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for scalar A, which can be rewritten
M — ADx =0, (30)

where I the identity matrix and 0 is the zero vector. The solution V'ector X=e¢ and
rresponding scalar A = 4; are called the eigenvector and associated eigenvalye,
co

respectively. If M is real and symmetric, there are d (possibly nondistinct) solution
VecI;orS {er, ey, ..., €4}, each with an associated eigenvalue {A1, A2, ..., As}. Under

multiplication by M the eigenvectors are changed only in magnitude, not direction
Me; = 2je;. G

If M is diagonal, then the eigenvectors are parall.el to the coprdlnatle ax;els. o
One method of finding the eigenvectors and eigenvalues is to solve the charae
istic equation (or secular equation,)

M—Al =2+ add g A4 a; =0,

for each of its d (possibly nondistinct) roots A ;. For each such root, we then so
i i i iated eigenvector e;.
set of linear equations to find its associal vecto '
Finally, it can be shown that the trace of a matrix is 'Just‘the sum of the eigeny
and the determinant of a matrix is just the product of its eigenvalues:

d d N
tr[M] = Z)\" and IM| = H i
i=1 =

If a matrix is diagonal, then its eigenvalues are simply the nonzero ;Illgr;:
diagonal, and the eigenvectors are the unit vectors parallel to the coordi ;

A.3 LAGRANGE OPTIMIZATION

UNDETERMINED
MULTIPLIER

- ne
Suppose we seek the position Xg of an extremum of a scalal‘vallllle(jlF (ﬁlm
subject to some constraint. If a constraint can be expr@ssed mft e -
then we can find the extremum of f(x) as follows. First we orm
function

Lx, 1) = f(x) + 1g(X),
=0

. . 0
where A is a scalar called the Lagrange undetermined multiplier. We ¢

i i : takin,
strained optimization problem into an unconstrained problem by
tive,

L&) _8f® 0800
% ox ox

3

and using standard methods from calculus to solve the rgszlstlrlllogt iqu
the extremizing value of x. (Note that the term Adg/ 8)((1 : t0iS L
The solution gives the X position of the extremum, an 1t L
stitution to find the extreme value of f(-) under the cons
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A4 PROBABILITY THEORY
A.4.1 Discrete Random Variables

y of the finite number m of

different values in the set X' — {vi, 1o, ..., U }. We denote by p; the probability that

X assumes the value v;:
pi = Prlx = y;], i=1,...,m. (36)

Then the probabilities Di must satisfy the following two conditions:

pi >0 and ipizl.

i=1

B37)

Sometimes it is more convenient to exp

ress the set of probabilities {r.pa..., Dm}
in terms of the probability mass function

PROBABILITY P(x), which must satisfy the following con-
ditions:

MASS FUNCTION

P(x) >0, and ZP(x):l. (38)
xeX

A4.2 Expected Values

MEAN The expected value, Tnean, or average of the random variable x is defined by

n

Erl=u=3 xP)=Y up. (39)
i=1

reX

If one thinks of the probability mass function as

i being the mass concentrated atx = v;, then the expected value M is just the center
of mass. Alternatively, we can interpret 1 as the arithmetic average of the values in

a large random sample. More generally, if £(x) is any function of x, the expected
value of f is defined by

defining a set of point masses, with

ELF@I= )" F@)P). (40)

XeX

Note that the process of forming an exp

ected value is linear, in that if o1 and «, are
arbitrary constants, then we have

Elar fi(x) + ay fo(x)] = GELAI)] + &l ()], “41) .

It is sometimes convenient to think of £ ag

operator, Two important special-case expecta
variance:

an operator—the (linear) expectation
tions are the second moment and the

Elx*1 =Y "22p(x) 42)

reX

Varl¥] = 0% = El(c — 1) = Y x - P, (43)
xeX
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where o is the standard deviation of x. The variance can be viewed as the moment
of inertia of the probability mass function. The variance is never negative, and it is
zero if and only if all of the probability mass is concentrated at one point.

The standard deviation is a simple but valuable measure of how far values of x
are likely to depart from the mean, Its very name suggests that it is the standard or
typical amount one should expect a randomly drawn value for x to deviate or differ
from . Chebyshev’s inequality (or the Bienaymé-Chebyshev inequality) provides a
mathematical relation between the standard deviation and |x — p|:

1
Prl|x — pul > nol < prk 44

This inequality is not a tight bound (and it is useless for n < 1); a more practical rulg
of thumb, which strictly speaking is true only for the normal distribution, is that 68%
of the values will lie within one, 95% within two, and 99.7% within three standard
deviations of the mean (cf. Fig. A.1, ahead). Nevertheless, Chebyshev’s inequality
shows the strong link between the standard deviation and the spread of a distribution.
Tn addition, it suggests that |x — u|/o is a meaningful normalized measure of the
distance from x to the mean (cf. Section A.4.12).
By expanding the quadratic in Eq. 43, it is easy to prove the useful formula

Var[x] = E[x] — (ExD. 45)

Note that, unlike the mean, the variance is not linear. In particular, if y = ox, where
« is a constant, then Var[y] = «?Var[x]. Moreover, the variance of the sum of two

random variables is usually nor the sum of their variances. However, as we shall see
below, variances do add when the variables involved are statistically independent.

In the simple but important special case in which x is binary-valued (say, vy = 0
and v, = 1), we can obtain simple formulas for p and o. If we let p = Pr[x =1},
then it is easy to show that

o =+/p(1=p). (46)

HL=rp and

A.4.3 Pairs of Discrete Random Variables

PRODUCT SPACE

MARGINAL
DISTRIBUTION

Let x and y be random variables which can take on values in X = {vy, v2, ..., Un}s
and YV = {wy, wo, ..., w,}, respectively. We can think of (x, y) as a vector or a

point in the product space of x and y. For each possible pair of values (v;, w;) we i

have a joint probability p;; = Pr{x = v;, y = w;]. These mn joint probabilities p;;
are nonnegative and sum to 1. Alternatively, we can define a joint probability mass
function P(x,y) for which

Px,y)=0 and
YeX ye)

The joint probability mass function is a complete characterization of the pair of ran

dom variables (x, y); that is, everything we can compute about x and y, individually
or together, can be computed from P (x, y). In particular, we can obtain the separate

marginal distributions for x and y by summing over the unwanted variable:
Pi(x) =) P,
yey
Py(y) =Y P(x,y).

xeX

ZZP(x,y):l. A7
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We will occasionally use subscripts, as in Eq. 48, to emphasize the fact that P, (x)
has a different functional form than Py(y). It is common to omit them and write
simply P(x) and P (y) whenever the context makes it clear that these are in fact two
different functions—rather than the same function merely evaluated with different
values for the argument.

A.4.4 Statistical Independence

Variables x and y are said to be statistically independent if and only if
P(x,y) = Pe(x)Py(y). (49)

We can understand such independence as follows. Suppose that p; = Pr[x = v;] is
the fraction of the time that x = v;, and ¢; = Pr{y = w;] is the fraction of the time
that y = w;. Consider those situations where x = v;. If it is still true that the fraction
of those situations in which y = w; is the same value g, it follows that knowing the
value of x did not give us any additional knowledge about the possible values of y; in
that sense y is independent of x. Finally, if x and y are statistically independent, it is
clear that the fraction of the time that the specific pair of values (v;, w;) occurs must
be the product of the fractions p;q; = P(v;)P(w;) as we shall explore in Section
A46.

A.4.5 Expected Values of Functions of Two Variables

COVARIANCE

In the natural extension of Section A.4.2, we define the expected value of a function
f(x,y) of two random variables x and y by

ELfG, =) > fE NP, (50)

xeX yey

and as before the expectation operator £ is linear:

Elon fi(x, y) + o2 folx, Y] = ar €[ fi(x, Y] + €l folx, Y)]. (D

The means (first moments) and variances (second moments) are

pe=Ex1=Y Y xP(x,y)

xeX yey

py=Elyl=2) D yP()

xeX yey

o? = Varlx] = E[(x — )1 =) D (= 1:)*P(x, y)

xeX ye)

o) =Varlyl = El(y — )1 = ) D 0~ m)*PG,y).  (52)

xeX yey

An important new “cross-moment” can now be defined, the covariance of x and y:

Ory = EL@ — )y — )] = Y Y =)y — u)P(x,y).  (53)

xeX yey
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Using vector notation, we can summarize Eqs. 52 and 53 as

p=Exl= Y xP®X) (54)

xe{ XY}

3 =Elx— wx—mw', (35

where { X))} respresents the space of all possible values for all components of x and
Y is the covariance matrix (cf., Section A.4.9).

The covariance is one measure of the degree of statistical dependence between x
and y. If x and y are statistically independent, then oy, = 0. If 0y = 0, the variables
x and y are said to be uncorrelated. It does not follow that uncorrelated variables
must be statistically independent—covariance is just one measure of dependence.
However, it is a fact that uncorrelated variables are statistically independent if they
have a multivariate normal distribution, and in practice statisticians often treat un-
correlated variables as if they were statistically independent. If o is a constant and
y = ax, which is a case of strong statistical dependence, it is also easy to show that
Oxy = otcrf. Thus, the covariance is positive if x and y both increase or decrease
together, and is negative if y decreases when x increases.

There is an important Cauchy-Schwarz inequality for the variances oy and o7, and
the covariance oyy. It can be derived by observing that the variance of a random
variable is never negative, and thus the variance of Ax + y must be nonnegative no
matter what the value of the scalar A. This leads to the famous inequality

2

xy ¥

which is analogous to the vector inequality (x'y)? < ||x||* |y||* given in Eq. 8.
The correlation coefficient, defined as

Oxy

?
00y

is a normalized covariance, and must always be between —1 and +1. If p = +1,then

x and y are maximally positively correlated, while if p = —1, they are maximally

negatively correlated. If p = 0, the variables are uncorrelated. It is common prac-

tice to consider variables to be uncorrelated for practical purposes if the magnitude
of their correlation coefficient is below some threshold, such as 0.05, although the

threshold that makes sense does depend on the actual situation.
If x and y are statistically independent, then for any two functions f and g we
obtain

ELf g1 = ELF®)IELgN], (58)

aresult which follows from the definition of statistical independence and expectation.
Note that if f(x) = x — i, and g(y) = y — [y, this theorem again shows that

Opy = E[(x — ;{,x)(y — pty)]is zero if x and y are statistically independent.

A.4.6 Conditional Probability

When two variables are statistically dependent, knowing the value of one of them
lets us get a better estimate of the value of the other one. This is expressed by the

o2 < ola?, (56)
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following definition of the conditional probability of x given y:

Prlx = v, y = wj]

Prix =vly =w;]l =

?

Pr(y = w;]
or, in terms of mass functions,

P(x,y)

P(x|y) = POy

(60)

Note that if x and y are statistically independent, this gives P(x|y) = P(x). That
is, when x and y are independent, knowing the valug of y gives you no information
about x that you didn’t already know from its marginal distribution P (x).

Consider a simple illustration of a two-variable binary case where both x and y
are either O or 1. Suppose that a large number n of pairs of xy-values are randomly
produced. Let n;; be the number of pairs in which we find x = i and y = j, that
is, we see the (0, 0) pair ngg times, the (0, 1) pair ng; times, and so on, where ngo +
o1 +n1o+n11 = n. Suppose we pull out those pairs where y = 1—that is, the (0, 1)
pairs and the (1, 1) pairs. Clearly, the fraction of those cases in which x is also 1 is

nip ni/n
noL +nu (oy +ni)/n

(61)

Intuitively, this is what we would like to get for P(x|y) when y = 1 and n is large.
And, indeed, this is what we do get, because ny/n is approximately P(x,y) and

(n—m"jlr—ln/]’;—)/'; is approximately P (y) for large 7.

A.4.7 The Law of Total Probability and Bayes Rule

The Law of Total Probability states that if an event A can occur in m different ways
Ay, As, ..., Ay and if these m subevents are mutually exclusive—that is, cannot
occur at the same time—then the probability of A occurring is the sum of the proba-
bilities of the subevents A;. In particular, the random variable y can assume the value
y in m different ways—with x = vy, x = va, ..., and x = v,,. Because these possi-
bilities are mutually exclusive, it follows from the Law of Total Probability that P (y)
is the sum of the joint probability P (x, y) over all possible values for x. Formally
we have

P(y) =) P, (62)

xeX

But from the definition of the conditional probability P (y|x) we have
P(x,y) = P(ylx)P(x), - (63)

and after rewriting Eq. 63 with x and y exchanged and some simple algebra, we
obtain

P(ylx)P(x)
> ex POIXP @)

Pxly) = (64)
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or in words we have

) likelihood x prior
posterior =

evidence

where these terms are discussed more fully in Chapter 2.

Equation 64 is called Bayes rule. Note that the denominator, which is just P(y),is
obtained by summing the numerator over all x values. By writing the denominator in
this form we emphasize the fact that everything on the right-hand side of the equation
is conditioned on x. If we think of x as the important variable, then we can say that

the shape of the distribution P (x|y) depends only on the numerator P (y|x) P (x); the

denominator is just a normalizing factor, sometimes called the evidence, needed to
ensure that the P (x|y) sum to one.

The standard interpretation of Bayes rule is that it “inverts” statistical connec-
tions, turning P(y|x) into P (x|y). Suppose that we think of x as a “cause” and y as
an “effect” of that cause. That is, we assume that if the cause x is present, it is easy to
determine the probability of the effect y being observed; the conditional probability
function P (y|x)—the likelihood—specifies this probability explicitly. If we observe

the effect y, it might not be so easy to determine the cause x, because there might

be several different causes, cach of which could produce the same observed effect.
However, Bayes rule makes it easy to determine P (x|y), provided that we know both

P (ylx) and the so-called prior probability P(x), the probability of x before we make

any observations about y. Said slightly differently, Bayes rule shows how the prob
ability distribution for x changes from the prior distribution P(x) before anything
is observed about y to the posterior distribution P(x|y) once we have observed the
value of y.

A.4.8 Vector Random Variables

To extend these results from two variables x and y to d variables x{, x,, . .., X4, 1018

convenient to employ vector notation. As given by Eq. 47, the joint probability mass
function P (x) satisfies P(x) > 0 and }_ P(x) = 1, where the sum extends over all
possible values for the vector x. Note that P (x) is a function of d variables and can
be a very complicated, multidimensional function. However, if the random variables

x; are statistically independent, it reduces to the product

P(X) = P.\‘1 (xl)P,\‘z (XZ) e P.\‘d (xd)

d
=[]0, ©5)
i=1 -

where we have used the subscripts just to emphasize the fact that the marginal distri-
butions will generally have a different form. Here the separate marginal distributions
Py, (x;) can be obtained by summing the joint distribution over the other variables.
In addition to these univariate marginals, other marginal distributions can be ob-

tained by this use of the Law of Total Probability. For example, suppose we have

P(x1, x2, x3, X4, x5) and we want P (x;, x4); we merely calculate

LP(«\‘LM) = ZZZ P(xy, x2, x3, X4, X5).

S v
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One can define many different conditional distributions, such as P(x;, X3]x3) or
P(x3]x1, x4, x5). For example,

P(x1, x2, x3)

P(x1, x2]x3) = P

67)

where all of the joint distributions can be obtained from P(x) by summing out the
unwanted variables. If instead of scalars we have vector variables, then these condi-
tional distributions can also be written as

P(x1,%3)
P =" 68
(x1]x2) Px) (68)
and likewise, in vector form, Bayes rule becomes
P P
P(x1[xy) = (%2 |x1) P (x1) _ 69)
Z P (xa]%1) P (x1)
X]

A.4.9 Expectations, Mean Vectors and Covariance Matrices

MEAN VECTOR

COVARIANCE
MATRIX

The expected value of a vector is defined to be the vector whose components are
the expected values of the original components, Thus, if f(x) is an n-dimensional,
vector-valued function of the d-dimensional random vector X,

S1x)
wo=| | 70)
In '(X)
then the expected value of f is defined by
ELAX]
EIf] = E[fzz(x)] = Yt P®. (71
ehw |
In particular, the d-dimensional mean vector u is defined by
Elx1] M
p=Ex] = S[jvz] = lfz = xP(x). (72)
£l wl

Similarly, the covariance matrix 3, is defined as the (square) matrix whose ijth ele-
ment o;; is the covariance of x; and x iH

0ij = 0ji = E[(n — )y —pp)] i, j=1...d, (73)
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as we saw in the two-variable case of Eq. 53. Therefore, in expanded form we have

[ E[(xy — 1) — )] E[ — ) (g — w2)] Elxr — u)(xg — pa)l
s El(ry — p)x1 — p)]  El(xa — )y — )] .. El(xa — u2)(xa — pa)l
| LG — )1 — 0] ElGd — )2 — )] - L = )i — 1]
_0'11 gp ... Oid 012 o122 ... Oid
021 O2p ... O 021 022 e 04 (74)\
L U;fl 0';12 ... O4q Og1 Og2 ... 0’3

‘We can use the vector product (x — p)(x — p)’ to write the covariance matrix as

%= - wx— 'l (75)

Thus, X is symmetric, and its diagonal elements are just the variances of the indi-
vidual elements of x, which can never be negative; the off-diagonal elements are
the covariances, which can be positive or negative. If the variables are statistically,:
independent, the covariances are zero, and the covariance matrix is diagonal. The
analog to the Cauchy-Schwarz inequality comes from recognizing that if w is.any
d-dimensional vector, then the variance of w'x can never be negative. This leads to
the requirement that the quadratic form w2 w never be negative. Matrices for which
this is true are said to be positive semidefinite, thus, the covariance matrix X, must be
positive semidefinite. It can be shown that this is equivalent to the requirement that
none of the eigenvalues of X, can be negative.

A.4.10 Continuous Random Variables

When the random variable x can take values in the continuum, it no longer makes
sense to talk about the probability that x has a particular value, such as 2.5136,
becaunse the probability of any particular exact value will almost always be: zero.
Rather, we talk about the probability that x falls in some interval (a, b); instead
PROBABILITY of having a probability mass function P (x), we have a probability density ﬁmction:
DENSITY p(x). The density has the property that

b ,
Prix € (a,b)] = f p(x)dx. (76)‘

a

The name density comes by analogy with material density. If we consider a small:
interval (@, @ + Ax) over which p(x) is essentially constant, having value p(a), we.
see that p(a) = Pr[x € (a,a + Ax)]/Ax. That is, the probability density atx = @,
is the probability mass Pr[x € (a, a + Ax)] per unit distance. It follows that the
probability density function must satisfy

oo

px) >0 and / px)dx = 1.

—00
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In general, most of the definitions and formulas for discrete random variables
carry over to continuous random variables with sums replaced by integrals. In par-

ticular, the expected value, mean, and variance for a continuous random variable are
defined by

ELF ()] = / Fp() dx

(o]

w=_Ex]= / xp(x)dx (78)

e}

Varlx] = 0% = £[(x — w)?] = / (x — w2p(x) dx,

-0

and, as in Eq. 45, the variance obeys o2 = £[x2] — (E[x])2.
The multivariate situation is similarly handled with continuous random vectors x.
The probability density function p(x) must satisfy

o0

px) >0 and /p(x) dx =1, (79)

00

where the integral is understood to be a d-fold, multiple integral and where dx is
the element of d-dimensional volume dx = dx\dx, - - - dxg. The corresponding mo-
ments for a general n-dimensional vector-valued function are

E[Ex)] = / f / ) p(x) dxydxy - - divg = / fOpx)dx  (30)

and for the particular d-dimensional functions as above, we have

>

n=_&x] = / xp(x)dx (81)

—0o0

Y = El(x — p)(x — p)'] = / (X — m)(x — W px) dx.

If the components of x are statistically independent, then the joint probability density
function factors as

d
P =] [ pg ) (82)
i=1

and the covariance matrix is diagonal,
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Conditional probability density functions are defined just as conditional mass
functions. Thus, for example, the density for x given y is given by

p(x,y)

(83
() )

pxly) =

and Bayes rule for density functions is

()
plaly) = PORPE)

/ p(y1x)p(x) dx

—C0

and likewise for the vector case. . .
Occasionally we will need to take the expectation with respect to a subset of the
variables, and in that case we must show this as a subscript—for instance,

Eq Lf (x1, x)] = / f(xy, x2) p(x1) dx1.

A.4.11 Distributions of Sums of Independent Random Variables

It frequently happens that we know the densities for two independent random vari-
ables x and y, and we need to know the density of their sum z = x + y. Itis easy to
obtain the mean and the variance of this sum: v
1, = Elz]l = Elx + y1 = Elx] + Ely) = px + Ky
2
02 =€l — u) 1= Ellx +y — (e + )1 = ELx — ) + (0 — 1)
 Ex — )]+ 2E0G — ) (0 — )] HELY = )] (86)

=0

2

2
=0, +0y,

where we have used the fact that the cross-term factors into E[x — ulEly — Myl
when x and y are independent; in this case the product is manifestly zero, because

each of the component expectations vanishes. Thus, the mean of the sum of two

independent random variables is the sum of their means, and the variance of theit

sumn is the sum of their variances. If the variables are random yet not independent-—
for instance y = —x, where x is a random varjable—then the variance is not the sum
of the component variances. 3 . _

It is only slightly more difficult to work out the exact probability density fgnctlon
for 7z = x + y from the separate density functions for x and y. The prf)bab111ty that
7 is between ¢ and ¢ + Az can be found by integrating the joint density p(x,y)

P (%) py(y) over the thin strip in the xy-plane between the lines x +y = & and

x 4+ y = ¢ + Az It follows that, for small Az,

o

Prlt <z <+ Azl= / px)p(t —x)dx | Az, @7)

—00

CONVOLUTION
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and hence that the probability density function for the sum is the convolution of the
probability density functions for the components:

o0

p(z) = pe(x) x py(¥) = / pe(x)py(z —x) dx.

—0Q
As one would expect, these results generalize. It is not hard to show that:

* The mean of the sum of d independent random variables x1, x2, ..., X4 is the

sum of their means. (In fact the variables need not be independent for this to
hold.) :

* The variance of the sum is the sum of their variances.

* The probability density function for the sum is the convolution of the separate
density functions:

p@) = p(xp) * p(xg) * -+ * p(xa).

A.4.12 Normal Distributions

CENTRAL LIMIT
THEOREM

GAUSSIAN

One of the most important results of probability theory is the Central Limit Theo-
rem, which states that, under various conditions, the distribution for the sum of d
independent random variables approaches a particular limiting form known as the
normal distribution. As such, the normal or Gaussian probability density function

is very important, both for theoretical and practical reasons. In one dimension, it is
defined by

o~ L/20G=? /%) (90)

px) = 7;’;

The normal density is traditionally described as a “bell-shaped curve”; it is com-
pletely determined by the numerical values for two parameters, the mean w and the
variance o'2. This is often emphasized by writing p(x) ~ N (i, ), which is read as
“x is distributed normally with mean 1 and variance o> The distribution is sym-
metrical about the mean, the peak occurring at x = w and the width of the “bell”

is proportional to the standard deviation o. The parameters of a normal density in
Eq. 90 satisfy the following equations:

o ¢

E[l] = / px)dx =1

o0

Elx] = /xp(x)dx =L

—0

ElGr — )] = / (x — w2p(x) dx = o>,
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FIGURE A.1. A one-dimensional Gaussian distribution, plw) ~ N, 1), ha.s 68% of its
probability mass in the range |u| < 1,95% in the range |u] < 2, and 99.7% in the range
lul < 3.

Normally distributed data points tend to cluster about the mean. Numerically, the
probabilities obey

Pr|x — | < 0] = 0.68
Pr|x — p| <201 =095
Prjx — p] < 30] = 0.997,

as shown in Fig. A.1. ' .
A nataral measure of the distance from x to the mean p is the distance lx — )
measured in units of standard deviations:

Loz ©93)
g

the Mahalanobis distance from x to pt. (In the one-dimensional case, this is some-
times called the z-score.) Thus for instance the probability is 0.95 that the Maha-

lanobis distance from x to  will be less than 2. If a random Vari?ble .x.is n}odiﬁed '
by (a) subtracting its mean and (b) dividing by its standard deviation, 1t 1s saidtobe

standardized. Clearly, a standardized normal random variable u = (x — u)/o has
zero mean and unit standard deviation—that is,

p) = e P2, 94)

NGz

which can be written as p(#) ~ N(0, 1). Table A.1 shows the probability that a

value, chosen at random according to p(u) ~ N(0, 1), differs from the mean value
by less than a criterion z.
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Table A.1. The Probability a Sample Drawn from a Standardized Gaussian has
Absolute Value Less Than a Criterion (i.e., Pr[ju] < z])

< Prflu| < 2] b4 Prf|u] < z] Pr|u| < 7]

0.0 0.0 1.0 0.683 . 0.954
0.1 0.080 1.1 0.729 . 0.964
0.2 0.158 1.2 0.770 0.980
0.3 0.236 1.3 0.806 . 0.989
04 0.311 1.4 0.838 0.990
0.5 - 0.383 15 0.866 . 0.9974
0.6 0.452 1.6 0.890 0.9980
0.7 0.516 1.7 0.911 0.999
0.8 0.576 1.8 0.928 . 0.9995
09 0.632 1.9 0943 . . 0.99994

A.5 GAUSSIAN DERIVATIVES AND INTEGRALS

ERROR
FUNCTION

Because of the prevalence of Gaussian functions throughout statistical pattern recog-
nition, we often have occasion to integrate and differentiate them. The first three
derivatives of a one-dimensional (standardized) Gaussian are

1 e—xz/(zaz) —x e—.\'z/(202)

| V270 - Varo3

= ;—);p(x)

L 2mo Nt

1 2 2 | 2 1002 —o? +x?
—x2/(20%) 1 ) 2y ,—x2/(26%) _
— ¢ ( - +x)e ¥7/Q20%) = g

p(x) (95)

[ 1 2002 ] 2me2y  —3x0% —x*
ax3 VZJTae e =«/%a7 (3XU2 —x?) e = o6 p(x),

and are shown in Fig. A.2.

An important finite integral of the Gaussian is the so-called error function, defined
as

FIGURE A.2. A one-dimensional Gaussian distribution and its first three derivatives,
shown for f(x) ~ N(O, 1).
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1/2u2)

1-erf(u)

1 2 3 4

» U

FIGURE A.3. The error function erf(u) corresponds to the area under a standardized

Gaussian between —/2u and +2u, that is, if x is a standardizeo! Gaussian rar?dom ;
variable, Prl|x| < +~/2ul = erf(u). Thus, the complementary probabi.hty, 1 ferf(u), is the

probability that a sample is chosen with |x| > v2u. Qhebyshev’s megughty states that
for an arbitrary distribution having zero mean and unit standazrd deviation, Pr(lx( > €]

is less than 1/¢€?, so that the lower curve is bounded by 1/(2u?). As shown, this bound

is quite loose for a Gaussian.

erf(u) = %/6""'261)& (96)
0

As can be seen from Fig. A.1, erf(0) = 0, and erf(1) = 0.84. There is no clpsed;
analytic form for the error function, and thus we typically use tables, approximations,
or numerical integration for its evaluation (Fig. A.3). E

In calculating moments of Gaussians, we need the general integra-l of powers of x
weighted by a Gaussian. Recall first the definition of a gamma function

o]

T'n+1) = /x”e‘xdx, o7

0

where the gamma function obeys

T'm)=nl'(n — 1) (98);

and T'(1/2) = /7. Forn aninteger we have I'(n-+1) = n x(n—)x@-2) -+ -x1 =

n!, read “n factorial”

Changing variables in Eq. 97, we find the moments of a (normalized) Gaussian

distribution as

p—3?/0?)

21 x

n dx —
ro JT 2

where again we have used a prefactor of 2 and lower integration limit of 0 in order

give nontrivial (i.e., nonvanishing) results for odd n.

A.5.1 Multivariate Normal Densities

Normal random variables have many desirable theoretical properties. For example,

tarns out that the convolution of two Gaussian functions is again a Gaussian function,

nf2 n .
—2/UF<H+1), ©9):

MULTIVARIATE
NORMAL
DENSITY
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and thus the distribution for the sum of two independent normal random variables is
again normal. In fact, sums of dependent normal random variables also have normal
distributions. Suppose that each of the d random variables x; is normally distributed,
each with its own mean and variance: Dy, (xi) ~ N(u;, o;")‘ If these variables are
independent, their joint density has the form

d d
1 ) 2
p(x) = I Ip(x,) — I I e 1/ 2Gi—pi) /o)
il ' «/27'[0’1‘

i=1

1 1 Z i Mg :

(zn)d/zn o; i=1
i=1

This can be written in a compact matrix form if we observe that for this case the
covariance matrix is diagonal, that is,

[\

ol 0 0
0 022 ... 0

D P (101)
0 0 03

and hence the inverse of the covariance matrix is easily written as

/o2 0 , 0
3= ? 1/102 ? (102)
0 0 .. 1o
Thus, the exponent in Eq. 100 can be rewritten using
d /. 2
> (l" ;“) = (= W'Y (x~ ). (103)
i=1

Finally, by noting that the determinant of 3, is just the product of the variances, we
can write the joint density compactly in terms of the quadratic form

1 1 -
px) = Wexp [—E(X - w3 (x - M)] . (104)

This is the general form of a multivariate normal density function, where the covari-
ance matrix 3, is no longer required to be diagonal. With a little linear algebra, it can
be shown that if x obeys this probability law, then

p=_Ex= / X p(X) dx
L=x—-mE— = /(x — (X — ) px)dx, (105)
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just as one would expect. Multivariate normal data tend to c}uster about the mean
vector, W, falling in an ellipsoidally shaped cloud whose prmc1p_al axes are the eigen- \
vectors of the covariance matrix. The natural measure of the distance from X to the

mean g is provided by the quantity

= x— Y- W, (106)

MAHALANOBIS which is the square of the Mahalanobis distance from x to . It is ngt as easy to |

DISTANCE standardize a vector random variable (reduce it to zero mean and unit covariance
matrix) as it is in the univariate case. The expression analogous tg u=x—-wlo
isu = 3 2(x — p), which involves the “square root” of the inverse of the co-
variance matrix. The process of obtaining % ~"/2 requires finding the ei'genvalues and

eigenvectors of %, and itis just a bit beyond the scope of this Appendix.

A.5.2 Bivariate Normal Densities

It is illuminating to look at the bivariate normal density—that is, the case of two

) . . 5
normally distributed random variables x; and x,. It is convenient to define o =
O11, 022 = a9y and to introduce the correlation coefficient p defined by

a1

0102'

With this notation, the covariance matrix becomes

3= o111 O | _ 012 ,001202]

T o o | po1oz 0y
and its determinant simplifies to
5| = 007 (1 — p%).

Thus, the inverse covariance matrix is given by

s o 1 l: o} —pT102 ]
c2c2(1— p?) L —PO102 o1

1 1/o} —p/(0102) ]

) \: —p/(oo)  1/of '

Next we explicitly expand the quadratic form in the normal density:

x—w'E =) ,
1 1/0} —p/(6102) X1 — M1 ]
[(x1 = p) (%2 — Mz)]—lTp; [ —p/(01162) 1/o? ] { Y2 — 1o

2
1 xl—m)z_zp(xl—m)(xz~uz>+<m—uz>].
1—p? o1 o1 o2 a2

Thus, the general bivariate normal density has the form

I

I

PRINCIPAL AXES
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1

Py (X1, X)) = m
wexp [_ - i ~ [(xl ;1m>2 B 2,0(” ;m ) (xz ;2Mz) N <xz ;ZM)ZH _

As we can see from Fig. A4, p(x{, xp) is a hill-shaped surface over the xqx;
plane. The peak of the hill occurs at the point (x1, xp) = (41, (a)—that is, at the
mean vector pt. The shape of the hump depends on the two variances o7 and o7, and
the correlation coefficient p. If we slice the surface with horizontal planes parallel to
the x;x, plane, we obtain the so-called level curves, defined by the locus of points

where the quadratic form
(Jn - M1)2 _ 2p<x1 - m>(xz - l/«z) n (Xz - Mz)z
gy o1 o9 [¢))
is constant. It is not hard to show that |p| < 1 and that this implies that the level
curves are ellipses. The x and y extent of these ellipses are determined by the vari-
ances o and o7, and their eccentricity is determined by p. More specifically, the
principal axes of the ellipse are in the direction of the eigenvectors e; of X, and the
different widths in these directions are +/2;. For instance, if p = 0, the principal axes
of the ellipses are parallel to the coordinate axes, and the variables are statistically
independent. In the special cases where p = 1 or p = —1, the ellipses collapse to
straight lines. Indeed, the joint density becomes singular in this situation, because
there is really only one independent variable. We shall avoid this degeneracy by as-
suming that |p] < 1.
One of the important properties of the multivariate normal density is that all con-

ditional and marginal probabilities are also normal. To find such a density explic-
itly, which we denote py,;., (x2]x1), we substitute our formulas for py, ., (x1, ¥2) and

(112)

(113)

plx)
A

FIGURE A.4. A two-dimensional Gaussian having mean g and nondiagonal covariance
3., if the value on one variable is known, for instance x; = Xy, the distribution over the
other variable is Gaussian with mean 1.
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Py, (x1) in the defining equation

p.\'l,\‘z (xl ’ x2)

e

s (5 )(——ﬂ)(—zh(m)]l

1
B \:2710102\/1 — p?

XL

« [mgle%(—r)z]

1 1 [xz*uz pM—MT
2royy/1— p? P2a=m | o o1
2
1 1 [x2—lu2+ o0 —m)])
V2mor/1 — p? oo/ 1 — p?

2

Thus, we have verified that the conditional density py|v, (x1]x2) is a normal distri-
bution. Moreover, we have explicit formulas for the conditional mean py) and the

CONDITIONAL | 5
MEAN conditional variance 03;:

Moy = Mo+ ,O(Q(A‘-l —p) and  op =05(l— 0%, (115)
o

as illustrated in Fig. A.4.

These formulas provide some insight into the question of how knowledge of the ;
value of x; helps us to estimate x. Suppose that we know the value of x;. Then

a natural estimate for x, is the conditional mean, po)1. In general, [ty 18 a linear
function of x;; if the correlation coefficient p is positive, the larger the value of x,
the larger the value of L1y If it happens that x is the mean value i, then the best
we can do is to guess that x, is equal to pt2. Also, if there is no correlation between
x1 and x, we ignore the value of xy, whatever it is, and we always §stimate x3 by
(2. Note that in that case the variance of x,, given that we know x1, is the same as
the variance for the marginal distribution, that is, 022“ = o2. If there is correlation,
knowledge of the value of x;, whatevet the value is, reduces the variance. Indg:ed,
with 100% correlation there is no variance left in x when the value of x; is known.

A.6 HYPOTHESIS TESTING

Statistical hypothesis testing provides a formal way to decide if the results of an_
experiment are significant or accidental. It is standard statistical ternunology to ca'll a
set of n measurements X, = {x1, X2, . . ., X} a sample of size n. However, in keeping ‘
with the terminology that is universally used in pattern recognition, we shall call

each individual measurement a sample. Suppose that we have a set of samples that
are drawn either from a known distribution Dg or from some other distributiot. I
pattern classification, we seek to determine which distribution was the source of any
sample; and if it is indeed Dy, we would classify the point accordingly..Hy'potheSIS“‘
testing addresses a somewhat different but related problem. We assume 1n1t1.ta\11y thflt
distribution Dy is the source of the patterns; this is called the null hypothesis and 18
often denoted Hy. Based on the value of any observed sample, we ask whether we cait.

(114
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reject the null hypothesis—that is, state with some degree of confidence (expressed
as a probability) that the sample did not come from Dy.

For instance, Dy might be a standardized Gaussian, p(x) ~ N (0, 1), and hence
our null hypothesis is that a sample comes from a Gaussian with mean p = 0. If the
value of a particular sample is small (e.g., x = 0.3), it is likely that it came from the
Dy; after all, 68% of the samples drawn from that distribution have absolute value
less than x = 1.0 (cf. Fig. A.1). If a sample’s value is large (e.g., x = 5), then we
would be more confident that it did not come from Dy. At such a situation we merely
conclude that (with some probability) the sample was drawn from a distribution with
w # 0.

Viewed another way, for any confidence—expressed as a probability—there exists
a criterion value such that if the sampled value differs from 4 = 0 by more than
that criterion, we reject the null hypothesis. (It is traditional to use confidences of
.01 or .05.) We then say that the difference of the sample from O is statistically
significant. For instance, if our null hypothesis is a standardized Gaussian, then if
our sample differs from the value x = 0 by more than 2.576, we could reject the null
hypothesis “at the .01 confidence level,” as can be deduced from Table A.1. A more
sophisticated analysis could be applied if several samples are all drawn from Dy or
if the null hypothesis involved a distribution other than a Gaussian. Of course, this
usage of “significance” applies only to the statistical properties of the problem—it
implies nothing about whether the results are “important.” Hypothesis testing is of
great generality, and it is useful when we seek to know whether something other than
the assumed case (the null hypothesis) is likely to be the case.

STATISTICAL
SIGNIFICANCE

A.6.1 Chi-Squared Test

Hypothesis testing can be applied to discrete problems too. Suppose we have n
patterns—1; of which are known to be in wi, and n, in wy;—and we are interested
in determining whether a particular decision rule is useful or informative. In this
case, the null hypothesis is that a random decision rule is present—one that selects
a pattern.and with some probability P places it in a category which we will call the
“left” category, and otherwise in the “right” category. We say that a candidate rule is
informative if it differs signficantly from such a random decision.

What we need is a clear mathematical definition of statistical significance under
these conditions. The random rule (the null hypothesis) would place Pn; patterns
from w; and Pn, from w, independently in the left category and the remainder in
the right category. Our candidate decision rule would differ significantly from the
random rule if the proportions differed significantly from those given by the random
rule. Formally, we let n;;, denote the number of patterns from category «; placed in
the left category by our candidate rule. The so-called chi-squared statistic for this
case is

iL — Tlie 2
pr= ) it (116)

i=1 Tie

where, according to the null hypothesis, the number of patterns in category w; that
we expect to be placed in the left category is n;, = Pn;. Clearly x? is nonnegative,
and it is zero if and only if all the observed numbers 7,7, match the expected numbers
n;e. The higher the value of x2, the less likely it is that the null hypothesis is true.
Thus, for a sufficiently high XZ, the difference between the expected and observed
distributions is statistically significant, we can reject the null hypothesis, and we




