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Selected topics

• Famous classifiers
• Artificial neural networks
• Support vector classifiers
• Classifier combination

• The fundamental pattern recognition trade-off
• Complexity

• Recent developments



Artificial neural networks

Pattern Recognition Week 11: Neural 
networks



Artificial neural networks (2)

• Large, densely interconnected networks 
of simple processing units



Artificial neural networks (3)

• Inspired by the brain

f(x)



Artificial neural networks (4)

• Research started in the 1950s
• Took off after 1986 – big hype for about 10-15 years

• brought together psychologists, neurologists, 
philosophers, machine learners, statisticians...

• helped thinking about, among others,
pattern recognition

• resulted in a lot of grant money

• From 2005/2009 – renewed interest
• Extension to deep learning (deep nets)
• Advances in hardware (GPUs) made it possible to learn these 

networks
• Major steps in performance improvement (10%)
• Development of several toolboxes Keras/Tensorflow/Theano/…
• World attention, also from outside Machine Learning field



History
• 1943 : McCulloch and Pitts: model of neuron
• 1958 : Rosenblatt: perceptron
• 1960s : Rosenblatt, Nilsson work on perceptrons
• 1969 : Minsky and Papert point out limitations: 

perceptrons are linear
• 1982 : Hopfield network (associative memory),

Kohonen’s self-organising map (clustering),
Fukushima’s Neocognitron (vision)

• 1986 : Rumelhart, Hinton and Williams: 
training of nonlinear networks

• 1997 : Hochreiter and Schmidhuber introduce Long Short-
term memory (LSTM), recurrent neural net

• 2006 : Hinton showed effective training one-layer at a time
• 2009 : Nvidia involved in “big bang” of “deep learning”, 100x 

time improvement



McCulloch-Pitts model (1943)
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McCulloch-Pitts model (2)
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Perceptron

• Networks of McCulloch-Pitts models can perform 
universal computation, given the right weights w:
it can do anything a binary computer can do

• ...but how can we find the right weights w ?
• Rosenblatt (1958): possible for single layer networks, 

perceptrons



Perceptron (2)

• Goal:

• Trick #1: add bias as weight with constant input
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Perceptron (3)

• For classification, set targets q for every input vector z:

• Trick #2: use targets 
to obtain single criterion
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Perceptron (4)

• Goal: zero misclassifications, i.e.

• Criterion to minimize:

where Y is the set of misclassified samples

• Can use gradient descent:
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Perceptron (7)

• Perceptron is a trainable two-class linear discriminant
(extendable to multiple classes)

• Training algorithm can be proven to converge
to correct solution for separable classes

• When classes are not linearly separable: 
• indefinite training, weights will blow up
• solution: decrease ρ during training, ρ(k), or early stopping



Perceptron (8)

• Minsky & Papert (1969): perceptrons are limited

• When classes are nonlinearly separable:
• nonlinear transfer functions
• multilayer perceptron – but how to find weights...?
• Rumelhart et al. (1986): use the chain rule!

The XOR problem cannot be
solved by a linear discriminant

such as the perceptron

x1 x2 ω
0 0 A
1 0 B
0 1 B
1 1 A

This did in fact take twenty years…



Multilayer perceptron (MLP)

• Stacked perceptrons: feedforward networks
• Each unit has a nonlinear transfer function, 

e.g. the sigmoid or logistic function
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Backpropagation training

• Method to distribute weight updates through the network
• Criterion: error E, difference between network output and targets 

(mean square error between output and target ∑ 𝑒𝑒𝑖𝑖 − 𝑜𝑜𝑖𝑖 2)

• Initialize weights w to small random values
• While not converged, e.g. while |Eold – E|/E > Ethr = 10-6,

or while error on validation set decreases:
• select a training sample xi

• for each weight w
• calculate 
• set w’ = w - ρ

(with ρ a learning rate, e.g. 0.01)
• or use a momentum term,

w’ = w - ρ

/E w∂ ∂
/E w∂ ∂

[ ]/ / prevE w E wα∂ ∂ − ∂ ∂

𝜶𝜶>>𝝆𝝆: keep moving in previous direction 
𝝆𝝆>>𝜶𝜶: adapt to new direction



Backpropagation training (8)

• Example: two weights

E

w1 w2

w1

w2



Backpropagation training (9)

• Learning rate controls oscillation and speed

ρ = 1: >100 iterations ρ = 0.1: 52 iterations

In practice, not easy
(imagine doing this for thousands of weights)



Backpropagation training (10)

• Momentum uses a bit of the previous step

ρ = 0.1, α = 0.5: 29 iterations ρ = 0.5, α = 0.5: >100 iterations

Right: learning rate to large , so oscillations start occurring again …
Also option to make learning rate dependent on time : 𝝆𝝆(t)



Other training algorithms

• Backpropagation training 
is simple gradient descent,
but implemented in a useful 
way: all updates can be 
calculated locally (in parallel)

• Other view: simply optimize MSE E w.r.t. weight vector w
using any optimization routine, e.g.
• second order (Newton, pseudo-Newton)
• conjugate gradient descent
• Broyden-Fletcher-Goldfarb-Shanno (BFGS)
• Levenberg-Marquardt (LM, in PRTools)

F(x;w)
x

t E(w)



Multilayer perceptrons (2)

• Choices:
• targets (0/1, 0.1/0.9, 0.2/0.8) t
• number of hidden layers
• number of units per hidden layer ni
• transfer functions φ (a)
• initialisation w(0)

• training algorithm
• parameters (learning rate ρ etc.)
• convergence decision Ethr or test set selection
• ...

• All of these influence results!

“Training ANNs is more of an ART than a science‘



Multilayer perceptrons (3)

• Number of weights = number of parameters =
e.g. for p = 10, C = 2, 2 20-unit hidden layers:

= 682 parameters

• Danger of overtraining! 

• Prevention:
• use small networks
• regularize: minimize 
• small w’s: low complexity, training slowly increases w’s;

so when stopping in time: automatic regularization!

• Regularization is a form of complexity control (discussed later)
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Multilayer perceptrons (4)

• Examples: 1 hidden layer
of 3 units,

2 initialisations

2 hidden layers
of 5 units each,
2 initialisations

0 100 200 300 400 5000

0.05

0.1

0.15

0.2

0.25

iterations

M
SE

Initialization still important



ANNs for regression

• Feedforward ANNs are universal approximators
• Classification: input x, targets y = 0/1, 0.1/0.9
• Regression: input x, output y

• Examples:

1 hidden unit
(sigmoid)

2 hidden units 2x5 hidden units

y y y

x x x



Autoregressive ANNs / Autoencoder

• Feedforward ANNs that predict their input
• Bottleneck layer: feature extraction
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2x̂

1x̂

If linear (as in this example) : then we are performing PCA !!!



Autoregressive ANNs / Autoencoder (2)

• With multiple hidden layers: 
nonlinear feature extraction
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Deep learning
Many hidden layers, learn by auto-encoding

x1

x2

x1

x2

x1

x2

NOW not necessary anymore to learn by autoencoders
With GPUs you can use Backpropagation again (fast enough)



Deep learning
Learning features



Deep learning
Convolutional Neural Networks (1)



Deep learning
Convolutional Neural Networks (2)

• amount of layers
• use of pre-trained networks (on another problem)



Deep learning
Convolutional Neural Networks (3)

RELU SOFTMAX



Deep learning
Convolutional Neural Networks (4)

Christof Angermueller et al. Mol Syst Biol 2016;12:878



Radial basis function ANNs

• Feed-forward ANNs with
• Squared distance activation functions

• Gaussian transfer functions
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Radial basis function ANNs (3)

• Example: classification

2 hidden units 5 hidden units 10 hidden units



Other types of ANN

• Large number of feedforward variants
• cascading correlation (self-constructing)
• Neocognitron (for vision)
• time-delay (for speech and image analysis)
• ...

• Self-organising maps and GTMs:
• feature extraction, clustering

• Hopfield networks: 
• associative memories, optimisation

• Boltzmann machines, Bayesian networks:
• conditional probability models 40Pattern Recognition Week 11: Neural 

networks



Recapitulation

• Perceptrons are “neuron-inspired” linear discriminants
• Multilayer perceptrons and radial basis function 

feedforward ANNs are trainable, nonlinear discriminants
• Feed-forward ANNs in general can be used for 

classification, regression and feature extraction
• There is a large body of alternative ANNs
• Key problems in the application of ANNs are 

choosing the right architecture and good training parameters

41Pattern Recognition Week 11: Neural 
networks



10 min break



Support vector classifiers



Vapnik

• Performed foundational work in pattern recognition
with Chervonenkis in Russia from the 1960s

• Motto:

When you have limited training data, 
and you want to solve a classification problem, 
avoid solving a more complicated intermediate problem

• Translation to classification: 
when you want to find a discriminant, avoid estimating densities



Maximum margin classifier

• Simple problem: 2 linearly separable classes
• What is a good linear classifier?
• What is the best linear classifier?

1iy = −
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Maximum margin classifier (2)

• Canonical hyperplane: 
any plane of the form 
for which 

w
xi
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Maximum margin for 1D data



Maximum margin classifier (3)

• The distance between an object xi and the hyperplane is

• The maximum margin classifier is a canonical hyperplane
s.t. the distance between the object closest to the hyperplane
on one side,              

and the object closest on the other side, 

is maximal
• This distance is called the margin:

(it will become apparent later why this is a Good Thing)
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Support vector classifier

• Maximizing the margin

under the constraint that all training samples are classified
correctly, leads to the optimization problem: 

• The constraints can be written as
• This is called the support vector classifier, 

or support vector machine (SVM)
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Support vector classifier (2)

• It is possible to incorporate the constraints into 
the optimization itself, using Lagrange multipliers (basic calculus):

• Each constraint corresponds to a single object xi 

• Each constraint has a Lagrange multiplier αi

• So each object corresponds to a Lagrange multiplier
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Support vector classifier (3)

• To solve the optimization, take the derivative and set to 0
• Differentiate with respect to           :

• Re-substituting gives: 
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Support vectors

• The classifier is a linear combination of objects:

• Many Lagrange multipliers become equal to 0, so in fact 
the classifier is a sparse linear combination of objects

• Objects for which the Lagrange multiplier > 0
are called support vectors
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Support vectors (2)

w

support vectors



Support vectors (3)

• If non-support vectors are left out and training is repeated,
the resulting classifier is identical

• The number of support vectors 
gives a bound on the 
leave-one-out error estimate:

#  support vectors
l̂ooe

n
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Class overlap

• When there is overlap between the classes, 
the canonical hyperplane is not defined

• To be able to still find a solution, 
apply a trick:
soften the constraints 
that each object is on 
the correct side of the 
decision boundary

• For the blue object on the 
incorrect side of the boundary:

• The variable ξi is called a slack variable

iξ
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Class overlap (2)

• In the ideal (non-overlapping) case, all slack variables are 0
• To force slack variables to be small, 

we add them to the margin to be minimized:

• We can rewrite that in almost the same way we did before:
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The kernel trick

• Function Φ maps data
into a space in which 
classification may be easier

57

[ ]1 2,x x=x ( ) 2 2
1 2 1 2, , 2x x x x Φ =  x



The kernel trick (2)

• Classifier:

• Optimization problem:
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The kernel trick (3)

• Classifier can be rewritten as:

• Optimization problem can be rewritten as:

• Only need to specify kernel (inner product of transformed points): 
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Kernels

• Kernels                                  : nonlinear classifier in original space
• Not necessary to actually know Φ(.),

as long as K(a,b) fullfulls some conditions (!) (positive semi-definite)

• Also kernel versions of 
PCA, ICA, LDA, CCA, ...
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Kernels (2)

• Vector kernels:
• Linear

• Polynomial

• Radial basis function
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Kernels (3)

• For other data types: empirical kernel map
• If we have a distance measure (not per se positive definite), 

then for each object we can construct a vector with distances 
to a number of other objects

• This vector can then be used in a vector kernel

• Example: BLAST kernel
• BLAST a set of sequences w.r.t. each other
• Represent each sequence by 

a vector of -log(E)-values
• Use linear kernels on these vectors

62



Kernels (4)

• Spectrum kernel:
• Construct a dictionary of all k-mers
• Construct vector with #occurences of each k-mer
• Use this in a linear kernel
• Need for smart data structures (trie)
• Versions with gaps, substitutions, wildcards...

• Example:
a = aabbababa 1 1 1 2 1 0 0
b = abbaabbab 1 2 1 0 0 1 1

a
a
b
b

a
b
b
a

b
b
a
b

b
a
b
a

a
b
a
b

b
b
a
a

b
a
a
b

K(a,b)=8



Kernels (10)

• Convolution kernel:
• When kernels operate on subparts, 

but it is not clear which subparts
• Try all possible decompositions into subparts:
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Kernels (11)

• Local alignment kernel:
• Trivial kernel: 
• Letter alignment kernel:

with S the substitution cost
• Gap kernel:
• Local alignment kernel of length n:

• Local alignment kernel:
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Kernel combination
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Recapitulation

• The support vector classifier is based on a 
well-founded theoretical basis (discussed later)

• The original support vector classifier is limited to 
problems with two non-overlapping classes, but:
• can be extended to overlapping classes using slack variables
• can be extended to nonlinear decision boundaries using kernels
• can be extended to multiple classes by combining

multiple 2-class classifiers 

• A large number of specific kernels for 
biological data are available

• A support vector regressor is available (not discussed)



Recapitulation (2)

• Classification performance is often very good
• In particular suited for problems with high-dimensional 

datasets, for which classes are often separable 
(and hence there is no need for estimating densities) 

• The optimization problem is formulated in terms of the 
training objects, not the features: slow training for large datasets

• The value for the slack variable trade-off C and 
kernel-specific parameters d, σ etc. have to be set

Kernels need to be chosen, also an ART!



10 min break



Classifier combination



Data integration

• Often required in bioinformatics, e.g. in interaction prediction

• Early integration: feature fusion
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Data integration (2)

• Intermediate integration: common representation
(e.g. kernels or probability distributions)

78

r3x3

x2

x1

xn

r1

r2

rn

yClassifier



Data integration (3)

• Late integration: classifier combination
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Classifier combination

• Design choices:
• Base classifier: Identical or different?

Base classifiers, feature spaces, training sets, initialisations, etc.
• Combination by a fixed rule or by another classifier?

• Related to work on committees-of-experts

Key issues:
• Assessing individual expertise
• Combining expert opinions 



Fixed combination

• Classifiers: individual opinion = posterior probabilities or labels
• Combination by fixed rule, e.g.:

i.e. assign label ωi = c to object xi if the combination of 
outputs yj,c for class c over all classifiers fj (xi) is maximum

, ,arg max (combination-rule( ( )))i c j c j c iy fω = = x

y1

y3

y2

f1(xi)

f2(xi)

f3(xi)

xi

xi

xi
xi

ωi

Combination rule might be maximum over all classifiers j, 
or votes by all classifiers for that class

Opinion base classifier 1



Fixed combination (2)

• Combination rules on posterior probabilities yj,c = p(ωi=c|xi):
• Generally applicable:

• Maximum, to select “most confident” classifier

(assumes good estimates of posteriors)
• Preferable for classifiers trained in different feature spaces:

• Product, justified if feature spaces independent
• Minimum, to select “least objecting” classifier

(assumes good estimates of posteriors)
• Preferable for comparable classifiers trained on the same features:

• Sum/median, to (robustly) improve estimates of posteriors



Fixed combination (4)

• Alternatively, combine labels assigned by classifiers:
• Veto (like minimum, but needs reject)
• Majority vote (like sum/median)



Trained combination

• Treat base classifier outputs as new dataset

• In principle, possible to use any classifier
• Danger of overtraining when using full training 

set for both stages: use cross-validation



Base classifier generation

• Bagging: bootstrapping and aggregating
• For B repetitions

• Sample a subset of size n’ < n using bootstrapping
• Train classifier on this subset (e.g. linear or decision tree)

• Combine B classifier outputs (e.g. sum or vote)

• Boosting:
• Initialize all objects with equal weight
• As often as necessary

• Sample a subset of size n’ < n according to object weights
• Train a weak classifier on this subset
• Increase weights of incorrectly classified objects

• Combine classifier outputs

Use weak classifiers: only sensible to average over things that differ

Let’s not combine some classifiers, 
but set out to generate MANY



Base classifier generation (2)

• Adaboost:
• Initialize all objects with equal weight
• As often as necessary

• Select a train set size n’ < n according to object weights
• Train a weak classifier j
• Classify entire data set and calculate classifier error ej

• Calculate classifier weight αj = 0.5 log((1-ej)/ej)
• Multiply weights of incorrectly classified objects with exp(αj),

multiply weights of correctly classified objects with exp(-αj)

• Combine weak classifiers by weighted voting, using αj

Boosting: weight objects with #errors
Adaboost: weight objects with classifier error



Base classifier generation (3)

October 
2008

89Combining Classifiers - Robert P.W. Duin
• Adaboost example



Base classifier generation (4)

• For all combination methods: base classifier should be 
fast and weak, i.e. have large bias and small variance
• Decision stumps: short decision trees
• Linear classifiers: nearest mean, LDA

100 decision stumps,
combined by Adaboost

10 decision stumps,
combined by LDA

10 LDAs,
combined by LDA



Recapitulation

• Combining classifiers can help, but is no panacea
• Fixed combination:

• Usually sub-optimal

• Trained combination: 
• Use cross-validation to prevent overtraining

• Use weak classifiers: fast, large bias, small variance
• Combination requires variation between classifiers:

• Train different classifiers on the same features
• Train classifiers on different feature spaces (sample features!)
• Subsample the train set (bagging, boosting)



10 min break



Complexity



Sample size

What is a good classifier?



Sample size (2)

What is a good classifier?
And now?



Sample size (3)

What is a good classifier?
And now? Training size matters! But how?



Learning curves

• How does the error change with varying sample size
(number of objects in the train set)?

e

Apparent error eA

True error

n

True error: error on infinite test data
Apparent error: error on training data

True error not small because of 
linear classifier and data is not 
linearly separable



Learning curves (2)

• How does the error change with varying sample size
(number of objects in the train set)?

Asymptotic error

e

n

Apparent error eA

True error

Bayes error: overall minimal error (can be smaller than true error for given classifier)

Bayes error



Learning curves (3)

• How does the error change with varying sample size
(number of objects in the train set)?

Apparent error is too optimistic

Asymptotic error

Apparent error eA

True error

e

n

Bayes error



Learning curves (4) 

• What happens when you take another classifier?
(say, use a qdc instead of an ldc)

• More flexible:
• Better performance on the training set
• Worse performance on the test set
• Will perform best in the limit of many training objects

• Less flexible:
• Less adapted to the training set
• Better performance on the test set
• Will not perform best in the limit of many training objects



Learning curves (5)

• Switching to a more complex classifier 
influences the learning curves

• So why not always use complex classifiers?

Asymptotic error improves

Apparent error improves 

True error increasese

n

qdc
ldc



Classifier complexity

• Optimal complexity depends on sample size

• Small: use a simple classifier
• Large: can use a complex classifier

e

n

Complexity not well-defined. 
Intuitively: More parameters, more complex



Classifier complexity (2)

• There is a tradeoff between complexity and training size
e

n



Classifier complexity (3)

• Remember the curse of dimensionality: for fixed sample size,
error increases if classifier complexity increases

Sample size

e

Complexity

Minimum error



Bias/variance

• Total error is 
combination of 
bias and variance:
• Bias
• Variance
• Total error

• With increasing sample size,
variance component decreases, bias stays the same

complexity  →

e
→

optimum
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Bias/variance (2)

• In classification:

complexity  →



Classifier complexity (6)

• How to find the best complexity for a given problem?

• Standard approach:
• Define a large set of classifiers
• Use cross-validation, and repeatedly

• Train all the classifiers on the training set
• Test all the classifiers on the test set

• Find the best classifier

• This is a lot of work….



Regularization

• For many classifiers, it is possible to reduce the complexity of 
a classifier by adding constraints on the parameters θ

• Often a term is added to the cost function:

• For example:

• Multilayer perceptron: 

• Support vector classifier:

( )A regE e fλ θ= +

2 2

1
( )

n

k k i
k i

E g wλ
=

= − +∑ ∑t x

2

1

1  
2

n

i
i

E C ξ
=

= + ∑w



Regularization (2)

• Another form of 
regularization: 
starting with small 
initial weights in 
training multilayer
perceptrons 

• Effective complexity
of MLPs increases
during training

5859 18790 18369 42824 22686 
18635 47153 15454 3800



Regularization (3)

• Intuitively:
• Regularization is often a quadratic penalty on weight values
• Small weights correspond to simple classifier,

large weights to complex classifiers
• This boils down to a prior on weights
• For example:

• Regularization is like Bayesian estimation on parameters
• Bayesian model selection: apply Bayesian estimation 

to entire models (classifiers/regressors)

2 2

1
( )

n

k k i
k i

E g wλ
=

= − +∑ ∑t x

0 wi

p(wi)



Bayesian model selection

• The evidence for model M  is the probability of 
data X = {x} given model M 

• Found by integrating over all possible values of parameters θ :

• If multiple alternative models are available, use the Bayes factor:

• We can even take priors on models into account:

( | ) ( | , ) ( | )p M p M p M d= ∫X X θ θ θ

1
1

2

( | ) 1
( | )

p M M
p M

> ⇒
X
X

1 1
1

2 2

( | ) ( ) 1
( | ) ( )

p M p M M
p M p M

> ⇒
X
X



Bayesian model selection (2)

• Integrating over all possible values of θ is very hard in practice 
• Use Monte Carlo methods
• Use approximations: 

• Akaike Information Criterion:

• Bayesian Information Criterion:

• k = number of parameters
• n = number of training objects
• θopt = parameters optimizing likelihood

2 2log ( | , )optAIC k p M = −  X θ

log( ) 2 log ( | , )optBIC k n p M = −  X θ
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-10
-8
-6
-4
-2
0
2

0 1 2 3 4 5 6 7 8 910
0

10

20

30

40

AIC

BIC

#clusters →
(fit MoG, 3 Gaussians)



10 min break



VC dimension

• Complexity measure underlying support vector classifier
• Vapnik-Chervonenkis dimension h of a two-class classifier:

• the largest number of objects in “general position” 
that can be separated in all possible 2h ways

All possible labelings of N = 3 objects in 2D



VC dimension (2)

• For N = 3 objects in 2D we can always find a linear separation

• For N = 4 objects in 2D this is not always possible:

• Conclusion: for a linear classifier, 
h = p + 1 (where p is the dimensionality)

• For (almost) all other classifiers it is not known
(though some upper bounds exist for neural networks)



VC dimension (3)

• With probability at least 1 - δ this inequality holds:

• where

• When h is small, the apparent error
eA is close to the true error e

• An optimal classifier:
• has small apparent error eA (i.e. is well-trained)
• has small VC dimension h    (i.e. is simple) 

1 ( ) 1 1
2 ( )

A
A

ee e E n
E n

 
≤ + + +  

 

2log 1 log
4( ) 4

nh
hE n

n

δ    + −        =

V.Vapnik, Statistical 
learning theory, 1998



VC dimension (4)

 Construct a linear classifier with apparent error eA = 0

and then minimize VC dimension h

• It can be proven that

• R is radius of smallest enclosing ball:
minimize, but it is fixed

• is the margin: maximize,

so minimize ||w||2

• This is the maximum margin classifier!
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Recapitulation

• A fundamental trade-off in pattern recognition is between
model descriptiveness (e.g. classification error)
and model complexity

• Optimal complexity depends on the problem and sample size,
and can be assessed/controlled through:
• Cross-validation and learning curves
• Regularization
• Bayesian information criteria

• More fundamental approaches are:
• Bayesian model selection
• Minimum description length
• VC dimension
Only the latter leads to a practical solution, 
the support vector classifier





Recent developments

• Recent developments focus not so much on developing
new methods, but tackling new types of problems
• multiple instance learning
• structured learning
• semi-supervised learning
• active learning
• and more deep learners ….



Multiple instance learning

• Uses bag-of-instances representations of objects, usually 
labeling a bag positive if at least one instance is labeled positive

• Applications:
• drug discovery
• predicting 

activity of 
molecules

• predicting 
protein 
binding sites

G. Fu et al, “Implementation 
of multiple-instance learning 
in drug activity prediction”, 
BMC Bioinformatics 2012



Structured learning

• Predicting arbitrarily shaped output rather than a single label
• Applications in predicting: 

• gene structure
• secondary 

protein structure
• drug activity
• metabolic reaction

• Special case: 
multi-label learning, 
outputting several 
related labels, for 
example gene ontology 
(GO) annotations

Z. Barutcuoglu et al., 
“Hierarchical multi-label 
prediction of gene function”, 
Bioinformatics 2006



Semi-supervised learning

• Used when large numbers 
of unlabeled objects are 
available besides a small
set of labeled objects

• Applications in
• clustering expression
• predicting gene function
• predicting TF binding sites

• Related: positive unlabeled 
learning, assuming some 
objects have a (single, 
positive) label and the remainder is unlabeled, e.g. 
for protein-protein and genetic interaction data

J. Ernst et al., “A semi-supervised 
method for predicting transcription 
factor–gene interactions in E. coli”, 
PLoS Computational Biology 2008 



Active learning

• Using a classifier to decide which unlabeled object 
should be labeled next to best improve that classifier

• Applications:
• diagnosis
• drug discovery
• predicting protein 

interactions,
transmembrane 
helices

M.K. Warmuth et al., “Active learning 
with support vector machines in 
the drug discovery process”, 
Journal of Chemical Information 
and Computer Sciences 2003



and of course deep nets
Residual Networks



and of course deep nets
Siamese Networks



and of course deep nets
generative adversarial network (GAN)



http://www.asimovinstitute.org/neural-network-zoo/



END
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