Machine Learning for
Bioinformatics & Systems Biology

5. Selected topics

Marcel Reinders Delft University of Technology
Perry Moerland Amsterdam UMC, University of Amsterdam
Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin, David Tax, & Dick de Ridder

Selected topics

Famous classifiers
« Artificial neural networks
« Support vector classifiers
 Classifier combination

The fundamental pattern recognition trade-off
« Complexity

Recent developments

"BiosB

Artificial neural networks

Artificial neural networks (2)

Large, densely interconnected networks
of simple processing units

"BioSB

Artificial neural networks (3)

Inspired by the brain

Artificial neural networks (4)

Research started in the 1950s

Took off after 1986 — big hype for about 10-15 years . eoog««‘@“\
* brought together psychologists, neurologists, \@w«zc;jj@e"p“(
philosophers, machine learners, statisticians... e(\d\o;‘;fd\“’e
+ helped thinking about, among others, 6&\16»\\;:*%\\@««@%
pattern recognition o Qeo;a;z;ove‘s
. resulted in a lot of grant money &%
From 2005/2009 — renewed interest
« Extension to deep learning (deep nets)
- Advances in hardware (GPUs) made it possible to learn these
networks
» Major steps in performance improvement (10%)
- Development of several toolboxes Keras/Tensorflow/Theano/ .. :::

World attention, also from outside Machine Learning field B‘°SB

History

1943
1958
1960s
1969

1982

1986
1997

2006
2009

McCulloch and Pitts: model of neuron
Rosenblatt: perceptron
Rosenblatt, Nilsson work on perceptrons

Minsky and Papert point out limitations:
perceptrons are linear

Hopfield network (associative memory),
Kohonen’s self-organising map (clustering),
Fukushima’'s Neocognitron (vision)

Rumelhart, Hinton and Williams:
training of nonlinear networks

Hochreiter and Schmidhuber introduce Long Short-
term memory (LSTM), recurrent neural net

Hinton showed effective training one-layer at a time

Nvidia involved in “big bang” of “deep learning”, 100x
time improvement

"BiosB

McCulloch-Pitts model (1943)

schematic of bielogical neuron.

McCulloch-Pitts model (2)

weights inputs

> | output o, = (Zvlvyij - T]

threshold or bias

\VW/4

1 a=0
Pa) = 0 4<0 j transfer function
| «— or
q) = activation function
Pa) 1+exp(—a) /

“Fire” if total input exceeds a threshold B‘°SB

Perceptron

Networks of McCulloch-Pitts models can perform
universal computation, given the right weights w:
it can do anything a binary computer can do

...but how can we find the right weights w ?
Rosenblatt (1958): possible for single layer networks,

perceptrons
o, O—

o O—»

Perceptron (2)

Goal:

X @
o(x)=g(w' x+b) N
>0 xewm X 0@y ’@_’0
4
<0 xeon, / |
) X @ b

Trick #1: add bias as weight with constant input

11 [b]
p— ,v:
¢ X wlr=o0(z)=v'z
da)y=a |

"BiosB

Perceptron (3)

For classification, set targets ¢ for every input vector z:
tew: qg=1
tew,: q=-1

Trick #2: use targets
to obtain single criterion

)
;>0 zew
o(z)=v'z54
<0 zeow,
\
=vz-g>0

:>va>0, y=2'q

Perceptron (4)

Goal: zero misclassifications, i.e. val. > () Yi

Gnaptent DESCENT

Criterion to minimize: J(v) = Z (—vai) Sa 4
y;ey ‘. v |
where V is the set of misclassified samples [& kL
Can use gradient descent: 8J(v)/8v — Z (_.Vi)
y;ey
v+ p Z \Z batch update
k+1 k J(V)
Y =y — IO d — < y.eY
g \vk +P0Y, YV E y single update

Criterion is somewhat arbitrary, could also count misclassifications

Perceptron (7)

Perceptron is a trainable two-class linear discriminant
(extendable to multiple classes)

Training algorithm can be proven to converge
to correct solution for separable classes

When classes are not linearly separable:
* indefinite training, weights will blow up
» solution: decrease p during training, po(k), or early stopping

"BioSB

Perceptron (8)

Minsky & Papert (1969): perceptrons are limited

The XOR problem cannot be
O O solved by a linear discriminant
such as the perceptron

HOr—AOjﬁ
—— O O
> T >

4? ®

When classes are nonlinearly separable:
« nonlinear transfer functions
- multilayer perceptron — but how to find weights...?
* Rumelhart et al. (1986): use the chain rule!

This did in fact take twenty years...

"BioSB

Multilayer perceptron (MLP)

Stacked perceptrons: feedforward networks
Each unit has a nonlinear transfer function,

1
1+ exp(—a)

e.g. the sigmoid or logistic function ¢(a) =

"'BiosB

Backpropagation training

Method to distribute weight updates through the network

Criterion: error E, difference between network output and targets
(mean square error between output and target Y.(e; — 0;)?)

Initialize weights w to small random values
While not converged, e.g. while |E°“ — E|/E>E, = 10°,
or while error on validation set decreases:

- select a training sample x;

- for each weight w
calculate OE /ow

, a>>p: keep moving in previous direction
setw=w-p OE / ow p>>a: adapt to new direction

(with p a learning rate, e.g. 0.01)

or use a momentum term,

w=w-p OE /ow—a«a [aE / 5W]prev
BioSB

Backpropagation training (8)

Example: two weights

Backpropagation training (9)

» Learning rate controls oscillation and speed

p=1:>100 iterations p=0.1: 52 iterations

In practice, not easy
(imagine doing this for thousands of weights)

Backpropagation training (10)

* Momentum uses a bit of the previous step

__ _ _ _10 L L L |
15 10 > 0 5 -15 -10 5 0 5

p=0.1,a=0.5: 29 iterations p=10.5, a =0.5: >100 iterations

Right: learning rate to large , so oscillations start occurring again ...
Also option to make learning rate dependent on time : p(t)

Other training algorithms

Backpropagation training

IS simple gradient descent,
but implemented in a useful
way: all updates can be
calculated locally (in parallel) — E(w)

Other view: simply optimize MSE FE w.r.t. weight vector w
using any optimization routine, e.qg.

« second order (Newton, pseudo-Newton)

* conjugate gradient descent

« Broyden-Fletcher-Goldfarb-Shanno (BFGS)

« Levenberg-Marquardt (LM, in PRTools)

"BioSB

Multilayer perceptrons (2)

Choices:
- targets (0/1, 0.1/0.9, 0.2/0.8) ¢
- number of hidden layers
- number of units per hidden layer »,
* transfer functions ¢ (a)
- initialisation w(©®
* training algorithm
- parameters (learning rate p etc.)
- convergence decision £, or test set selection

All of these influence results!

“Training ANNSs is more of an ART than a science’

"BioSB

Multilayer perceptrons (3)

o—1
Number of weights = number of parameters = > (n, + 1)n,,,
[=1

e.g. for p =10, C=2, 2 20-unit hidden layers:
(10+1)-20+(20+1)-20+(20+1)-2 = 682 parameters

Per node: #parents+bias node (n, + 1)

Danger of overtraining!

Prevention:
* use small networks
- regularize: minimize E(w) + /IHWH
- small w’s: low complexity, training slowly increases w’s;
so when stopping in time: automatic regularization!

Regularization is a form of complexity control (discussed later)

"BioSB

Multilayer perceptrons (4)

Initialization still important

Examples: 1 hidden layer
of 3 units,
2 initialisations
0.25 s
0.2 .
w 0.15
(7]
=
0.1
0.05

0o 100 200 300 400 500
iterations

2 hidden layers
of 5 units each,
2 initialisations

ANNs for regression

Feedforward ANNSs are universal approximators

- Classification: input x, targets y = 0/1, 0.1/0.9

- Regression: input x, output y

Examples:

Y

A

1 hidden unit ¥
(sigmoid)

2 hidden units X

2x5 hidden units *

Autoregressive ANNs / Autoencoder

Feedforward ANNs that predict their input
Bottleneck layer: feature extraction

If linear (as in this example) : then we are performing PCA !l | .=+

Autoregressive ANNs / Autoencoder (2)

With multiple hidden layers:
nonlinear feature extraction

X, X
X1 @ X1
e O
[] [Y]
e []
(}
[)
X @ X -
X1 X,
A 4
—-0—0—0—0—00—00

Deep learning

//

Q
X

Many hidden layers, learn by auto-encoding

/2
o
=

QQAS
/% HQ\‘«
2]

QEIKS

/,m .

SBERK

O
e
Za\

a \\
s %0

X

X
S 20

NGO
\4 R v'//

QEIKS

AN
N

"\\\ \‘\\

~

X1 @

X @

NOW not necessary anymore to learn by autoencoders

With GPUs you can use Backpropagation again (fast enough)

Deep learning
Learning features

Deep neural
networks learn
hierarchical feature
representations

Deep learning

Convolutional Neural Networks (1)

Ix1 1x1

3x6

14x16

31x36

“ BioSB

Deep learning
Convolutional Neural Networks (2)

Cl 9
Input image 10@ 5%5 Ao C3 F5
| 60x60x16 | 56x56x10 : S4 5
ey | 28>x28x10 | S@ 3%3 et 3@ 13x13x5
26%26x%5 | Ix1x%3 |
------- — | 13>¢13><5| e

-.-_._,.-
-

-
p—

e

e
—
b =

Max-pooli

Fully-connected

Convolution

Max-pooling

Convolution

12 120|130 | 0

8 [12 2 | 0 | 2x2Max-Pool |20]30
34|70 | 37| 4 12| 37

- amount of layers] |

+ use of pre-trained networks (on another problem)

v

Deep learning
Convolutional Neural Networks (3)

Convolutional Encoder-Decoder

Output

Pooling Indices

Y

RGB Image I conv + Batch Normalisation + ReLU Seg mentation
I Pooling [Upsampling Softmax

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its
input using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank
to densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

RELU SOFTMAX

Deep learning
Convolutional Neural Networks (4)

A B Input 1st convolution 2nd convolution Fully Output
Within-individual sequence layer layer connected layer
< variation > layers
_____________ . ~
Locus 1 Locus 2 Locus 3 e T tb:L S
Individual 1 #\/‘\‘/\/\ A) Al oo o
|~ o
~ATGCITATIACGCCTGCCG.. A of \\|o
‘ T Between- C SALSE
;g individual G ot | T—G 1 — |
Individual 2 /\,-\/\w/\./-\ variation ¢ || Convolution ~.) D Pooling + ol \[8
LATGCITATIACGCCTGCCG.. c — Convolution o |0
ANOVA — g g
eQTL o el] Ac ol lo
IndiVidual 3 /\‘A/\ﬂ/\\/‘\/\/ e | .'n':g GTTT- 2
J
~ATGCTATACGCCTGCCG. & GCC._C
t
ChiP-seq
peak
C D
Wild type g C c
T 8 Wild type Motif < 2C
A o response T
z : @ coc
2 5 > / ATGGCGCGCTG
Cc 2 Sequence TCACCGCGCCTﬁ
G § \ e S0 alignment CTTCCGCCGTA H
a 3 GGTGGGGGTTT Active
C o2 -~

7~ Variant
s/ Score

=
£
—
o

-

E T AAA Gon
WT i
cotaaacCCOT ‘IAT CCCCTTCCCTG:;A
Deleterious >A 2
Mutant 1 ;{1 ﬁ *
response T

& Normal 6_9

9000000000000 D

nnna{w}:m-:»-:|

Christof Angermueller et al. Mol Syst Biol 2016;12:878

Radial basis function ANNs

Feed-forward ANNs with

2
. L : -1 1
« Squared distance activation functions a; = Hx -w’ ‘

: : o—1 o—1 2 o—1
» Gaussian transfer functions z7~ = N(u=a’ ,0" =w;)

o—1
a, Zl?—l
X @ 2
X, @
x; @ o
Wo-
o—1
Wo

"BiosB

Radial basis function ANNs (3)

Example: classification

& * L * - ¥ 4
+ * . & +

_ | \

2 hidden units 5 hidden units 10 hidden units

"BiosB

Other types of ANN

Large number of feedforward variants
 cascading correlation (self-constructing)
« Neocognitron (for vision)
- time-delay (for speech and image analysis)

Self-organising maps and GTMs:
- feature extraction, clustering

Hopfield networks:
 associative memories, optimisation

Boltzmann machines, Bayesian networks:
 conditional probability models

"BiosB

Recapitulation

Perceptrons are “neuron-inspired” linear discriminants

Multilayer perceptrons and radial basis function
feedforward ANNSs are trainable, nonlinear discriminants

Feed-forward ANNs in general can be used for
classification, regression and feature extraction

There is a large body of alternative ANNs

Key problems in the application of ANNs are
choosing the right architecture and good training parameters

research school

oy . %%
», EmEE ‘
’0. Yugguus®’y
0. Nggmput®
Ny 1

N g

10 min break

Support vector classifiers

Vapnik

Performed foundational work in pattern recognition
with Chervonenkis in Russia from the 1960s

Motto:

When you have limited training data,
and you want to solve a classification problem,
avoid solving a more complicated intermediate problem

Translation to classification:
when you want to find a discriminant, avoid estimating densities

Maximum margin classifier

Simple problem: 2 linearly separable classes
 Whatis a good linear classifier?
* What is the best linear classifier?

Maximum margin classifier (2)

- Canonical hyperplane:
any plane of the form f(x)=w' x + W,

f(xi) =1

for which min,

Maximum margin for 1D data

| » (7?7 y
N\ .(‘NF'-L

Maximum margin classifier (3)

The distance between an object x; and the hyperplane is

d(x,,decision boundary) =

The maximum margin classifier is a canonical hyperplane

s.t. the distance between the object closest to the hyperplane

on one side, Top
argmin.(w' x, +w,) |y, =+1

and the object closest on the other side,
argmax, (w' x, +w,) |y, =-1

IS maximal

This distance is called the margin: p =

(it will become apparent later why this is a Good Thing)

"BioSB

Support vector classifier
e . 2

Maximizing the margin p :H

w

under the constraint that all training samples are classified
correctly, leads to the optimization problem:

1
m1n5||w||2 such that
w x +w,<-1|y =-1
w x +w, >+1|y, =+1

The constraints can be written as y,(w'x, +w,) > 1
This is called the support vector classifier,

or support vector machine (SVM) Ll %/ e
+ N
[<

Support vector classifier (2)

It is possible to incorporate the constraints into
the optimization itself, using Lagrange multipliers (basic calculus):

. 1 2 4 T

maxmin Pl - X (v x4 1)
with o, >0 Vi

« Each constraint corresponds to a single object x;

« Each constraint has a Lagrange multiplier ¢,

« So each object corresponds to a Lagrange multiplier

"BioSB

Support vector classifier (3)

To solve the optimization, take the derivative and set to 0
- Differentiate with respect to w,w, :

i a,y; =0 (WO)
i=1
W= Zn: Y X; (W)
i=1

« Re-substituting gives:

maxZa ——ZZO(a,yy,X; X,

11]1

with o, >0 Vi and Zaiyl:O

Max over a, derivatives wrt a

max min _HwH Za (y (w' X, +W)— l) a,>0 BlOSB

o W,W;9

Support vectors

The classifier is a linear combination of objects:
W= Zaiyixi
i=l1

Many Lagrange multipliers become equal to 0, so in fact
the classifier is a sparse linear combination of objects

Objects for which the Lagrange multiplier > 0
are called support vectors 7

Support vectors (2)

support vectors

Support vectors (3)

If non-support vectors are left out and training is repeated,
the resulting classifier is identical

The number of support vectors
gives a bound on the

leave-one-out error estimate: o
o i
5 # support vectors e @
loo — - '.1.
@ @ 1'1
o« ¥ v

Class overlap

When there is overlap between the classes,
the canonical hyperplane is not defined

To be able to still find a solution,
apply a trick:

soften the constraints

that each object is on

the correct side of the

decision boundary

For the blue object on the
incorrect side of the boundary:

yi(wai +Wo) 2 1_51'

The variable ¢ is called a slack variable

Class overlap (2)

In the ideal (non-overlapping) case, all slack variables are 0

To force slack variables to be small,
we add them to the margin to be minimized:

min%”w”2 + Czn: & such that
i=1
wix, +w, <—(1-8) |y, =-1

wix +w, 2 +(1-&) |y, =+1

We can rewrite that in almost the same way we did before:

n 1 n n
T
max), —52 D00,y ,X] X,
i=1

i=1 j=1

with 0 < ai@ Vi and Zaiyl. =0
i=1

"BiosB

The kernel trick

¢ e o
an \.;a °ly
* Function ® maps data ° /o8, e

into a space in which
C|aSSificati0n may be easier Input Space Feature Space

\ X=[x1,x2] .

The kernel trick (2)

Classifier:

f(R)=w'z+w,
n
= ZaiyixiTZ W,
i=1

Optimization problem:

maXZa ——ZZyy]alajxl X;

11]1

a, 20, Vi

n
Z)y, =
i=1

f(z)<-1

 f(2)=0

The kernel trick (3)

Classifier can be rewritten as: : -
f@=w D)+ w, R
n @
=2 2y D(x,) O(z)+w, .
f(z)<-1

Optimization problem can be rewritten as:

maxZa ——ZZyy]ala]CD(x) O(x))

11]1

a, 20, Vi
Zaiyi =
i=1

Only need to specify kernel (inner product of transformed pomts)
K(a,b)=D(a) D (b) “otaco

(inner product = distance)

Kernels

Kernels K(a,b) = CD(a)T @ (b): nonlinear classifier in original space
Not necessary to actually know ®(.),
as long as K(a,b) fullfulls some conditions (!) (positive semi-definite)

T d Polynomial kernel RBF kernel
K(a,b)= (a b+ 1) o 6 ;
o1 ot : 4t
+:
2r o] 2
+ +
o Of = ++ o OF =%
2 + -
,E 2 + + % -2
& &
-4 + -4
-6 bl .
-8f -8f
*
10k~ L L | 1 L L n L E —1ok—
-0 -8 -6 -4 -2 0 2 4 6 -10

Feature 1

Also kernel versions of
PCA, ICA, LDA, CCA, ...

Kernels (2)

Vector kernels:
* Linear K(a,b) —a'h

. . d
- Polynomial K(a,b) = (a b+1)

2

- Radial basis function K(a,b) = exp[— Ha _bH2)

"BiosB

Kernels (3)

For other data types: empirical kernel map

 If we have a distance measure (not per se positive definite),
then for each object we can construct a vector with distances
to a number of other objects

« This vector can then be used in a vector kernel

Example: BLAST kernel

- BLAST a set of sequences w.r.t. each other

* Represent each sequence by
a vector of -log(E)-values

« Use linear kernels on these vectors

"BioSB

Kernels (4)

Spectrum kernel:
« Construct a dictionary of all &~-mers

Construct vector with #occurences of each k~~-mer

Use this in a linear kernel

Need for smart data structures (trie)

Versions with gaps, substitutions, wildcards...

Q ©U.Q o.Q d.Q

Q.09 0.Q O o ©

. Q.Q wWd.QQd

Example: T dg.Q.Qad.Q.Q

a = aabbababa 1112100
—_ —_— K(a,b)=8

b = abbaabbab 1210011

"BioSB

Kernels (10)

Convolution kernel:

« When kernels operate on subparts,
but it is not clear which subparts

- Try all possible decompositions into subparts:

K ®K,®.®K, (a,b)= > K/(a.b)K,(a,.b,)..K, (a,b,)s

no
a=a,a, ..
bbb b’

"BioSB

Kernels (11)

Local alignment kernel:
* Trivial kernel: K (a,b)=1

. la[>1v|b|>1
- Letter alignment kernel: K (a,b)=

{exp (8S(a,b)) otherwise
with S the substitution cost
- Gap kernel: K (a,b)=exp(S(la|+|b]))
» Local alignment kernel of length n:
Kym(@b) =K, ®(K,®K,)" ®K, ®K,(a,b)

* Local alignment kernel:
K,(a,b)=) K, (a,b)
n=0

"BioSB

Kernel combination

« Combination: weighted sum of normalized kernel matrices

K. (a,b)

Ki(@b)= @b = wK
\/Ki (Cl, a)Ki (b, b) Kcombmed (Cl,b) ZZ::‘ Wle (Cl,b)

powerful: can apply optimal kernel to each data type

Recapitulation

The support vector classifier is based on a
well-founded theoretical basis (discussed later)

The original support vector classifier is limited to
problems with two non-overlapping classes, but:

« can be extended to overlapping classes using slack variables
« can be extended to nonlinear decision boundaries using kernels

- can be extended to multiple classes by combining
multiple 2-class classifiers

A large number of specific kernels for
biological data are available

A support vector regressor is available (not discussed)

"BioSB

Recapitulation (2)

Classification performance is often very good

In particular suited for problems with high-dimensional

datasets, for which classes are often separable

(and hence there is no need for estimating densities)

The optimization problem is formulated in terms of the

training objects, not the features: slow training for large datasets
The value for the slack variable trade-off C and

kernel-specific parameters d, o etc. have to be set

Kernels need to be chosen, also an ART!

research school

oy . %%
», EmEE ‘
’0. Yugguus®’y
0. Nggmput®
Ny 1

N g

10 min break

Classifier combination

Data integration

Often required in bioinformatics, e.g. in interaction prediction

017 NO0.9

p "/ \
- 5 il €

Data integration (2)

» Intermediate integration: common representation
(e.g. kernels or probability distributions)

\ -
Classifier

Data integration (3)

Late integration: classifier combination

X, Classifier

Classifier

Classifier

Classifier

Classifier combination

« Design choices:

- Base classifier: Identical or different?
Base classifiers, feature spaces, training sets, initialisations, etc.

- Combination by a fixed rule or by another classifier?
- Related to work on committees-of-experts

- ‘10 doubt about B '
mq} be B ~ definitely not A

A 4 1' rhs
\ 1t sA ! per nps P! eltheerrB

Key issues:
» Assessing individual expertise

« Combining expert opinions BlOSB

a cleflr exmlple of A

Fixed combination

£i(x) Opinion base classifier 1
base /
T classifier | ¥,
X, r
1
! fo(x;)
base 4
classifiat y—) combiner r) ‘o)
2 \
A 1
! [
I -]g(xl) y3 I
I
base ’
classifier 3 ’
. . ’
4: revision . ’
1 S eae==" -

« Classifiers: individual opinion = posterior probabilities or labels
« Combination by fixed rule, e.g.:
w, = arg max (combination-rule(y, . = f; .(x;)))
l.e. assign label . = c to object x; if the combination of
outputs y, . for class c over all classifiers f; (x;) is maximum

Combination rule might be maximum over all classn‘/ers A
or votes by all classifiers for that class

Fixed combination (2)

Combination rules on posterior probabilities y, . = p(@=c|x;):
« Generally applicable:
Maximum, to select “most confident” classifier
(assumes good estimates of posteriors)
« Preferable for classifiers trained in different feature spaces:

Product, justified if feature spaces independent
Minimum, to select “least objecting” classifier

(assumes good estimates of posteriors)

- Preferable for comparable classifiers trained on the same features:
Sum/median, to (robustly) improve estimates of posteriors

"BioSB

Fixed combination (4)

« Alternatively, combine labels assigned by classifiers:
» Veto (like minimum, but needs reject)
» Majority vote (like sum/median)

Number of votes for class A

Majority

Veto Rule

Class A

Trained combination | .
o
- Treat base classifier outputs as new dataset N
AB |
base I LE_ |7 .
rlnccifiar | o e o
' t}, L Oﬁ %ﬁ*ﬁ— } 0‘5 1
m1‘eatures AB ABABAB
L | v
g— base 2 trained
s ‘ Crassijier Z %’ combiner
\ AB
classifier 3 \g‘—-

* In principle, possible to use any classifier

- Danger of overtraining when using full training
set for both stages: use cross-validation

Base classifier generation

Let’s not combine some classifiers,
but set out to generate MANY

Bagging: bootstrapping and aggregating

* For B repetitions

Sample a subset of size n’ < n using bootstrapping

Train classifier on this subset (e.g. linear or decision tree)

- Combine B classifier outputs (e.g. sum or vote)

Boosting:

* Initialize all objects with equal weight

- As often as necessary

Sample a subset of size n’ < n according to object weights

Train a weak classifier on this subset

Increase weights of incorrectly classified objects

- Combine classifier outputs

 RinSR

Use weak classifiers: only sensible to average over things that differ

Base classifier generation (2)

Adaboost:

* Initialize all objects with equal weight

- As often as necessary
Select a train set size n’ < n according to object weights
Train a weak classifier j
Classify entire data set and calculate classifier error ¢,
Calculate classifier weight o, = 0.5 log((1-¢))/e))

Multiply weights of incorrectly classified objects with exp(a,),
multiply weights of correctly classified objects with exp(-a,)

- Combine weak classifiers by weighted voting, using a,

Boosting: weight objects with #errors
Adaboost: weight objects with classifier error

Base classifier generation (3)

+ Adaboost example

Base classifier generation (4)

For all combination methods: base classifier should be
fast and weak, i.e. have large bias and small variance

* Decision stumps: short decision trees
- Linear classifiers: nearest mean, LDA

E *
%+ #*
* * *
dRE1E * #
+ |4 P
*ht i e L *
- 'Tm; - - = # t:"’ = - &
e *’ | *
.l._ e
E3
100 decision stumps, 10 decision stumps,
combined by Adaboost combined by LDA

Recapitulation

Combining classifiers can help, but is no panacea

» Fixed combination:
Usually sub-optimal

« Trained combination:
Use cross-validation to prevent overtraining

Use weak classifiers: fast, large bias, small variance
Combination requires variation between classifiers:
 Train different classifiers on the same features
 Train classifiers on different feature spaces (sample features!)
« Subsample the train set (bagging, boosting)

"BioSB

research school

oy . %%
», EmEE ‘
’0. Yugguus®’y
0. Nggmput®
Ny 1

N g

10 min break

Complexity

Sample size

Feature 2
P

-10 -5 -B | -2
Feature 1

What is a good classifier?

Sample size (2)

Feature 2

Feature 1

What is a good classifier?
And now?

Sample size (3)

E I I I I I I I I I
4 + .
» +
+
2 ; +
| g * . »
*

0 * e " §
od - +
2 . + * . "
= -2t » + .
O + + +
H * % + + +

Al o + + + +_

+ + +

; * +.|.'|'

“EL - + i

-k .

| | | | | | | | |
10 -8 -G -4 -z 0 z 4 B

Feature 1

What is a good classifier?
And now? Training size matters! But how?

Learning curves

How does the error change with varying sample size
(number of objects in the train set)?

A
» True error not small because of
T /A linear classifier and data is not
& True error linearly separable

® Apparent error e,

— N

True error: error on infinite test data Bl.oSB
Apparent error: error on training data

Learning curves (2)

- How does the error change with varying sample size
(number of objects in the train set)?

A

e

T True error

Asymptotic error

s Bayes error
Apparent error e,
g

*n

Bayes error: overall minimal error (can be smaller than true error for given classifiér)

Learning curves (3)

* How does the error change with varying sample size
(number of objects in the train set)?

A

e

True error
Apparent error is too optimistic

Asymptotic error

— Bayes error
Apparent error ¢,
e

*n

Learning curves (4)

What happens when you take another classifier?
(say, use a gdc instead of an 1dc)

More flexible:
- Better performance on the training set
« Worse performance on the test set
« Will perform best in the limit of many training objects

Less flexible:
» Less adapted to the training set
- Better performance on the test set
« Will not perform best in the limit of many training objects

"BiosB

Learning curves (5)

Switching to a more complex classifier
influences the learning curves

A

qdc
= |dC

e

- True error increases

Asymptotic error improves

-
L

\ o

— N Apparent error improves

So why not always use complex classifiers?

Classifier complexity

« Optimal complexity depends on sample size

Complexity not well-defined.
Intuitively: More parameters, more complex

3

- Small: use a simple classifier
- Large: can use a complex classifier " BioSB

Classifier complexity (2)

- There is a tradeoff between complexity and training size

Classifier complexity (3)

- Remember the curse of dimensionality: for fixed sample size,
error increases if classifier complexity increases

F

Sample size
\

Minimum error

—» Complexity

Bias/variance

_)

 Total erroris
combination of
bias and variance:

- Bias

e

- Variance —
- Total error =—

- With increasing sample size,

variance component decreases, bias stays the same

optimum

complexity —

Bias/variance (2)

In classification:

] \ \ , ! \
D - . T S I) L o 4N w
T T T T T T T T :

L) o N ~ o
T T T T T

complexity —

Classifier complexity (6)

How to find the best complexity for a given problem?

Standard approach:
« Define a large set of classifiers

- Use cross-validation, and repeatedly
Train all the classifiers on the training set
Test all the classifiers on the test set

 Find the best classifier

This is a lot of work....

"BioSB

Regularization

For many classifiers, it is possible to reduce the complexity of
a classifier by adding constraints on the parameters 6

Often a term is added to the cost function:
E = eA + ﬂ“]preg (9)

For example:

- Multilayer perceptron: E = Z|t g(xk)| '
- Support vector classifier: E % CZ@
i=1

Regularization (2)

Another form of
regularization:
starting with small
initial weights in

. . test error
training multilayer
perceptrons

mse
Effective complexity apparent error
of MLPs increases
during training training time

"BiosB

Regularization (3)

Intuitively:
« Regularization is often a quadratic penalty on weight values

- Small weights correspond to simple classifier,
large weights to complex classifiers

» This boils down to a prior on weights
« For example:

n p(w))
E:Z|tk_g(xk)|2’ » E
k=1 I

0
Regularization is like Bayesian estimation on parameters

Bayesian model selection: apply Bayesian estimation
to entire models (classifiers/regressors)

Bayesian model selection

The evidence for model M is the probability of
data X = {x} given model M

Found by integrating over all possible values of parameters @

p(X |M)={p(X|M,0)p(6|M)do
If multiple alternative models are available, use the Bayes factor:
P(X|M,)
p(X|M,)

>1 = M,

We can even take priors on models into account:

p(X| M) p(M))
p(X|M,) p(M,)

>1 = M,

"BioSB

Bayesian model selection (2)

Integrating over all possible values of @ is very hard in practice

« Use Monte Carlo methods

« Use approximations:
Akaike Information Criterion:

AIC =2k —2log[p(X | M.0,,)]

Bayesian Information Criterion:
BIC = klog(n)—2log| p(X |M.0,,) |

k = number of parameters
n = number of training objects
0

L = parameters optimizing likelihood

0
2

AIC .
y \

-6 \

8 \
10 |
9123456780910

4

BIC 3¢

20
10

0

012345678910
#clusters —

(fit MoG, 3 Gauaﬂ)agﬁ)

research school

oy . %%
», EmEE ‘
’0. Yugguus®’y
0. Nggmput®
Ny 1

N g

10 min break

VC dimension

Complexity measure underlying support vector classifier

Vapnik-Chervonenkis dimension /4 of a two-class classifier:

the largest number of objects in “general position”
that can be separated in all possible 2" ways

All possible labelings of N = 3 objects in 2D

"BioSB

VC dimension (2)

For N = 3 objects in 2D we can always find a linear separation

For N = 4 objects in 2D this is not always possible:

Conclusion: for a linear classifier,

h=p+1 (where p is the dimensionality)

For (almost) all other classifiers it is not known
(though some upper bounds exist for neural networks)

VC dimension (3)

With probability at least 1 - 6 this inequality holds:

eSeA+lE(n)[1+\/l+ 4 j
2 E(n)

. 4@)10g (é”)j " 1) ~log Gj

n

where

V.Vapnik, Statistical
When # is small, the apparent error learning theory, 1998
e, Is close to the true error e

An optimal classifier:
- has small apparent errore, (i.e. is well-trained)

« has small VC dimension (i.e. is simple) :_;;5-.-053

VC dimension (4)

Construct a linear classifier with apparent error e, =0
w x +w,<-1]y =-1
wix +w, >+1|y, =+1

and then minimize VC dimension /4

2
It can be proven that 4 :min(R—z,p+l)
o,

* R is radius of smallest enclosing ball:
minimize, but it is fixed

I . : .
* p=——7= Is the margin: maximize,
]

SO minimize ||jw||?

This is the maximum margin classifier!

T) ;
wx, +w, <-1. WX+ W,

Recapitulation

A fundamental trade-off in pattern recognition is between
model descriptiveness (e.g. classification error)
and model complexity

Optimal complexity depends on the problem and sample size,
and can be assessed/controlled through:

« Cross-validation and learning curves

* Regularization

» Bayesian information criteria

More fundamental approaches are:

- Bayesian model selection

* Minimum description length

« VC dimension

Only the latter leads to a practical solution,
the support vector classifier BlOSB

Recent developments

Recent developments focus not so much on developing
new methods, but tackling new types of problems

« multiple instance learning

« structured learning

* semi-supervised learning

* active learning

* and more deep learners

"BioSB

Multiple instance learning

- Uses bag-of-instances representations of objects, usually
labeling a bag positive if at least one instance is labeled positive

) Ap pI icati O n S : " Pharmacophore Fingerprint
Mol. Conf. P, P, .. P .. P,
* drug discovery G 1o . 1 . 1
U I P - T Y O |
» predicting
. NN:NNH € C; 1 1 . 0 . 0
activity of s O
molecules wew S
r A - -*"—‘ ¢, 0 1 .. 0 . 1
® pl’edICtIng Molecule (bag) . M ¢ 1 1 . 1 . 0
. Conformers (instances)
protein
. . . (3) Molecular Conformers (instance-based embedding) @)
binding sites —— ¢
M, o(m,,) D(M,, C?) D(m,, €7)

M, DM, C) D(M,C) . D[M,C)

Molecules

. . M, D(M, C7) D(M, C?) D(m, €
G. Fu et al, “Implementation

of multiple-instance learning M, D(IV.I.,., c) D(N;I.,;) D(M,)
in drug activity prediction’,
BMC Bioinformatics 2012

Structured learning

« Predicting arbitrarily shaped output rather than a single label

- Applications in predicting: — 7. Barutcuoglu et al.

¢ gene structure 5 Fasemaes /) “Hierarchical multi-label
gt prediction of gene function”,

- secondary . Bioinformatics 2006
protein structure “"‘m/

- drug activity g

* metabolic reaction

« Special case:
multi-label learning,

- . o e =
/7 GODOOTOET ™ g | GO:0006261 >

outputting several | G| G

—_—

related labels, for |

) -
e Tk) ——— e
) GO:0000071 GODG0D0T

example gene ontology Commnn Bt memars > (romoitomems) (R
(GO) annotations

Semi-supervised learning

No Self-Training With Self-Training
Input Labels D) ? ? Input Labels 2 ? ?
Used when large numbers + 72907 + [7:; 2.7
: ? % 07 ? 2 07
of unlabeled objects are . 2 || 2 770
. . £ ? ? 9 7 ? 209 95
available besides a small |i ., 72> 2 0 i 220 ? L0,
f| bldob'ects ++++++l ? -++++++1 ?
set of l[abele |
. . . J. Ernst et al., “A semi-supervised Afer Self-Training 27,7 ??,)
method for predicting transcription ?2 5 ‘o
Applications in N 22
factor—-gene interactions in E. coli”, 2 ? 2%
3 C|ustering expression PLoS Computational Biology 2008 Lt , 73 :??
g . 2,02
- predicting gene function ' A 2 2?7
° pred|Ct|ng TF blndlng Sltes Labels for:inal Classificatid)no O%OOO Labels for:inal Classificat(i;JnO O%OOO
" 0 0 0 0
Related: positive unlabeled 0 0 O%Ooogo + 0 0%00080
. . 0 0 0
learning, assuming some 0 0,000+ ** 05 00,0
III+++ O0 OIIIIII 00 0

objects have a (single,
positive) label and the remainder is unlabeled, e.g.

for protein-protein and genetic interaction data

Active learning

« Using a classifier to decide which unlabeled object
should be labeled next to best improve that classifier

* Applications:

. . O
- diagnosis -
» drug discovery O O 0O
o | o © 6
 predicting protein O
interactions, SANG O ©
transmembrane — O O
helices O = &)
S 0
© ®
O O
M.K. Warmuth et al., “Active learning e GE'
with support vector machines in EB

the drug discovery process”,
Journal of Chemical Information
and Computer Sciences 2003

and of course deep nets
Residual Networks

and of course deep nets
Siamese Networks

Siamese network

D(x;) D(xz)

1D(x1) — D(x2)|l2

s J

E(xhxﬂi 5)

ORI
SR
e
11 B . S B

and of course deep nets
generative adversarial network (GAN)

Generator Discriminator

Noise
Source

Real
Fake

A mostly complete chart of

(:) Backfed Input Cell N e u ra l N EtWO rks Deep Feed Forward (DFF)

- Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

TAVAN
P P Feed F d (FF Radial Basis N k (RBF »! LK)Y,
erceptron (P) eed Forward (FF) adial Basis Network (RBF) :‘:.}:2:?':.:;:

@ Hidden Cell - - = XN
0 ﬁg) ﬂg) \,\
© Probablistic Hidden Cell = = -

2 Noisy Input Cell
N
\ A/

. Spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
[[() [) [

. Output Cell -

Y Y NN
Y e e

. Match Input Output Cell - 3 7 A o 1+ P X
- OXPLX DN L NEIAEIN
TR oo SR

. Recurrent Cell

© wemory ceu Auto Encoder (A€) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

W

v
-

S
>

)
L
=
L

X

" Kernel

‘S

&K
XX
SR

o)

[
KK

6 Convolution or Pool

N
B

(KRS

<
3=

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)
@)
B BGRy SR
o XN X5 XN
0 0y B
©
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
COONA ~ S~ ~
~>_<f G/Q\f\ ﬁ>_<f\/Q\/\ o7 Ty
v><» ’—\/\/\6/\/ v><\/\6/\ /\6/\1
o \a “Sor . CATGS DS
V><‘ /\/\1\6/\/ v><\1\6/\/ \1\6/\/
" Na V\G/\,\,\ A_,\/\,\,o O\/v\f\
\—/><\ \/\6/\/ \—/><\f\6/\/ \/\6/\/
=3 QNP FVE Y <

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

.9 v
e

SO

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

http://www.asimovinstitute.org/neural-network-zoo/

END

	Machine Learning for Bioinformatics & Systems Biology��5. Selected topics
	Selected topics
	Artificial neural networks
	Artificial neural networks (2)
	Artificial neural networks (3)
	Artificial neural networks (4)
	History
	McCulloch-Pitts model (1943)
	McCulloch-Pitts model (2)
	Perceptron
	Perceptron (2)
	Perceptron (3)
	Perceptron (4)
	Perceptron (7)
	Perceptron (8)
	Multilayer perceptron (MLP)
	Backpropagation training
	Backpropagation training (8)
	Backpropagation training (9)
	Backpropagation training (10)
	Other training algorithms
	Multilayer perceptrons (2)
	Multilayer perceptrons (3)
	Multilayer perceptrons (4)
	ANNs for regression
	Autoregressive ANNs / Autoencoder
	Autoregressive ANNs / Autoencoder (2)
	Deep learning�	Many hidden layers, learn by auto-encoding
	Deep learning�	Learning features
	Deep learning�	Convolutional Neural Networks (1)
	Deep learning�	Convolutional Neural Networks (2)
	Deep learning�	Convolutional Neural Networks (3)
	Deep learning�	Convolutional Neural Networks (4)
	Radial basis function ANNs
	Radial basis function ANNs (3)
	Other types of ANN
	Recapitulation
	10 min break
	Support vector classifiers
	Vapnik
	Maximum margin classifier
	Maximum margin classifier (2)
	Maximum margin for 1D data
	Maximum margin classifier (3)
	Support vector classifier
	Support vector classifier (2)
	Support vector classifier (3)
	Support vectors
	Support vectors (2)
	Support vectors (3)
	Class overlap
	Class overlap (2)
	The kernel trick
	The kernel trick (2)
	The kernel trick (3)
	Kernels
	Kernels (2)
	Kernels (3)
	Kernels (4)
	Kernels (10)
	Kernels (11)
	Kernel combination
	Recapitulation
	Recapitulation (2)
	10 min break
	Classifier combination
	Data integration
	Data integration (2)
	Data integration (3)
	Classifier combination
	Fixed combination
	Fixed combination (2)
	Fixed combination (4)
	Trained combination
	Base classifier generation
	Base classifier generation (2)
	Base classifier generation (3)
	Base classifier generation (4)
	Recapitulation
	10 min break
	Complexity
	Sample size
	Sample size (2)
	Sample size (3)
	Learning curves
	Learning curves (2)
	Learning curves (3)
	Learning curves (4)
	Learning curves (5)
	Classifier complexity
	Classifier complexity (2)
	Classifier complexity (3)
	Bias/variance
	Bias/variance (2)
	Classifier complexity (6)
	Regularization
	Regularization (2)
	Regularization (3)
	Bayesian model selection
	Bayesian model selection (2)
	10 min break
	VC dimension
	VC dimension (2)
	VC dimension (3)
	VC dimension (4)
	Recapitulation
	Slide Number 124
	Recent developments
	Multiple instance learning
	Structured learning
	Semi-supervised learning
	Active learning
	and of course deep nets�	Residual Networks
	and of course deep nets�	Siamese Networks
	and of course deep nets�	 generative adversarial network (GAN)
	Slide Number 133
	END

