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	x_{5}
x_{1}	O. 00	1. 58	1.76	5.22	4.53	x_{1}	0	d_{3}	d_{3}	d_{4}	d_{4}
x_{2}		O. 00	O. 74	5.50	5.10	x_{2}		0	d_{1}	d_{4}	d_{4}
x_{3}			O. 00	4.81	4.48	x_{3}			0	d_{4}	d_{4}
\boldsymbol{x}_{4}				O. 00	1.12	\boldsymbol{x}_{4}				0	d_{2}
x_{5}					O.00	x_{5}					0

Validity measures

- Many are based on within and between group scatter
- The larger the between group scatter and the smaller the within group scatter, the better
- Example: Davies-Bouldin

Davies-Bouldin index

- Assumption: clusters are spherical
- For a good clustering, it should hold that:
- objects are compactly organized within a cluster
- clusters are far apart
- D.L. Davies and D.W. Bouldin, IEEE Transactions on Pattern Analysis and Machine Intelligence 1, pp. 224-227, 1979

Davies-Bouldin index (2)

$\left(\boldsymbol{\mu}_{1}, \sigma_{1}\right)$

$$
\begin{aligned}
& \sigma_{j}=\sqrt{\frac{1}{n_{j}} \sum_{\boldsymbol{x}_{i} \in C_{j}}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}} \\
& \boldsymbol{\mu}_{j}=\frac{1}{n_{j}} \sum_{\boldsymbol{x}_{i} \in C_{j}} \boldsymbol{x}_{i}
\end{aligned}
$$

BioSB

Davies-Bouldin index (3)

$\left(\boldsymbol{\mu}_{1}, \sigma_{1}\right)$

$$
\begin{aligned}
& R_{j k}=\frac{\sigma_{j}+\sigma_{k}}{\left\|\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{k}\right\|} \\
& \sigma_{j}=\sqrt{\frac{1}{n_{j}} \sum_{x_{i} \in C_{j}}\left\|\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}} \\
& \boldsymbol{\mu}_{j}=\frac{1}{n_{j}} \sum_{x_{i} \in C_{j}} \boldsymbol{x}_{i}
\end{aligned}
$$

BioSB

Davies-Bouldin index (4)

$$
\begin{aligned}
& R_{j k}=\frac{\sigma_{j}+\sigma_{k}}{\left\|\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{k}\right\|} \\
& R_{j}=\max _{k=1, . . g ; k \neq j} R_{j k}
\end{aligned}
$$

BioSB

Davies-Bouldin index (5)

$$
\begin{aligned}
& R_{j k}=\frac{\sigma_{j}+\sigma_{k}}{\left\|\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{k}\right\|} \\
& R_{j}=\max _{k=1, ., g ; k \neq j} R_{j k} \\
& I_{D B}=\frac{1}{g} \sum_{j=1}^{g} R_{j}
\end{aligned}
$$

Paired cluster criterion

Worst-case value per cluster

Average worst-case

Davies-Bouldin index (5)

Complete link

Davies-Bouldin:
 3 or 14 clusters

BioSB
\%

Davies-Bouldin index (7)

Single link

Davies-Bouldin:

Fusion graph

- Heuristic approach: fusion level

BioSB

Fusion graph (2)

(Euclidean; complete linkage)

Fusion graph (3)

(Euclidean; complete linkage)

Fusion graph (4)

(Euclidean; single linkage)

Fusion graph (5)

(Euclidean; single linkage)

What is a large jump?

- Compare the fusion graph of the dataset with a null hypothesis, i.e. a dataset where the clustering structure has been destroyed
- Different approaches:
- Generate random data within bounding box or convex hull of data;
- Preferable to shuffle data, i.e. not generate new data, but
 perturb relationships between measurements
- For example, randomly match feature values, i.e. permute values within columns

The gap statistic

1. Generate dendrogram and extract fusion graph, f_{j}
2. Repeat r times
3. Perturb columns
4. Generate dendrogram and fusion graph, $f_{j, r}^{*}$
5. Compute average μ_{j}^{*} and standard deviation σ_{j}^{*} of these perturbed graphs
6. Compute the difference between the data fusion graph and the average perturbed fusion graph (gap statistic):

$$
g_{j}^{g a p}=\max \left\{f_{j}-\mu_{j}^{*}, 0\right\}, j=1,2, \ldots, g
$$

5. Look for large values of gap statistic $g_{j}^{\text {gap }}=f_{j}$

Gap fusion graph (single linkage)

Gap fusion graph (single linkage) (2)

DBI vs. fusion graphs

	PBI (s)	$?$	$3 / 4$	$?$	4
DBI (c)	$8+$	2	$5+$	4	$8+$
Gap fusion graph (s)	3	3	2	3	2
Gap fusion graph (c)	$2(?)$	2	4	3	3

BioSB

Recapitulation

- Cluster validation is used for:
- Assessing clustering
- Deciding on the number of clusters
- Methods:
- Distortion measures (dendrogram)
- Davies-Bouldin index
- Fusion graph and gap statistic
- When applying cluster validation, one also needs to define what a good cluster is - like in clustering itself. There's no free lunch...

Lunch break Exercise 4.8-4.16

Clustering overview

1. Hierarchical:

2. K-means:

3. Density-based:

Density-based clustering

- Each cluster is described by a probability density function
- Total dataset described by a mixture of density functions
- Clustering = maximizing the mixture fit
- Clusters are based on a posteriori probabilities

Density-based clustering (2)

- Given:
- n independent objects: $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\}$
- probability density function model:

$$
p(\boldsymbol{x} \mid \theta) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- Estimate parameters $\theta=\{\mu, \Sigma\}$ such that model fits data

- Use likelihood as criterion: probability of observing the data set, given the model (as on Day 1, for kernel width h in Parzen density estimation)

Estimation: maximum likelihood

- General method to estimate parameters θ of probability distribution from data $D=\left\{x_{1}, \ldots, x_{n}\right\}$. How?
- Maximize joint probability of the data

likelihood:

$$
L=p\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)
$$

log-likelihood:

$$
L L=\sum_{i=1}^{n} \log \sum_{Q} p\left(x_{i}, Q \mid \theta\right)
$$

same solution since log is monotonic

Estimation: maximum likelihood (2)

Two possible outcomes: $x=0$ or $x=1$.
Success ($x=1$) occurs with probability p
Bernoulli distribution: $\quad P(x)=p^{x}(1-p)^{1-x}$

Likelihood: $\quad P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid p\right)=p^{x_{1}}(1-p)^{1-x_{1}} \ldots p^{x_{n}}(1-p)^{1-x_{n}}$
$=p^{n_{1}}(1-p)^{n-n_{1}}$

$$
\frac{d\left(p^{n_{1}}(1-p)^{n-n_{1}}\right)}{d p}=0
$$

\# of successes

Maximum at $p=n_{1} / n$

Mixture-of-Gaussians

- Choose Gaussian as component density $p\left(\boldsymbol{x} ; \theta_{j}\right)$:

$$
p\left(\boldsymbol{x} ; \theta_{j}\right)=\frac{1}{\sqrt{2 \pi^{p} \operatorname{det}\left(\boldsymbol{\Sigma}_{j}\right)}} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu}_{j}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{j}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{j}\right)\right)
$$

- Describe complete data set as a mixture of $p(x ; \theta)$'s:

$$
p(\boldsymbol{x} ; \Psi)=\sum_{j=1}^{g} \pi_{j} p\left(\boldsymbol{x} ; \theta_{j}\right) \text { with } \sum_{j=1}^{g} \pi_{\mathrm{j}}=1
$$

Mixture-of-Gaussians (2)

$$
p(\boldsymbol{x} ; \Psi)=\sum_{j=1}^{g} \pi_{j} p\left(\boldsymbol{x} ; \theta_{j}\right) \text { with } \sum_{j=1}^{g} \pi_{\mathrm{j}}=1
$$

- Parameters:
- Set number of clusters, g
- Estimate other parameters by maximum-likelihood:

$$
\Psi=\left(\boldsymbol{\pi}, \theta=\left\{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right\}_{j=1 \ldots g}\right)
$$

mixture coefficients \downarrow component density parameters
log-likelihood: $L L(\boldsymbol{X} ; \Psi)=\sum_{i=1}^{n} \log \sum_{j=1}^{g} \pi_{j} p\left(\boldsymbol{x}_{i} ; \theta_{j}\right)$

EM algorithm

- Problem: need to simultaneously estimate two interdependent things...
- Cluster membership of each object
- Density parameters of each cluster:

$$
\pi_{j}, \boldsymbol{\mu}_{j}, \Sigma_{j}
$$

- Expectation-Maximization algorithm:
- General class of algorithms for this type of problem
- Repeatedly:
- Recalculate cluster membership of each object (E)
- Recalculate density parameters of each cluster (M)
- Introduce a hidden variable z to explicitly indicate mixture components

$$
\pi_{j}=p(z=j)
$$

Intermezzo: probabilities

$$
n=20
$$

sum rule: $P(x)=\sum_{y} P(x, y)$

$$
1 / 5=P(3)=P(3, \operatorname{die} 1)+P(3, \operatorname{die} 2)=3 / 20+1 / 20
$$

product rule: $P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)$

$$
\begin{aligned}
3 / 20=P(3, \text { die } 1) & =P(3 \mid \text { die } 1) P(\text { die } 1)=(3 / 11)(11 / 20)=3 / 20 \\
& =P(\operatorname{die} 1 \mid 3) P(3)=(3 / 4)(4 / 20)=3 / 20
\end{aligned}
$$

Intermezzo: Bayes' theorem

From product rule

$$
P(x \mid y) P(y)=P(y \mid x) P(x)
$$

Bayes : $P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{P(y \mid x) P(x)}{\sum_{x} P(y \mid x) P(x)}$
$P($ die $1 \mid 3)=\frac{P(3 \mid \text { die } 1) P(\text { die } 1)}{P(3)}=\frac{(3 / 11)(11 / 20)}{4 / 20}=3 / 4$

EM algorithm (2)

$$
\begin{aligned}
\log p(D) & =\sum_{x} \log p(x)=\sum_{x} \sum_{z} q(z) \log p(x) \\
& =\sum_{x, z} q(z) \log \frac{p(x, z)}{p(z \mid x)}=\sum_{x, z} q(z) \log \left(\frac{p(x, z)}{p(z \mid x)} \times \frac{q(z)}{q(z)}\right) \\
& =\sum_{x, z} q(z) \log \left(\frac{p(x, z)}{q(z)}\right)+\sum_{x, z} q(z) \log \left(\frac{q(z)}{p(z \mid x)}\right) \\
& =F\left(p_{\text {joint }}, q\right)+D_{K L}\left(q \| p_{\text {post }}\right) \\
& \text { free energy relative entropy }(\geq 0)
\end{aligned}
$$

EM algorithm: E-step

$$
\text { E-step: } q^{\text {new }}(z \mid x)=p_{\text {post }}=p(z \mid x)
$$

EM algorithm: M-step

$$
\log p(D)=\sum_{x, z} p(z \mid x) \log \left(\frac{p(x, z)}{p(z \mid x)}\right)
$$

M-step: maximize $\log [p(D)]$ with respect to the parameters

$\log (P(D \mid \theta))$

$\log (P(D \mid \theta))$

BioSB

EM algorithm (3)

Iterate to maximize likelihood:
E-step: $\quad p_{\text {post }}=p(z \mid x, \theta)$
Calculate the distribution of the hidden variables given the data and the model parameters

M-step: $\quad \theta^{\text {new }}=\underset{\theta}{\arg \max } \sum_{x, z} p(z \mid x) \log p(x, z \mid \theta)$
Maximize the expected (with respect to hidden variables) log-likelihood of the complete data.

Compare M-step with MoG log-likelihood:

$$
\sum_{i=1}^{n} \log \sum_{j=1}^{g} \pi_{j} p\left(\mathbf{x}_{i} ; \theta_{j}\right)
$$

EM: mixture model

Very simple example of a model with hidden variables:
2-component mixture model

$$
p(x)=\pi_{1} p_{1}(x \mid \theta)+\pi_{2} p_{2}(x \mid \theta)
$$

hidden variable $z=1,2 \quad$ - component label

E-step: $p(z=j \mid x, \theta)=\frac{p(z=j \mid \theta) p(x \mid z=j, \theta)}{p(x \mid \theta)}=\frac{\pi_{j} p_{j}(x \mid \theta)}{p(x)}$
responsibility
M-step: maximize $\sum_{x, z \in\{1,2\}} p(z \mid x) \log p(x, z \mid \theta)$

EM: mixture model (2)

Initialization

EM: mixture model (3)

Initialization

E-step

EM: mixture model (4)

- M-step: Maximization

Maximize the expected complete LL by updating

- mixture coefficients π_{j}
- cluster means and covariances $\theta_{j}=\left\{\mu_{j}, \Sigma_{j}, j=1, \ldots, g\right.$:

$$
\left.\begin{array}{c}
\left.\hat{\pi}_{j}=\frac{1}{n} \sum_{i=1}^{n} p\left(z=j \mid x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} w_{i j}\right\} \text { "total membership" } \\
\hat{\mu}_{j}=\frac{\sum_{i=1}^{n} w_{i j} \boldsymbol{x}_{i}}{\sum_{i=1}^{n} w_{i j}} \\
\hat{\Sigma}_{j}=\frac{\sum_{i=1}^{n} w_{i j}\left(\boldsymbol{x}_{i}-\hat{\mu}_{j}\right)\left(\boldsymbol{x}_{i}-\hat{\mu}_{j}\right)^{T}}{\sum_{i=1}^{n} w_{i j}}
\end{array}\right\} \text { weighted sums }
$$

EM: mixture model (5)

Initialization

E-step

M-step

EM: mixture model (6)

M-step: 3

EM: mixture model (7)

M-step: 3

M-step: 5

EM: mixture model (8)

M-step: 3

M-step: 5

M-step: 9

Mixture-of-Gaussians (3)

- 'Gauss':

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]
$$

- 'Aligned':

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{11} & 0 \\
0 & \sigma_{22}
\end{array}\right]
$$

- ‘Circular’:

$$
\Sigma=\left[\begin{array}{ll}
\sigma & 0 \\
0 & \sigma
\end{array}\right]
$$

EM: mixture model (9)

- If...
- all clusters are spherical
- the variance of each cluster is infinitely small

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\varepsilon^{2} & 0 & 0 \\
0 & \varepsilon^{2} & 0 \\
0 & 0 & \varepsilon^{2}
\end{array}\right], \quad \varepsilon \rightarrow 0
$$

then the EM algorithm simplifies to the K-means algorithm (samples are always assigned to the closest cluster!)

EM algorithm (4)

- Disadvantages:
- can get stuck in local minima
- depends on initial conditions
- convergence can be slow
- problems with covariance estimates: if too few samples are members of a cluster, there will not be enough data to base estimate on
- Advantages:
- simple to implement

Cluster validation: log-likelihood

- For probabilistic models (e.g. mixture-of-Gaussians):
- Log-likelihood will probably not increase anymore when too many clusters are used
- Look for "plateau" in log-likelihood graph

- Problem: when $g=n$, the log-likelihood is infinite; Solution: information criteria (Day 5)

Recapitulation

- Density based clustering:
- Assume a probability density function per cluster
- Train using the EM algorithm
- Example:
- Mixture of Gaussians
- But many probability densities fit in the same framework principal component analysis, factor analysis, ...
- EM algorithm:
- problem decomposition: simple to implement
- sensitive to local minima

15min break Exercise 4.17

Hidden Markov models

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

Application: genefinding

\because 3ioSB
generalized HMM

Application: transmembrane proteins

HMM

Application: protein domains

Profile HMM

Outline

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

Sites

Site: short sequence containing some signal

Examples: intron splice sites, transcription start site, transcription factor binding sites

Goals: - give a mathematical description (model) of a site

- find possible sites in a long sequence

Consensus sequence

majority vote:

A C A ATC

A C A A T
T C A A
A \quad C \quad A $A \quad$ A \quad C
A \quad G \quad A \quad A \quad T \quad C
A $\quad \mathrm{C} \quad \mathrm{C} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{C}$

$$
\text { W S M A K S from IUPAC code: } \begin{array}{lll}
\mathrm{M} & \mathrm{~A} / \mathrm{C} \\
\mathrm{R} & \mathrm{~A} / \mathrm{G} \\
\mathrm{~W} & \mathrm{~A} / \mathrm{T} \\
\mathrm{~S} & \mathrm{C} / \mathrm{G} \\
\mathrm{Y} & \mathrm{C} / \mathrm{T} \\
& \\
& \mathrm{~K} & \mathrm{G} / \mathrm{T} \\
\mathrm{~B} & \mathrm{C} / \mathrm{G} / \mathrm{T} & \\
& & \\
& \mathrm{D} & \mathrm{~A} / \mathrm{G} / \mathrm{T} \\
\mathrm{H} & \mathrm{~A} / \mathrm{C} / \mathrm{T} & \\
& & \\
& \mathrm{~V} & \mathrm{~A} / \mathrm{C} / \mathrm{G} \\
\mathrm{~N} & \mathrm{~A} / \mathrm{C} / \mathrm{G} / \mathrm{T} & \mathrm{BioSB} \\
& &
\end{array}
$$

Regular expressions

[ab] : union $\quad\{a, b\}$ $\mathrm{ab}:$ concatenation $\{a b\}$
$\varepsilon \quad$: empty string a* : Kleene star $\{\varepsilon, a, a a, a a a, \ldots\} \quad$ A \quad C \quad C A \quad A \quad C
[AT][CG][AC]A[TG][GC]
ACAATC, but also TGCAGG

See also http://prosite.expasy.org

Weight matrices

A	C	A	A	T	G
T	C	A	A	T	C
A	C	A	A	G	C
A	G	A	A	T	C
A	C	C	A	T	C

probabilities

A

aka position specific score matrix

$$
\begin{aligned}
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \begin{array}{l}
A \\
C
\end{array}\left(\begin{array}{llllll}
4 & 0 & 4 & 5 & 0 & 0 \\
0 & 4 & 1 & 0 & 0 & 4
\end{array}\right) \text { counts } \\
& \begin{array}{c}
G \\
T
\end{array}\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 4 & 0
\end{array}\right) \\
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& W=\begin{array}{c}
A \\
C \\
G \\
T
\end{array}\left(\begin{array}{llllll}
0.8 & 0.0 & 0.8 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.8 & 0.2 & 0.0 & 0.0 & 0.8 \\
0.0 & 0.2 & 0.0 & 0.0 & 0.2 & 0.2 \\
0.2 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0
\end{array}\right)
\end{aligned}
$$

Weight matrices (2)

Sequence: $\quad x=x_{1} x_{2} \ldots x_{N}$

$$
\begin{array}{r}
\longrightarrow \text { independence } \\
P\left(x_{1} x_{2} \ldots x_{N} \mid W\right)=\prod_{i=1}^{N} w_{x_{i}, i}=\prod_{i=1}^{N} P_{i}\left(x_{i} \mid W\right)
\end{array}
$$

$P(\operatorname{ACAATC} \mid W)=P_{1}(\mathrm{~A}) P_{2}(\mathrm{C}) P_{3}(\mathrm{~A}) P_{4}(\mathrm{~A}) P_{5}(\mathrm{~T}) P_{6}(\mathrm{C})$

$$
=0.8 \times 0.8 \times 0.8 \times 1 \times 0.8 \times 0.8=0.33
$$

	1	2	3	4	5	6
A	0.8	0.0	0.8	1.0	0.0	0.0
C	0.0	0.8	0.2	0.0	0.0	0.8
G	0.0	0.2	0.0	0.0	0.2	0.2
T	0.2	0.0	0.0	0.0	0.8	0.0

Weight matrices (3)

Sequence: $\quad x=x_{1} x_{2} \ldots x_{N}$

$$
\begin{array}{r}
\longrightarrow \text { independence } \\
P\left(x_{1} x_{2} \ldots x_{N} \mid W\right)=\prod_{i=1}^{N} w_{x_{i}, i}=\prod_{i=1}^{N} P_{i}\left(x_{i} \mid W\right)
\end{array}
$$

$$
P(\mathrm{CCAATC} \mid W)=P_{1}(\mathrm{C}) P_{2}(\mathrm{C}) P_{3}(\mathrm{~A}) P_{4}(\mathrm{~A}) P_{5}(\mathrm{~T}) P_{6}(\mathrm{C})
$$

$$
=0 \times 0.8 \times 0.8 \times 1 \times 0.8 \times 0.8=0
$$

	1	2	3	4	5	6
A	0.8	0.0	0.8	1.0	0.0	0.0
C	0.0	0.8	0.2	0.0	0.0	0.
G	0.0	0.2	0.0	0.0	0.2	0.2
T	0.2	0.0	0.0	0.0	0.8	0.0

Weight matrices: pseudocounts

$$
P(x)=\frac{\# x+1}{\sum_{i}(\# i+1)} \text { pseudocount (Laplace) } \begin{array}{ccccccc}
\mathrm{A} & \mathrm{C} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} & \mathrm{G} \\
\mathrm{~T} & \mathrm{C} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~A} & \mathrm{G} & \mathrm{C} \\
& \mathrm{~A} & \mathrm{G} & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} \\
\mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{C}
\end{array}
$$

$\left.\begin{array}{l}A \\ C \\ G \\ T\end{array}\left(\begin{array}{cccccc}5 & 1 & 5 & 6 & 1 & 1 \\ 1 & 5 & 2 & 1 & 1 & 5 \\ 1 & 2 & 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 1 & 5 & 1\end{array}\right) \quad W^{\prime}=\begin{array}{c}A \\ C \\ G \\ \hline\end{array} \begin{array}{|cc|c|c|ccc|}0.56 & 0.11 & 0.56 & 0.67 & 0.11 & 0.11 \\ \hline 0.11 & 0.56 & 0.22 & 0.11 & 0.11 & 0.56 \\ \hline 0.11 & 0.22 & 0.11 & 0.11 & 0.22 & 0.22 \\ 0.22 & 0.11 & 0.11 & 0.11 & 0.56 & 0.11\end{array}\right)$
$P\left(\right.$ ACAATC $\left.\mid W^{\prime}\right)=P_{1}(\mathrm{~A}) P_{2}(\mathrm{C}) P_{3}(\mathrm{~A}) P_{4}(\mathrm{~A}) P_{5}(\mathrm{~T}) P_{6}(\mathrm{C})=0.56^{5} \times 0.67=0.037$
$P\left(\mathrm{CCAATC} \mid W^{\prime}\right)=P_{1}(\mathrm{C}) P_{2}(\mathrm{C}) P_{3}(\mathrm{~A}) P_{4}(\mathrm{~A}) P_{5}(\mathrm{~T}) P_{6}(\mathrm{C})=0.11 \times 0.56^{4} \times 0.67=0.0072$

Bayes' rule: odds

class A : sites class B : non-sites

x is assigned to class $A \Leftrightarrow \frac{P(x \mid \text { class } A) P(A)}{P(x)}>\frac{P(x \mid \text { class } B) P(B)}{P(x)}$

$$
\Leftrightarrow \frac{P(x \mid \text { class } A)}{P(x \mid \text { class } B)}>\frac{P(B)}{P(A)} \longrightarrow \text { priors }
$$

equal priors: $\quad \begin{gathered}\frac{P(x \mid \text { class } A)}{P(x \mid \text { class } B)}>1 \Leftrightarrow \log \left(\frac{P(x \mid \text { class } A)}{P(x \mid \text { class } B)}\right) \\ \text { odds } \\ \text { log-odds }\end{gathered}>0$
unequal priors, e.g.: $\log \frac{P(B)}{P(A)}=\log \frac{0.7}{0.3}=1.22$

Weight matrices: odds

W : weight matrix, R : background model (independent of position)

$$
\frac{P\left(x_{1} x_{2} \ldots x_{N} \mid W\right)}{P\left(x_{1} x_{2} \ldots x_{N} \mid R\right)}=\frac{\prod_{i=1}^{N} P_{i}\left(x_{i} \mid W\right)}{\prod_{i=1}^{N} P\left(x_{i} \mid R\right)}
$$

$$
\log _{2}\left(\frac{P\left(x_{1} x_{2} \ldots x_{N} \mid W\right)}{P\left(x_{1} x_{2} \ldots x_{N} \mid R\right)}\right)=\log _{2}\left(\frac{\prod_{i=1}^{N} P_{i}\left(x_{i} \mid W\right)}{\prod_{i=1}^{N} P\left(x_{i} \mid R\right)}\right)=\sum_{i=1}^{N} \log _{2}\left(\frac{P_{i}\left(x_{i} \mid W\right)}{P\left(x_{i} \mid R\right)}\right)
$$

Weight matrices: log-odds

R uniform: $\quad P(\mathrm{~A} \mid R)=P(\mathrm{C} \mid R)=P(\mathrm{G} \mid R)=P(\mathrm{~T} \mid R)=0.25$

$$
\left.\begin{array}{l}
A \\
C \\
G \\
T
\end{array} \begin{array}{ccccccc}
\hline 1.16 & -1.17 & 1.16 & 1.42 & -1.17 & -1.17 \\
-1.17 & 1.16 & -0.17 & -1.17 & -1.17 & 1.16 \\
-1.17 & -0.17 & -1.17 & -1.17 & -0.17 & -0.17 \\
-0.17 & -1.17 & -1.17 & -1.17 & \boxed{1.16} & -1.17
\end{array}\right) \quad \log (0.56 / 0.25)
$$

\log-odds $($ ACAATC $)=1.16+1.16+1.16+1.42+1.16+1.16=7.22$ $\log -$ odds $(T G C A G G)=-0.17-0.17-0.17+1.42-0.17-0.17=0.57$ $\log -$ odds $(\mathrm{CTTGAT})=6 \times-1.17=-7.02$

Outline

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

Dependencies: language

Probability (in English) of "o" given that previous letter is "a"

i	a_{i}	p_{i}
1	a	0.0575
2	b	0.0128
3	c	0.0263
4	d	0.0285
5	e	0.0913
6	f	0.0173
7	g	0.0133
8	h	0.0313
9	i	0.0599
10	j	0.0006
11	k	0.0084
12	l	0.0335
13	m	0.0235
14	n	0.0596
15	o	0.0689
16	p	0.0192
17	q	0.0008
18	r	0.0508
19	s	0.0567
20	t	0.0706
21	u	0.0334
22	v	0.0069
23	w	0.0119
24	x	0.0073
25	y	0.0164
26	z	0.0007
27	-	0.1928

BioSB

Dependencies: biology

P_{i} : probability of nucleotide i
$P_{i j}$: probability of dinucleotide $i j$
$s_{i j}=\frac{P_{i j}}{P_{i} P_{j}}$
M. jannaschii
independent $\Leftrightarrow s_{i j}=1$

$$
\left.S=\begin{array}{ccccc}
& A & C & G & T \\
A & 1.13 & 0.73 & 1.10 & 0.94 \\
C & 1.03 & 1.37 & 0.32 & 1.11 \\
\hline G & 1.05 & 1.12 & 1.39 & 0.71 \\
T & 0.83 & 1.05 & 1.13 & 1.14
\end{array}\right)
$$

Markov chains

Sequence: $\quad q=q_{1} q_{2} \ldots q_{N}$
$P\left(q_{N}, q_{N-1}, \ldots, q_{1}\right)=P\left(q_{N} \mid q_{N-1}, \ldots, q_{1}\right) P\left(q_{N-1} \mid q_{N-2}, \ldots, q_{1}\right) \ldots P\left(q_{1}\right)=\prod_{t=2}^{N} P\left(q_{t} \mid q_{t-1}, \ldots, q_{1}\right) P\left(q_{1}\right)$
Only dependent on previous symbol:
$P\left(q_{N}, q_{N-1}, \ldots, q_{1}\right)=\prod_{t=2}^{N} P\left(q_{t} \mid q_{t-1}\right) P\left(q_{1}\right) \quad$ First-order Markov chain
state: value of q_{j}
transition probability: $\quad P\left(q_{t}=j \mid q_{t-1}=i\right)$

Markov chains: language

Zero-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.

First-order Markov (transition probabilities as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE.

Second-order Markov (transition probabilities as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

Markov chains: language

Zero-order word approximation. Words are chosen independently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TOOF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

First-order Markov (on words). Word transition probabilities are as in English.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

Markov chain: graphical representation

Two states: x and y

Matrix $\quad x \quad y \quad$ Graph: arrows for transition probability

$$
A=\begin{aligned}
& x \\
& y
\end{aligned}\left(\begin{array}{ll}
0.2 & 0.8 \\
0.7 & 0.3
\end{array}\right)
$$

$a_{i j}$: transition probability from i to j
Generative model (example): xyyxyxyyxxyxyxx...
$P(x y y x y)=P(x) P(y \mid x) P(y \mid y) P(x \mid y) P(y \mid x)=P(x) \times 0.8 \times 0.3 \times 0.7 \times 0.8$

Markov chain: graphical representation (2)

Two states: x and y

$$
\mathrm{I}
$$

Graph
Add begin state q_{0}
$P\left(q_{N}, q_{N-1}, \ldots, q_{1}\right)=\prod_{t=1}^{N} P\left(q_{t} \mid q_{t-1}\right)$
and end state q_{N+1} to model end
E
of sequence

Markov chain: estimation

$a_{i j}:$ transition probability from i to j
Estimation: simply by counting

$$
a_{i j}=\frac{\# \text { of } t \text { such that } q_{t-1}=i, q_{t}=j}{\# \text { of } t \text { such that } q_{t-1}=i}
$$

Begin state:

$$
a_{0 i}=\frac{\# \text { of } t \text { such that } q_{t}=i}{N}
$$

Markov chains: log-odds

Sequence: $\quad x=x_{1} x_{2} \ldots x_{N}$
A, B : Markov chains for class A and B, respectively

$$
\begin{aligned}
\log \left(\frac{P(x \mid \operatorname{class} A)}{P(x \mid \operatorname{class} B)}\right) & =\log \left(\frac{\prod_{t=1}^{N} P_{A}\left(x_{t} \mid x_{t-1}\right)}{\prod_{t=1}^{N} P_{B}\left(x_{t} \mid x_{t-1}\right)}\right)=\sum_{t=1}^{N} \log \left(\frac{P_{A}\left(x_{t} \mid x_{t-1}\right)}{P_{B}\left(x_{t} \mid x_{t-1}\right)}\right) \\
& =\sum_{t=1}^{N} \log \left(\frac{a_{x_{t-1}, x_{t}}^{A}}{a_{x_{t-1}, x_{t}}^{B}}\right)
\end{aligned}
$$

Markov chains: limitations

For biological sequences:

- Mononucleotide repeats (due to polymerase slippage) are more frequent than predicted by Markov chain

Reason: probability of d consecutive i 's is $\left(a_{i i}\right)^{d-1}\left(1-a_{i i}\right)$ (geometric distribution)

- Codon (position) biases are not taken into account

Outline

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

Multiple alignment

Sequence ensemble as before but now with some insertions and gaps

A	C	A	-	-	-	A	T	G
T	C	A	A	C	T	A	T	C
A	C	A	C	-	-	A	G	C
A	G	A	-	-	-	A	T	C
A	C	C	G	-	-	A	T	C

regular expression: [AT][CG][AC][ACGT]*A[GT][CG]
insertions and gaps \longleftarrow

A different representation

mix of weight matrices and Markov chains

BioSB

Probability of consensus sequence

$P($ ACACATC $)=0.8 \times 1 \times 0.8 \times 1 \times 0.8 \times 0.6 \times 0.4 \times 0.6 \times 1 \times 1 \times 0.8 \times 1 \times 0.8=0.047$
Markov chain: one state = one symbol
Here: C can be generated by states 2,3,4 or 7 - states are hidden
BioSB

Hidden Markov models

Alphabet K of (observed) symbols
States: $Q=\{0,1,2, \ldots, S\} \quad 0$: begin state (non-emitting)
transition probability:

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right) \quad 0 \leq i, j \leq S
$$

emission probability:

$$
b_{i}(x)=P(x \mid i) \quad x \in K, 1 \leq i \leq S
$$

probability of emitting symbol x in state i

Hidden Markov models (2)

Alphabet of 4 symbols $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
$Q=\{1,2, \ldots, 7\}$

BioSB

HMM: three problems

Evaluation: probability of an observed sequence, given the model, e.g., to calculate odds.

Decoding: optimal state sequence for an observed sequence

Estimation: of transition and emission probabilities from a given set of sequences

HMM evaluation: known state sequence

State sequence: $Q=q_{0} q_{1} q_{2} \ldots q_{N}$
Observed sequence: $x=x_{1} x_{2} \ldots x_{N}$

$$
\begin{aligned}
& P(x, Q)=P(x \mid Q) P(Q) \xrightarrow{\text { Markov }} P(Q)=\prod_{t=1}^{N} P\left(q_{t} \mid q_{t-1}\right) \\
& P(x \mid Q)=P\left(x_{N} \mid x_{N-1}, \ldots, x_{1}, Q\right) P\left(x_{N-1} \mid x_{N-2}, \ldots, x_{1}, Q\right) \ldots P\left(x_{1} \mid Q\right)=\prod_{t=1}^{N} P\left(x_{t} \mid q_{t}\right) \\
& P(x, Q)=\prod_{t=1}^{N} P\left(q_{t} \mid q_{t-1}\right) \prod_{t=1}^{N} P\left(x_{t} \mid q_{t}\right)=\prod_{t=1}^{N} a_{q_{t-1}, q_{t}} \prod_{t=1}^{N} b_{q_{t}}\left(x_{t}\right) \\
& P(\text { ACACATC })=0.8 \times 1 \times 0.8 \times 1 \times 0.8 \times 0.6 \times 0.4 \times 0.6 \times 1 \times 1 \times 0.8 \times 1 \times 0.8=0.047
\end{aligned}
$$

HMM evaluation: graphical representation on a trellis

$$
P(x, Q)=\prod_{t=1}^{N} P\left(q_{t} \mid q_{t-1}\right) \prod_{t=1}^{N} P\left(x_{t} \mid q_{t}\right)=\prod_{t=1}^{N} a_{q_{t-1}, q_{t}} \prod_{t=1}^{N} b_{q_{t}}\left(x_{t}\right)
$$

state sequence $=$ path

weights: $\quad a_{02} b_{2}(C) \quad a_{21} b_{1}(A) a_{13} b_{3}(T) \quad a_{32} b_{2}(A)$

$$
P(\text { CATA, } 0-2-1-3-2)
$$

HMM evaluation: forward algorithm

State sequence unknown: $\quad P(x)=\sum_{Q} P(x, Q)$
Sum over all paths through trellis: $\sim S^{N}$ state sequences!
Smarter: $\quad P(x)=\sum_{i=0}^{S} P\left(x, q_{N}=i\right)=\sum_{i=0}^{S} \quad \alpha(N, i)$ forward variable
$\alpha(t, i)=P\left(x_{1} x_{2} \ldots x_{t}, q_{t}=i\right) \quad$, that is, probability of having observed $x_{1} x_{2} \ldots x_{t}$ and being in state i at step t

HMM evaluation: forward algorithm (2)

$$
\alpha(t, i)=P\left(x_{1} x_{2} \ldots x_{t}, q_{t}=i\right)
$$

initialization:

$$
\alpha(0,0)=1, \alpha(0, j)=0 \quad 1 \leq j
$$

recursion : $\alpha(t, i)=\sum_{j} \alpha(t-1, j) a_{j i} b_{i}\left(x_{t}\right) \quad 1 \leq t \leq N, 0 \leq i, j \leq S$
$P(x)=\sum_{i=0}^{S} \alpha(N, i)$
Complexity: $S \times N$

x_{3}

$$
\alpha(2,2)=\sum_{j=0}^{3} \alpha(1, j) a_{j 2} b_{2}\left(x_{2}\right)
$$

0

observation

Forward algorithm: proof

$$
1 \leq t \leq N, 0 \leq i, j \leq S
$$

$$
\begin{aligned}
\alpha(t, i) & =P\left(x_{1 . t}, q_{t}=i\right)=\sum_{j} P\left(x_{1 . t}, q_{t-1}=j, q_{t}=i\right) \\
& =\sum_{j} P\left(x_{1 . t-1}, q_{t-1}=j\right) P\left(x_{t}, q_{t}=i \mid x_{1 . t-1}, q_{t-1}=j\right)
\end{aligned}
$$

Observed symbol and the state depend only on previous state:

$$
\begin{aligned}
& =\sum_{j} P\left(x_{1 . t-1}, q_{t-1}=j\right) P\left(x_{t}, q_{t}=i \mid q_{t-1}=j\right) \\
& =\sum_{j} \alpha(t-1, j) P\left(q_{t}=i \mid q_{t-1}=j\right) P\left(x_{t} \mid q_{t}=i\right) \\
& =\sum_{j} \alpha(t-1, j) a_{j i} b_{i}\left(x_{t}\right)
\end{aligned}
$$

HMM: three problems

Evaluation: probability of an observed sequence, given the model, e.g., to calculate odds.

Decoding: optimal state sequence for an observed sequence

Estimation: of transition and emission probabilities from a given set of sequences

HMM decoding: Viterbi algorithm

Decoding: find state sequence which best explains observed sequence.

Viterbi: best = most probable
Viterbi variable

$$
\begin{aligned}
& V(x)=\max _{Q} P(Q \mid x)=\max _{Q} \frac{P(x, Q)}{P(x)}=\max _{Q} P(x, Q) \\
& V(x)=\max _{Q} P(x, Q)=\max _{i}\left[\max _{Q_{0 . N-1}} P\left(x, Q_{0 . . N-1}, q_{N}=i\right)\right]=\max _{i}[v(N, i)] \\
& v(t, i)=\max _{Q_{0 . t-1}}\left[P\left(x_{1 . t}, Q_{0 . t-1}, q_{t}=i\right)\right]
\end{aligned}
$$

probability of having observed $x_{1} x_{2} \ldots x_{t}$ along most probable path ending in state i at step t

HMM decoding: Viterbi algorithm (2)

$v(t, i)=\max _{Q_{0 . t-1}}\left[P\left(x_{1 . t}, Q_{0 . t-1}, q_{t}=i\right)\right]$
initialization :

$$
v(0,0)=1, v(0, j)=0
$$

recursion

$$
\begin{aligned}
& v(t, i)=\max _{j}\left[v(t-1, j) a_{j i}\right] b_{i}\left(x_{t}\right) \quad 1 \leq t \leq N, 0 \leq i, j \leq S \\
& p(t, i)=\operatorname{argmax}_{j}\left[v(t-1, j) a_{j i}\right]
\end{aligned}
$$

end

$$
\begin{aligned}
& V(x)=\max _{i}[v(N, i)] \\
& q_{N}^{*}=\arg \max _{i}[v(N, i)]
\end{aligned}
$$

backtracking :

$$
q_{t}^{*}=p\left(t+1, q_{t+1}^{*}\right)
$$

$$
0 \leq t \leq N-1
$$

Dishonest casino: Viterbi

Casino switches between a fair (F) die and a loaded (L) die

Viterbi
observations: 3-1-4-6-6-6

$$
\begin{aligned}
v(2, \mathrm{~L}) & =\max \left[v(1, \mathrm{~F}) a_{\mathrm{FL}} \mathrm{~b}_{\mathrm{L}}(1), \quad v(1, \mathrm{~L}) a_{\mathrm{LL}} \mathrm{~b}_{\mathrm{L}}(1)\right] \\
& =\max [(0.083 \times 0.05 \times 0.1,0.05 \times 0.9 \times 0.1]=0.0045
\end{aligned}
$$

Dishonest casino: Viterbi (2)

Casino switches between a fair (F) die and a loaded (L) die

transition probabilities	$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$	
$A=F\left(\begin{array}{ccc}0 & 0.5 & 0.5 \\ 0 & 0.95 & 0.05\end{array}\right)$	$F: \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}$	emission probabilities
$L\left(\begin{array}{lll}0 & 0.9 & 0.9\end{array}\right)$	$L: \frac{1}{10} \frac{1}{10} \frac{1}{10} \quad \frac{1}{10} \frac{1}{10}\left[\frac{1}{2}\right.$	

Backtracking

Optimal state sequence: 0-L-L-L-L-L-L

Outline

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

HMM: three problems

Evaluation: probability of an observed sequence, given the model, e.g., to calculate odds

Decoding: optimal state sequence for an observed sequence

Estimation: of transition and emission probabilities from a given set of sequences

HMM: estimation

Sequences: $\left\{x^{1}, \ldots, x^{n}\right\}$
Likelihood: $\quad P\left(x^{1}, \ldots, x^{n} \mid \theta\right)=\prod_{i=1}^{n} P\left(x^{i} \mid \theta\right)$ state sequence

$$
=\prod_{i=1}^{n} \sum_{Q} P\left(x^{i}, Q \mid \theta\right)
$$

Log-likelihood: $\sum_{i=1}^{n} \log \sum_{Q} P\left(x^{i}, Q \mid \theta\right)$
same solution since log is monotonic

Maximization of this log-likelihood is difficult because of sum over hidden (state) variables

HMM estimation: EM

1. If we know the state sequence, parameter estimation is easy: just counting as in Markov chains
2. Can estimate state path using the forward-backward algorithm (not shown)
3. EM: estimate (probability of) states, then estimate parameters, re-estimate the states etc.

This maximizes the likelihood (see MoG)

HMM estimation: remarks

See references in lecture notes for EM for HMM (aka Baum-Welch algorithm) in full detail

EM converges only to a local maximum of the likelihood. Good initial values are important!

How to choose the structure of an HMM? Black magic ...

Outline

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

Profile HMMs

A	C	A	-	-	-	A	T	G
T	C	A	A	C	T	A	T	C
A	C	A	C	-	-	A	G	C
A	G	A	-	-	-	A	T	C
A	C	C	G	-	-	A	T	C

We saw that a weight matrix can be represented as a very simple HMM

transition probabilities = 1

Profile HMMs: insertions

A	C	A	-	-	-	A	T	G
T	C	A	A	C	T	A	T	C
A	C	A	C	-	-	A	G	C
A	G	A	-	-	-	A	T	C
A	C	C	G	-	-	A	T	C

Model insertion(s) between position j and $j+1$

Profile HMMs: deletions

A	C	A	-	-	-	A	T	G
T	C	A	A	C	T	A	T	C
A	C	A	C	-	-	A	G	C
A	G	A	-	-	-	A	T	C
A	C	C	G	-	-	A	T	C

Many transitions = many parameters, but limited data
Solution: introduce silent (=non-emitting) delete states

Profile HMMs (2)

Put everything together:

A	C	A	-	-	-	A	T	G
T	C	A	A	C	T	A	T	C
A	C	A	C	-	-	A	G	C
A	G	A	-	-	-	A	T	C
A	C	C	G	-	-	A	T	C

Applications:
http://pfam.xfam.org/

- searching for remote homologs (Forward)
- align a protein to a protein family (Viterbi)

Outline

- Regular expressions \& weight matrices
- Dependencies \& Markov chains
- Hidden Markov models
- HMMs \& EM
- Profile HMMs
- Genefinding

Genefinding

Input: DNA string $S \in\{A, C, G, T\}^{*}$

Output: annotation of string S showing for each nucleotide whether it is coding or non-coding

AAAGCATGCATTTAACGAGTGCATCAGGACTCCATACGTAATGCCG

genefinder

AAAGC ATG CAT TTA ACG A GT GCATC AG GA CTC CAT ACG TAA TGCCG

Genefinding: eukaryotes

More complex than for prokaryotes: lower coding density (<25\% instead of $>80 \%$), splicing

Genefinding: many signals

Possible signals: splice sites, promoter, codon bias, polyA site, dinucleotide usage ...

Possible models: everything you've seen before ...

How to integrate all these models in one consistent model that can be used for genefinding?

Solution: HMMs again!
Building blocks (=states): weight matrices, (inhomogeneous, higher-order, interpolated) Markov chains, ...

Genefinding: HMM

Genes have a certain structure/grammar
... exon - intron - exon - intron - exon ...
Regular expression of gene structure:
promoter 5'UTR exon (intron exon)* 3'UTR polyA

Genefinding = annotation with states: Viterbi

Length distributions

Length distributions of human introns and initial, internal and terminal exons

Standard HMM: length ~ geometric distribution
Generalized HMM: states emit sequences + length

Genefinding: GenScan

Exons: separate states for initial, terminal, single and internal exons

GenScan: generalized HMM

Recapitulation

- Hidden Markov models:
flexible models for modeling sequences
- Evaluation: forward algorithm
- Decoding: Viterbi
- Estimation: EM
- Applications:
- Genefinding
- Modeling protein families
- Segmentation of array CGH data
- SNP imputation in GWAS
- Error correction in nanopore sequencing data

10min break

Exercise 4.18-4.20

