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Day 1

Machine learning
and density estimation

This first day, you will get acquainted with PRTools, a pattern recognition and machine
learning toolbox for Matlab. If you are not familiar with Matlab yet, please read Ap-
pendix A first. Next, you will perform some exercises on density estimation and construct a
first, simple classifier.

1.1 PRTools

PRTools is built around the concept of a dataset, a set of objects represented by vectors
in a feature space. The central data structure is hence the dataset object. It consists of a
matrix of size n × p; n row vectors corresponding to the objects, represented by p features
each. Attached to this matrix is a set of n labels (strings or numbers), one for each object,
and a set of p feature names (also strings or numbers), one for each feature. Moreover, a set
of prior probabilities, one for each class, is stored. Objects with the same label belong to the
same class.

In most help files in PRTools, a dataset is denoted by A. Almost all routines can handle
multi-class objects. Some useful routines to handle datasets are:

dataset routines

dataset Define a dataset from data matrix and labels
gendat Generate a random subset of a dataset
genlab Generate dataset labels
seldat Select a specific subset of a dataset
setdat Define a new dataset from an old one by replacing its data
getdata Retrieve data from dataset
getlab Retrieve object labels
getfeat Retrieve feature labels
renumlab Convert labels to numbers
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Sets of objects may be supplied externally or may be generated by one of the data generation
routines in PRTools (see Appendix B). Their labels may also be supplied externally or may
be the result of a classification or a cluster analysis. A dataset containing 10 objects with 5
random measurements can be generated by:

>> data = rand(10,5);

>> a = dataset(data)

10 by 5 dataset with 0 classes: [ ]

In this example no labels are supplied, therefore no classes are detected. Labels can be added
to the dataset by:

>> labs = [1 1 1 1 1 2 2 2 2 2]’; % labs should be a column vector

>> a = dataset(a,labs)

10 by 5 dataset with 2 classes: [5 5]

Note that the labels have to be supplied as a column vector. A simple way to assign labels to
a dataset is offered by the routine genlab in combination with the Matlab char command:

>> labs = genlab([4 2 4],char(’apple’,’pear’,’banana’))

>> a = dataset(a,labs)

10 by 5 dataset with 3 classes: [4 4 2]

Note that the order of the classes has changed. Use the routines getlab and getfeat to
retrieve the object labels and the feature labels of a. The fields of a dataset can be inspcted
by the converting it into a structure, e.g.:

>> struct(a)

data: [10x5 double]

lablist: [2x4 cell]

nlab: [10x1 double]

labtype: ’crisp’

targets: []

featlab: []

featdom:

prior: []

cost: []

objsize: 10

featsize: 5

ident: 10x1 cell

version: [1x1 struct] ’10-Mar-2015 09:36:22’

name: []

user: []

In the online information on datasets (help datasets), the meaning of these fields is ex-
plained. Each field may be changed by a set*-command, e.g.

>> b = setdata(a,rand(10,5))

Field values can be retrieved by a similar get*-command, e.g.

>> classnames = getlablist(a)

In nlab an index into the list of class names, lablist, is stored for each object. Note that this
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list is ordered alphabetically. The size of a dataset can be found by both size and getsize:

>> [n,p] = size(a);

>> [n,p,c] = getsize(a);

The number of objects is returned in n, the number of features in p and the number of classes
in c. The class prior probabilities are stored in prior. By default, these are set to the class
frequencies if the field is empty. Data in a dataset can also be retrieved by double(a) or
simply by +a.

Exercise 1.1 Have a look at the help of seldat. Note that it has many input parameters.
In most cases, you can ignore input parameters of functions that are of no interest to
you; the default values are often good enough. Use the routine to extract the banana

class from a, store it again in a and check this by inspecting +a.

Datasets can be manipulated in many ways, comparable to Matlab matrices. So [a1; a2]

combines two datasets, provided that they have the same number of features. The feature
set may be extended by [a1 a2] if a1 and a2 have the same number of objects.

Exercise 1.2 Generate 3 new objects for each of the classes ’apple’ and ’pear’ and add
them to the dataset a. Check if the class sizes change accordingly.

Exercise 1.3 Add a new, 6th feature to the dataset a.

Another way to inspect a dataset is to make a scatterplot of the objects in the dataset. For
this the function scatterd is supplied. This plots each object in a dataset in a 2D graph,
using a coloured marker when class labels are supplied. When more than two features are
present in the dataset, only the first two are used. For obtaining a scatterplot of two other
features they have to be explicitly extracted first, e.g. a1 = a(:,[2 5]);. With an extra
option ’legend’ one can add a legend to the figure, showing which markers indicate which
classes.

Exercise 1.4 Use scatterd to make a scatterplot of the features 2 and 5 of dataset a. Try
using the ’legend’ option.

Exercise 1.5 Next, use scatterdui to make a scatterplot of a and use its buttons to select
features (note that ’legend’ is not a valid option here).

Exercise 1.6 It is also possible to create 3D scatterplots. Make a 3-dimensional scatterplot
by scatterd(a,3) and try to rotate it by the mouse after pressing the Rotate 3D
toolbar button.

Exercise 1.7 Use one of the procedures described in the PRTools summary (section B) to
create an artificial dataset of 100 objects. Make a scatterplot. Repeat this a few times.
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Exercise 1.8 Load the 4-dimensional Iris dataset by a = iris and make scatterplots of
all feature combinations using the gridded option of scatterd. Try also all feature
combinations using scatterdui.

Plot, in a separate figure, the one-dimensional feature densities by plotf. Identify
visually the best combination of two features to classify this data. Create a new dataset
b that contains just these two features. Create a new figure using the figure command
and plot a scatterplot of b.

Exercise 1.9 Generate a dataset that consists of two 2D uniformly distributed classes of
objects using the rand command (see help rand). Transform the sets such that for the
[xmin xmax; ymin ymax] intervals the following holds: [0 2; -1 1] for class 1 and
[1 3; 1.5 3.5] for class 2. Generate 50 objects for each class. An easy way is to do
this for the x and y coordinates separately and combine them afterwards. Label the
features ’area’ and ’perimeter’.

Check the result using scatterd and by retrieving object labels and feature labels.

Exercise 1.10 Generate a dataset using gendatb containing 10 objects per class. Enlarge
this dataset to 100 objects per class by generating more data using the gendatk and
gendatp commands. Compare the scatterplots with a scatterplot of 100 objects per
class directly generated by gendatb. Explain the difference.

You should now be familiar enough with PRTools to work through most exercises in the
remainder of this manual. For more information on PRTools, please see Appendix B.

1.2 The Gaussian distribution

1.2.1 Estimation

PRTools offers a function gauss allowing you to create datasets with samples drawn from
a Gaussian distribution with specified mean µ and variance σ2 (or, for multivariate Gaussian
distributions, mean vector µ and covariance matrix Σ).

Exercise 1.11 Generate 1000 objects from a 1D Gaussian distribution with zero mean and
unit variance. Make a scatterplot. Do the same for data from a Gaussian distribution
with mean 5 and variance 2.

The Gaussian distribution is very widely used, as was discussed in the lectures. There is a good
reason for this: the central limit theorem says that the sum of a large number of independently
distributed samples will approximately be distributed according to a Gaussian. In real world
experiments, it is assumed that the things we measure are often such sums of independently
distributed values. Furthermore, noise on physical measurements is often assumed to be
Gaussian.1

1Which may often be justified, but coincidentally also makes life very easy for the experimenter.
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Figure 1.1: The pdf of a uniform distribution on [0, 1].

Exercise 1.12 (a) Generate 100 random values between 0 and 1 using rand. This func-
tion generates samples drawn from a uniform distribution, which is constant in some
range, and 0 outside. Figure 1.1 shows the probability density function of a uniform
distribution on [0, 1].

First, if we would average these 100 values, what value would you predict for the average?
Compute this.

(b) Now repeat this 1000 times and store the averages in a vector x:

n = 100;

for i = 1:1000

x(i) = mean(rand(n,1));

end;

Make a histogram of this vector, using hist(+x). What does the histogram remind you
of?

(c) Compute the mean and the variance (var) of the distribution. .
(d) When we would have generated 1000 objects at a time instead of 100, what would
you have expected for the mean and variance of the average? Try it.

(e) When we would have repeated the experiment 10,000 times instead of 1000, what
would you have expected for the mean and variance of the average?

The previous exercise showed you that if you draw a large number n of independent samples
from any distribution (in this case, a uniform one), their average will tend to have a Gaussian
distribution. In fact, if the original distribution has mean µ and non-zero variance σ2, then:

s− nµ√
nσ2

n→∞→ N(0, 1). (1.1)

where s is the sum of the samples. This is the so-called central limit theorem. It shows that
the Gaussian distribution is likely to pop up on many occasions.
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1.2.2 Visualisation

It is always informative to visualise a density after you have estimated its parameters. If such
a visualisation is combined with a scatter plot of the data, it is often immediately obvious
whether the density estimate is a good one. Unfortunately, we can only visualise densities in
at most 3 dimensions.

Exercise 1.13 PRTools provides a routine plotm to plot a density estimate mapping.
(a) Generate a 1D Gaussian dataset a and make a scatter plot. Estimate the pa-
rameters of the density using w = gaussm(a,1); and plot the density estimate on top
of the data, using plotm(w,1);.
(b) Do the same for a 2D Gaussian dataset. You can now use plotm(w,2); to plot a
2D contour plot of the density on top of the scatterplot, or alternatively plotm(w,3);

through plotm(w,6);.

optional

1.2.3 Sphering

As discussed in the lectures, we can perform eigenanalysis on the covariance matrix of a
Gaussian distribution’s covariance matrix to get an idea of its main axes.

Exercise 1.14 Generate 1000 objects in a 2D Gaussian dataset a with zero mean and Sigma

= eye(2). Calculate the covariance matrix C = cov(+a) and its eigenvectors and eigen-
values, [E,D] = eig(C). If you repeat this a number of times, what do you notice about
the eigenvectors, which are stored as columns in E? Why do you think this is?

Exercise 1.15 (a) Repeat the experiment above, with Sigma = [3 0; 0 1]. How do the
eigenvectors behave now? And the eigenvalues, on the diagonal of D?

(b) Make a 2D scatterplot of one of these datasets. Plot in the eigenvectors (using hold

on; plot([0 E(1,1)],[0 E(2,1)],’r-’) if the eigenvectors are stored as columns in
E). Also plot the eigenvectors multiplied by the eigenvalues.

(c) Make the same plot for Sigma = [3 -1.5; -1.5 2].

In the lectures, it was discussed how eigenanalysis of the covariance matrix can be used to
sphere the data.

Exercise 1.16 Generate a dataset a containing 1000 samples from a 2D Gaussian distribu-
tion with mu = [0 0] and Sigma = [3 1.5; 1.5 2]. Use eigenanalysis to sphere the
data: [E,D] = eig(cov(+a)); b = a*E*(inv(sqrt(D))); Inspect the original data
and the sphered data.

end optional
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1.3 Parametric density estimation

As discussed in the lectures, we can estimate the expectation and variance of any dataset. The
question is how reliable these estimates are. We can learn about this by repeating experiments
a large number of times and noting how the estimates change.

Exercise 1.17 (a) Generate 1000 1D Gaussian datasets with n samples, zero mean and
unit variance. For each dataset i, estimate the expectation and variance and store the
value in m(i) and v(i). Afterwards, calculate the mean and standard deviation (std)
of the arrays m and v. Repeat this for n = 10, 50, 100, 250 and 500. Finally, plot
the values you found for the mean and standard deviation, as a function of n, using
errorbar:

clear all;

n = [10 50 100 250 500];

for i = 1:length(n)

for j = 1:1000

a = gauss(n(i),0,1);

m(j) = mean(a); v(j) = var(a);

end;

mean m(i) = mean(m); std m(i) = std(m);

mean v(i) = mean(v); std v(i) = std(v);

end;

figure(1); errorbar(n,mean m,std m);

figure(2); errorbar(n,mean v,std v);

(b) How many objects would you say are needed to reliably estimate the mean of a
1D Gaussian dataset? And the variance?

If all went well, in the exercise above you noticed that the standard deviation of the estimate
of the mean goes down slowly as n increases. In fact, using the central limit theorem, it’s easy
to show that if you draw n samples from a N(0, σ) distribution, then the standard deviation
of the estimate of the mean has itself a Gaussian distribution N(0, σ√

n
).

The method followed above is quite general: if you have sufficient data (or if you can generate
data, as was the case above), it is always a good idea to repeat an experiment a number of
times and get an idea of the spread of the outcome.2

Exercise 1.18 (a) Now generate 10 objects from a 2D, 5D and 10D Gaussian distribution.
Compute the covariance matrix. Plot the condition number of the estimated covariance
matrix (see cond) as a function of the number of dimensions d. The condition number
of a matrix gives an indication of whether the matrix is becoming singular and, as a
result, how inaccurate taking the inverse will be. If the condition is bad, the matrix
is nearly singular, its inverse cannot be calculated, and you will have a problem in the
Gaussian function.

What do you see?

2In fact, this should be standard practice for any reported measurement or simulation result.
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Exercise 1.19 (a) Consider a Gaussian distribution with mean mu = [0 0] and covariance
matrix Sigma = [1 0; 0 4]. Plot a 2D scatterplot by generating a large amount of
objects from this distribution.

(b) Now change the covariance matrix into Sigma = [1 1; 1 4] and plot the den-
sity again. How do the non-zero values for the covariances influence the distribu-
tion?

(c) Can you tell what is wrong with the definition of the covariance matrix Sigma =

[1 1; 0 4]?

(d) Can you predict what the distribution will look like when the covariance matrix
Sigma = [1 1; 1 10000]? Check it! (you will probably need the command axis

equal to force the axis of the scatterplot to have equal ranges).

1.4 Non-parametric density estimation

1.4.1 Histograms

The simplest way to estimate the density of one measurement is by plotting a histogram,
which you already encountered in Exercise 1.12. It is easiest to do this for one measurement
(Matlab has a command hist), but you can create a histogram plot of 2 measurements at
the same time.

The main problem in using histograms is choosing the right bin size. Making the bins too
broad will hide useful information within single bins; making them too small will result in
bins containing too few samples to be meaningful.

Exercise 1.20 (a) Generate 10 1D Gaussian datasets and calculate the average histogram
and the standard deviation:
for i = 1:10

a = gauss(n,0);

h(i,:) = hist(+a,-5:5);

end;

errorbar (-5:5, mean(h), std(h));

with different numbers of samples n (e.g. 10, 100 and 1000).

(b) For what n do you think the histogram starts giving a good impression of the true
density?

(c) Repeat the above for data obtained from a Laplacian distribution (which is more
peaked than the Gaussian); use a = laplace(n,1) to generate n samples. Does the
same hold? Why?

Note how you used 2 dimensions to visualise the 1D histogram. Similarly, we can create 2D
histograms using 3 dimensions. In practice, visualising 3D data or a function of 2D data is
often as far as we can go with computers.
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Exercise 1.21 Generate a 2D Gaussian dataset and use the hist2 function provided:

a = gauss(100,[0 0]);

hist2(a);

Note that hist2 is not a standard Matlab function, so it is a bit less flexible than the
standard hist function. To have a look around the histogram, try help rotate3d.

(a) For the standard number of bins (10× 10), how many samples would you say are
needed to get a good idea of the shape of the histogram? Try this by generating various
numbers of samples and inspecting whether the histogram changes if you repeat the
experiment.

(b) You can also play with the number of bins; see help hist2. For 5 × 5 bins,
how many samples do you need? Is the representation still accurate? And for 20 × 20
bins?

1.4.2 Parzen density estimation

As discussed during the lectures, the Parzen method estimates a density by centering a local
kernel on each object and adding the contributions of all kernels. In PRTools, these kernels
are Gaussian.

Exercise 1.22 (a) Start by creating a simple dataset with:

>> a = gendats([20 20],1,8);

(Type help gendats to understand what type of data we have now.)

(b) Define the width parameter h for the Gaussian kernel:

>> h = 0.5;

(c) The function parzenm estimates a density for a given dataset. In most cases a
PRTools dataset is labeled, and these labels are used in the function parzenm to
estimate a density for each class. To define a Parzen density estimator with a certain
width parameter h on the entire dataset, ignoring labels, type:

>> w = parzenm(+a,h);

This mapping can now be plotted along with the data:

>> scatterd(+a); plotm(w,1);

If your graphs look a little “bumpy”, you can increase the grid size PRTools uses for
plotting:

>> gridsize(100);

and try the above again.

(d) Plot the Parzen density estimate for different values of h. What is the best
value?

(e) Save the figure as Matlab file: saveas(gcf,’figparzen’,’m’).
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When you want to evaluate a fit of a density model to some data, you have to define a
goodness-of-fit measure. One possibility is to use the log-likelihood, defined as:

LL(X ) = log

(∏
i

p̂(x i)

)
=
∑
i

log (p̂(x i)) (1.2)

The better the data x fits in the probability density model p̂, the higher the values of p̂(x )
will be. This will result in a high value of

∑
i log (p̂(x i)). When we have different probability

density estimates p̂, we will use the one giving the highest value of LL.

Note that using different values for the width parameter h in Parzen density estimation results
in different estimates p̂. Using the log-likelihood as a criterion, we can optimize the value of
this free parameter h to maximise LL.

To get an honest estimate of the log-likelihood, the log-likelihood (1.2) has to be evaluated on
a validation set. That means that new data has to be created (or measured) from the same
distribution as the training data came from.

Exercise 1.23 Use the data from the same distribution as in the previous exercise to train
a Parzen density estimator for different for different values of h. Compute the log-
likelihood of this training set given the estimated densities (for different h):

a = gendats([20 20],1,8); % Generate data

hs = [0.01 0.05 0.1 0.25 0.5 1 1.5 2 3 4 5]; % Array of h’s to try

for i = 1:length(hs) % For each h...

w = parzenm(+a,hs(i)); % estimate Parzen density

LL(i) = sum(log(+(a*w))); % calculate log-likelihood

end;

plot(hs,LL); % Plot log-likelihood as function of h

(since w is the estimated density mapping w, the estimated density p̂ for objects in a
dataset a is given by +(a*w)).

(a) What is the optimal value for h, i.e. the maximal likelihood? Is this also the best
density estimate for the dataset?

Exercise 1.24 (a) Use the same data as in the previous exercise, but now split the data
into a training and test set of equal size. Estimate a Parzen density on the training set
and compute the Parzen density for the test set. Compute the log-likelihood on both
the training and test sets for h = [0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5]. Plot these log-likelihood
vs. h curves:
a = gendats([20 20],1,8); % Generate data

[trn,tst] = gendat(a,0.5); % Split into trn and tst, both 50%

hs = [0.1 0.25 0.5 1 1.5 2 3 4 5]; % Array of h’s to try

for i = 1:length(hs) % For each h...

w = parzenm(+trn,hs(i)); % estimate Parzen density on trn

Ltrn(i) = sum(log(+(trn*w))); % calculate trn log-likelihood

Ltst(i) = sum(log(+(tst*w))); % calculate tst log-likelihood

end;

plot(hs,Ltrn,’b-’); hold on; % Plot trn log-likelihood as function of h

plot(hs,Ltst,’r-’); % Plot tst log-likelihood as function of h

14



What is a good choice for h?

Exercise 1.25 (a) Use the same data as in the previous exercise, but now let PRTools
find the optimal h using leave-one-out cross-validation. This can simply be performed
by not specifying h, i.e. calling w = parzenm(+a). To find out what value of h the
function actually uses, you can call h = parzenml(+a). Does the h found correspond
to the one you found to be optimal above?

optional

Exercise 1.26 Use the same procedure as in Exercise 1.22. Change the number of training
objects from 20 per class to 100 per class. What is now the best value of h?

end optional

1.4.3 Nearest neighbour density estimation

Exercise 1.27 (a) Again generate a dataset a = gendats([20 20],1,8) and apply the
knnm density estimator for k = 1: w = knnm(a,1). Plot the density mapping using
scatterd(a); plotm(w,1). What did you expect to see for k = 1? Why don’t you see
it?

(b) Increase the grid size, e.g. gridsize(500), and plot again.

(c) Try different values of k instead of 1. Judging visually, which do you prefer?

(d) How could you, in theory, optimise k?

Exercise 1.28 Which do you prefer: the Parzen density estimate or the nearest neighbour
density estimate?
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Day 2

Classification

As we discussed in today’s lecture, to classify an object x , you have to assign it to the class
ωi with the highest class posterior probability p(ωi|x ). In most cases this class posterior
probability is rewritten in terms of the class-conditional probability p(x |ω) using Bayes’ rule.
First, we will construct a simple normal density plug-in Bayes classifier by hand.

2.1 Bayesian classification

You will now construct a simple Bayesian classifier. The setup of the algorithm will be:

1. create a train and test dataset;

2. fit, to each of the classes in the training set, a class conditional probability density
model;

3. estimate the class-conditional probability density for each of the test objects;

4. compute the posterior probability for each of the objects;

5. assign to each test object the class label corresponding to the class with the highest
posterior probability.

Exercise 2.1 The Golub set is a classic microarray dataset1 containing acute lymphatic
leukemia (ALL) and acute myeloid leukemia (AML) samples. There is a training set a

of 38 samples and a test set b of 34 samples. This is one of the first microarray datasets
to which classifiers were applied.

The data originates from Affymetrix HU-6800 oligonucleotide microarrays, normalised
by the Affymetrix software. Originally, there were 7129 genes measured per microarray,
but a variation filter (picking out genes that show some variation) left 3051 genes. The
data have been log2-transformed.

1Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing
JR, Caligiuri MA, Bloomfield CD and Lander ES. Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286(5439):531-537, 1999.
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An intriguing problem is how to select a small number of predictive genes from the 3051
available; this will be discussed on day 3. For now, we will just pick genes number 1413
and 738.

(a) Load the data and select the two predictive features:

>> load golub

>> a = a(:,[1413 738]);

>> b = b(:,[1413 738]);

Generate this dataset and make scatterplots of a and b.

(b) Extract objects from each of the classes by first extracting the labels from the
data. Next, find the indices of the objects of each of the classes and finally extract the
corresponding objects from the dataset:

lab = getlab(a);

I = find(lab==1);

a1 = +a(I,:);

Write a script which performs these tasks. Extract the two classes from dataset a and
check it by plotting each separate class in a scatterplot again.

(c) Now we have two data sets, each one corresponding to one of the classes. Estimate
on each of the classes a Gaussian density and call the resulting mappings w1 and w2,
respectively. Visualise the density estimates in the scatter plot.

(d) For each object in b estimate the class-conditional probability for class 1 and for
class 2: phat1 = +(b*w1); phat2 = +(b*w2);. Inspect the results.

(e) Estimate the prior probabilities of each of the two classes using the training
set.

(f) For each object in b, compute the posterior probability. Use the second output
argument of the Matlab function max (have a look at help max) to find for each object
for which class the posterior is the largest. In this way, you assign to each object a label
1 or 2, according to the highest posterior probability.

Congratulations! You just have constructed your own classifier!

For this simple data, the assumption of a Gaussian distribution per class is reasonably OK.
For other datasets we might need more complex and more flexible density estimates, for
instance the Parzen density or the nearest neighbor density.

Exercise 2.2 How do you have to adapt your script from exercise 2.1 to not use the Gaussian
density, but the Parzen density?

Exercise 2.3 Count the number of differences between the true labels of the test set and the
labels you obtained from your classifier. If you have two vectors lab1 and lab2 both
containing labels 1 and 2, you can find the differences using::

>> diffl = (lab1 ~= lab2);

More extensive methods of evaluating the performance of your classifer are more easily per-
formed using a PRTools builtin classifier.
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Exercise 2.4 The classifier you constructed above is (roughly) implemented in PRTools as
the quadratic normal density-based classifier or qdc (section 2.5). That is, w = qdc(a);

testc(b*w) trains this classifier on the Golub training set and tests it on the test set.

(a) Train the qdc classifier on the training set, and test it on both the training set and
the test set. What do you notice?

(b) Predict classifier performance on new data by performing 10-fold cross-validation
on the trainset: crossval(a,qdc,10,1). How does this compare to the actual test
error? Also perform 20-fold cross-validation.

(c) Inspect the Receiver-Operator Characteric (ROC) curve for the training set, using
plote(roc(a,w),’nolegend’). Do the same for the test set.

optional

Exercise 2.5 Another well-known microarray dataset is that of Khan2. Load it (load khan),
look for some interesting features and repeat the above procedures to build and evaluate
a classifier.

end optional

2.2 The logistic classifier

Exercise 2.6 (a) Given a two-class classification problem with classes ω1 and ω2, and given
that you know p(ω1|x ), what will be the function for p(ω2|x )? (this is simpler than you
may think).

(b) Show that the formula for the logistic classifier as given in the lecture:

log

(
p(ω1|x )

p(ω2|x )

)
= w0 + wTx (2.1)

can be rewritten using a logistic function.

Exercise 2.7 (a) Generate a dataset using gendats([50 50],2,1). Can you explain what
type of data distribution you will get, after looking at help gendats?

(b) Now train a logistic classifier loglc and plot the classifier output using plotm(w).
Does this classifier fit the data?

(c) Make a new dataset using gendats([50 50],2,5). What is the difference between
this and the previous dataset? Again train a logistic classifier and plot the classifier.
What is the difference between this classifier and the one you trained before?

2Khan J, Wei JS, Ringner M, Saal L, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu C,
Peterson C and Weltzer P. Classification and diagnostic prediction of cancers using gene expression profiling
and artificial neural network. Nature Medicine 7:673-679, 2001.
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2.3 Classifiers in PRTools

In PRTools the classifiers based on the Gaussian class distribution, the Parzen density and
the nearest neighbor density, are already implemented. They can easily be trained using:

>> w1 = qdc(a);

>> w2 = parzenc(a);

>> w3 = knnc(a);

The name qdc, for the quadratic classifier, will be explained later. For simplicity we left out
the additional optional parameters, to specify the width parameter h in the Parzen density
or the number of neighbors k in the nearest neighbor classifier.

Furthermore, the toolbox provides simple routines to show the decision boundary for classifiers
on two-dimensional data:
>> scatterd(a);

>> plotc(w1);

Finally, one can find the output classification labels for an object by labeld and find the
classification performance by testc:

>> lab = a*w1*labeld

>> e = a*w1*testc

Exercise 2.8 (a) Generate the following classification problem:

>> a = gendatb([20 20]);

Create a scatterplot. Can you imagine what would happen when you apply the different
classifiers, qdc, parzenc or knnc?

(b) Train the three classifiers, and plot their decision boundaries in the scatterplot
and estimate the classification error for the three classifiers using testc. Check if your
predictions and expectations are correct.

Exercise 2.9 Change the width parameter h in the parzenc and the k in the knnc. Plot
the decision boundaries of the classifiers. What happens with the classifier when you
increase h and k? How does this influence the classification error?

2.4 The curse of dimensionality

You should now have some feeling for what it means to construct a classifier and estimate
the classification error. In this section we will investigate a very important phenomenon in
pattern recognition: the curse of dimensionality. It appears that it is not always good to
increase the number of features. When more and more features are used in a classification
problem, the performance on an independent test set will deteriorate.

Exercise 2.10 (a) Generate a training dataset according to a = gendats([10 10],2,2)

and a test set using b = gendats([1000 1000],2,2). Create a scatterplot of this
data. Read the help and explain what the second and third input parameter mean.
Vary them and check if your explanation is correct.
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(b) Train a one-nearest neighbor classifier knnc on a and test the classifier on both a

and on b. Why are the performances different?

(c) Increase the dimensionality of the dataset by a = gendats([10 10],5,2) and b =

gendats([1000 1000],5,2). How will the Bayes error change for this dataset?

(d) Train the classifier again and test it on the test set. How do the errors change in
comparison to the lower dimensional training set?

(e) Vary the dimensionality of the dataset between 2 and 100, say, [2 3 5 10 25

100]. Create a plot of the test error as function of the dimensionality. To get a clearer
picture, you can average your results over several random draws of a train and test set.
What dimensionality do you prefer?

Now we will investigate in more detail the special case where the class-conditional distributions
are assumed to be Gaussian distributions.

2.5 Gaussian-based discriminant functions

In section 2.1, you built a classifier by estimating the Gaussian densities associated with a
two-class dataset, applying Bayes’ rule and assigning an object to the class with the largest
a posteriori probability. In the lecture, we derived a closed form expression for gi(x ), the
function employed in the discriminant rule (under the assumption that x and µi are column
vectors):

gi(x ) = log(p(ωi))−
1

2
log(det(Σi))−

1

2
(x − µi)

TΣ−1
i (x − µi), (2.2)

with p(ωi) the a priori class probability, µi the mean and Σi the covariance of class ωi.
The discriminant rule that is employed for classification is to assign object x to class ωi if
gi(x ) > gj(x ), ∀j 6= i.

Exercise 2.11 In the lecture it was mentioned that in case of a two-class problem, the
quadratic discriminant function can be written as:

f(x ) = xTWx + wTx + w0. (2.3)

(a) Derive the expressions for W , w and w0.

Because the function f(x ) is quadratic in terms of x it is called a quadratic classifier. As
it was derived using the assumption of Gaussian (or normal) class distributions using Bayes’
rule, this classifier is called the Quadratic Bayes normal-density based classifier, or qdc in
PRTools.

Exercise 2.12 In the lecture it was stated that in case of a two-class problem and equal
covariance matrices, the discriminant function can be written as:

f(x ) = wTx + w0. (2.4)

(a) Derive the expressions for w and w0 given in the lecture.
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Exercise 2.13 In the lecture it was explained that the linear classifier with the identity
covariance matrix Σ̂ = σ2I , is identical to the nearest mean classifier.

(a) Give the formula for the nearest mean classifier.

(b) Show that this nearest mean classifier is indeed equivalent to a linear classifier with
identity covariance matrix.

The linear discriminant classifier, the Fisher classifier and the nearest mean classifier are
also implemented in PRTools, and they are called the Linear Discriminant classifier, ldc,
Fisher classifier, fisherc and the nearest mean classifier, nmc. Summarizing, today we have
encountered the following classifiers:

PRTools name description

nmc Nearest mean classifier
ldc Linear discriminant classifier
qdc Quadratic Bayes Normal classifier
fisherc Fisher classifier
parzenc Parzen density classifier
knnc k-nearest neighbor classifier

All these classifiers can be plotted using plotc and their classification error can be computed
using testc.

Exercise 2.14 (a) Load the cigars dataset. Train a qdc and a ldc classifier and call
the classifiers wq and wl respectively. Make a scatterplot of the data, and plot both
classifiers using: plotc(wq); plotc(wl). What do you think would be the shape
of the optimal decision boundary? Which classifier is therefore to be preferred?
(b) Check the classification error of both classifiers on the training set.

Exercise 2.15 Plot the decision boundaries of a ldc and qdc trained on the banana data
set with 100 objects per class: a = gendatb([100 100]).

(a) Is it appropriate to assume a Gaussian distribution for the data? What error rate
do you achieve?

(b) Why is this error rate so high?

2.6 Fisher classifier

In the following exercises we will focus on a classifier that is not based on the assumption that
the class-conditional probabilities are Gaussian distributions: the Fisher linear discriminant.

Exercise 2.16 For the dataset: a = gendats([10,10],2,3), train a Fisher classifier
(fisherc), visualize the dataset and the decision boundary. Also estimate the error
on the train and test set.
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Exercise 2.17 Use the same data as in Exercise 2.16. Instead of the Fisher classifier, use
the normal-based linear classifier ldc. What are the differences in decision boundary
and classification performance? Explain.

optional

Exercise 2.18 (a) Generate a Highleyman dataset with a = gendath. Compute the Fisher
classifier w and classify the training set using c = a*w. By d = c(:,1)*invsigm all
distances to the classifier can be found. Why? Inspect the distribution of d using
plotf(d,1).

(b) Compute the Fisher criterion for these distances. If you cannot find a routine for
this, write it.

(c) Compute also the distances to the Nearest Mean Classifier nmc and the resulting
value for the Fisher criterion. Verify the statement that the Fisher classifier optimizes
the Fisher criterion.

end optional

2.7 Classification trees

Classification trees are an example of an entirely different type of classifier. They partition
the feature space into rectangular regions using splits aligned with the axes.

Exercise 2.19 (a) Reload the Golub data and select the two predictive genes:

>> load golub

>> a = a(:,[1413 738]);

>> b = b(:,[1413 738]);

(b) Train a treec classifier on the training set a and evaluate its performance on both
a and b.

(c) Plot the data and the decision boundary of the classification tree. Do you under-
stand the shape of the decision boundary? Explain.

(d) The complexity of a classification tree is determined by the number of leaf nodes.
Pruning can be used to generate less complex models. Train classification trees on a for
various values 0,1,..,5 of the prune parameter and evaluate their performance on both a

and b. Which value of prune gives the best test results? Plot the data and the decision
boundary of the “optimal” model and explain why this model is better.

(e) Optional: repeat the analysis from the previous question on the complete golub

training data. Try out various options for the binary splitting criterion crit. Does
it have a large influence on the performance of the model on the test data? Can you
explain the results?
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2.8 The scaling problem

In this last section we have a brief look at the scaling problem. It appears that some classifiers
are sensitive to the scaling of features. That means, that when one of the features is rescaled
to very small or very large values, the classifier will change dramatically. It can even mean
that the classifier is not capable of finding a good solution. Here we will try to find out, which
classifiers are sensitive to scaling, and which are not.

Exercise 2.20 (a) Generate a simple 2D dataset (for instance, using gendatb), assign it to
a variable train and plot the decision boundaries of the six classifiers listed in section 2.5
and a decision tree. Use k = 1 for the knnc.

(b) Make a new dataset in which the second feature is 10 times larger. Do this as
follows:
>> newtrain = train;

>> newtrain(:,2) = 10*newtrain(:,2)

Train the seven classifiers again and plot the decision boundaries.

(c) Which classifiers are affected by this rescaling of the feature space? Why are they
affected, and others not?

(d) Is scale invariance an advantage or a disadvantage?
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Day 3

Feature selection and extraction

In the lecture, feature selection and extraction were discussed. This afternoon you are going
to apply both types of method to a number of simple and a number of more complicated
problems.

3.1 Feature selection

In the lectures, it was discussed how for feature selection (i.e. selecting individual measure-
ments), you basically need two things: a criterion function which tells you how good a subset
of measurements is, and a search algorithm: a way of creating such subsets. In PRTools,
functions to do both are present. The fsel function is a function which creates a mapping
w which can be applied to data. For example, if you select d = 5 measurements out of the
p = 10 measurements present in dataset a using w = fsel(a,’individual’,’NN’,5), then b

= a*w will give you a dataset b with 5 measurements. It also returns a list of ranked features
if you call it like this:

[w,list] = fsel(a);

This allows you to create a dataset b with the best d features like this:

b = a*w(:,1:d);

By default, fsel uses the simplest search algorithm available: the “d best” approach. Smarter
search algorithms are:

• forward selection, by fsel(a,’forward’);

• backward selection, by fsel(a,’backward’);

• plus-l-takeaway-r selection, by fsel(a,’+l-r’);

• branch & bound selection, by fsel(a,’b&b’);

PRTools also has a number of feature selection criterion functions. All of them are based
on optimising a final classification result. However, if you have another problem, you can
always define your own criterion, as was discussed in the lectures. The two criteria you will
use in the exercises below are:
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Figure 3.1: The Mahalanobis distance in (b) and (c) will be smaller than that in (a), as in
(a) the means are the furthest apart and the variances are the smallest.

• ’NN’, the performance of the 1-nearest neighbour classifier. This very simple classifier
assigns to a new object the label of the closest object in the training set. In PRTools,
it is also possible to train a classifier of your choice for any subset of features and use
classification error as a feature selection criterion. However, computing these for any
reasonable dataset takes a long time.

• ’maha-s’:

Jmaha−s = (µ2 − µ1)T
(

Σ1 + Σ2

2

)−1

(µ2 − µ1) (3.1)

This distance is also called the Mahalanobis distance. The criterion looks complicated,
but the idea behind it is simple: see the slides on scatter matrices. For high classification
performance, the two densities need to be far apart. For this to happen, the distance
between the two means µ1 and µ2 needs to be large. At the same time, the covariance
matrices Σ1 and Σ2 (which indicate the spread around the means) should be small.
Figure 3.1 illustrates this.

Note that JD is only defined for 2 classes. For more than 2 classes, JD is calculated
for all possible pairs of classes, and the criterion is the sum of all these values (hence
’maha-s’).

Exercise 3.1 (a) Load the biomed dataset and use fsel with the various search algorithms
listed above to select 2 features. Use the ’maha-s’ criterion. Do the search algorithms
give the same results?

You can use this to make a scatterplot; use scatterd (a*w).

(b) Do the same for the iris dataset, which has 4 features.

We will now illustrate some points about feature selection. The first dataset we will use is an
artificial one. It is carefully constructed to contain p measurements, of which only 2 are useful
for classification; see Figure 3.2 for an illustration. The trick is finding these 2 measurements.

Exercise 3.2 (a) Create 100 samples in a 10D “difficult” distribution using a =

gendatdd(100,10). Apply feature selection using the possible search algorithms and
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Figure 3.2: The gendatdd dataset contains 2 measurements useful for classification (a); all
other measurements are useless (b).

the ’maha-s’ criterion. Which features are the best two? Confirm this by making a
scatterplot using the best two features, using b = a*w(:,[1 2]); scatterd(b); (if
your feature selection mapping is stored in w).

(b) Do all search algorithms agree on the best two features?

To test whether feature selection really works and how many features are useful, you can
train a 1-nearest neighbour classifier on the selected features and see how well it performs.
To get a good impression, we cannot just use the same data we used for feature selection to
test things. Instead, we have to:

• make a training set to perform feature selection;

• train a classifier on the features found;

• make a test set and apply the classifier to that set.

Exercise 3.3 (a) Enter a script that

• creates a dataset a using gendatdd containing 200 objects and 10 measurements

• split it into a randomly drawn training set and a test set, using [train,test] =

gendat(a,0.5);

• applies forward selection and the ’NN’ criterion (use the list output of fsel).

• for each subset of size d = 1, . . . , 10, trains a 1-nearest neighbour classifier on the
training set and tests it on the test set

• does this 5 times and plots errorbars for the test error:
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a = gendatdd(200,10); % Generate difficult data

for r = 1:5 % For 5 repetitions...

[trn,tst] = gendat(a,0.5); % split into trn and tst

[w,list] = fsel(trn,’forward’,’NN’); % rank features in list

for d = 1:10 % for each number of features...

mapped_trn = trn*w(:,1:d); % create a training set

mapped_tst = tst*w(:,1:d); % create a test set

classifier = knnc(mapped_trn,1); % train a 1-NN classifier

error(r,d) = testc(mapped_tst,... % and test it

classifier);

end;

end;

errorbar(1:10,mean(error),std(error)); % Plot the results

What is the optimal number of features?

In this exercise, you should have noticed that the error the classifier makes decreases quickly
when the first few features are added, but increases again at the end. This might seem
paradoxical: you select features based on the nearest neighbour criterion, then train a nearest
neighbour classifier – but still the error rises! The effect is caused by the fact that you use only
a finite number of samples to train the classifier. If you keep adding features, the classifier
will adapt too much to the training set, making it perform worse on the test set. So, even
with a criterion which perfectly matches the classifier you are going to use, you cannot be
sure your feature selection method will give good results.

You have just performed a more or less standard experiment in feature selection: use a number
of different criteria and algorithms, vary the number of features, train classifiers and test them
and see where the optimum occurs. However, in real life things are never as easy as this. In
the following exercise, you are to apply the script you wrote above to a real-world dataset.1

Exercise 3.4 (a) Load the housing dataset.2 This real-world dataset contains 13 fields
of information on areas in the suburbs of Boston. The goal is to predict whether the
median price of a house in each area is larger than or smaller than $20,000.

There are 506 objects. The fields are shown in Table 3.1; have a look at them. Which
one(s) would you predict to be the most informative?

(b) Split the data into a training set (70% of the original samples) and a test set (30%):
[trn,tst] = gendat(a,0.7). Apply your script. What is the optimum number of
features?

(c) What features are found to be the best (use list)? Are they the same as the ones
you thought would be the best? How about the worst features? Also, check whether

1Even this dataset was still selected by us to show you something. Most real data is pretty bad from an
educational point of view.

2This dataset is often used to benchmark data analysis tools. It was created by Harrison, D. and Rubinfeld,
D.L. for “Hedonic prices and the demand for clean air”, Journal of Environmental Economics & Management,
vol. 5, pp. 81-102, 1978. The dataset can be downloaded from the UCI Machine Learning repository at
http://archive.ics.uci.edu/ml/.
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# Name Description

1 CRIME Crime rate per capita
2 LARGE Proportion of area dedicated to lots larger than 25,000 square feet
3 INDUSTRY Proportion of area dedicated to industry
4 RIVER 1 = borders the Charles river, 0 = does not border the Charles river
5 NOX Nitric oxides concentration (in parts per 10 million)
6 ROOMS Average number of rooms per house
7 AGE Proportion of houses built before 1940
8 WORK Average distance to employment centres in Boston
9 HIGHWAY Highway accessibility index

10 TAX Property tax rate (per $10,000)
11 EDUCATION Pupil-teacher ratio
12 AA 1000(A− 0.63)2, where A is the proportion of African-Americans
13 STATUS Percentage of the population which has lower status

Table 3.1: The measurements in the housing dataset. The task is to predict whether the
median house price in areas of Boston is smaller or larger than $20,000.

the feature selection algorithm ranks the features in the same order if you repeat the
splitting of the data and the feature selection.

(d) Change the search algorithm from ’forward’ to ’backward’. How do the conclu-
sions change?

(e) Use forward selection again, but change the criterion from ’NN’ to ’maha-s’. How
do the conclusions change? Why?

(f) Write down the lowest test error average you have found so far.

This exercise showed you how feature selection can help you in understanding a problem by
analysing the data: it tells you which measurements are informative and which aren’t. At
the same time, you will have noticed how dependent the results are on the choice of search
algorithm and criterion. Therefore, never trust your results blindly; always think of how they
might have been influenced by your choices.

You may have noticed that, on the housing data, it already took quite some time to perform
feature selection. Still, the dataset was not particularly large: 506 samples of 13 features
each. Better feature selection algorithms, such as plus-l-takeaway-r or branch & bound, can
take even more time. Feature selection is in fact computationally a horrible problem; even
with the computers we have today, feature selection on sets of, say, a couple of thousand
samples of 100 measurements each can easily take days. This means that complicated feature
selection algorithms can often not be applied to data in real problems.3

Exercise 3.5 (a) Load the Golub training and test sets and train a PAM classifier for a

3The fact that there is a lot of scientific literature on “optimal” feature selection methods (under certain
assumptions, of course) might seem to contradict this. This only shows, however, that often scientists tend to
work on finding interesting, complicated non-solutions rather than boring, simple solutions.
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range of shrinkage factors:

>> load golub;

>> prwarning(0);

>> w = pamc(a,0:0.25:5,[],10,1);

>> testc(b*w)

This will take some time. Looking at the output, it seems PAM selects quite a few
genes - how many?

(b) If you allow for a slightly higher cross-validation error, you can easily decrease
the number of genes used. Pick a ∆ for which you find the cross-validation error
acceptable, retrain (replace 0:0.25:5 by the single value for ∆ you selected) and retest.
How many genes are selected now? Does the change have a large influence on the test
set error?

(c) The fourth argument returned contains the indices of the non-shrunken genes, nz:

[w,delta,theta,nz] = pamc(a,delta,[],10,1);

Play with ∆, inspect nz and find a setting for which roughly 7 genes are selected.

(d) Experiment further with the Golub dataset and a number of alternative classifiers.
Can you find a single best classifier?

3.2 Principal Component Analysis

In the lectures, Principal Component Analysis (PCA) was treated in depth. In this section,
you will apply PCA to some simple problems.

Exercise 3.6 (a) Apply pca to the gendatdd data you used in the feature selection ex-
ercises (100 samples, 10 measurements). Plot the retained variance v = pca(a,0) as
a function of the number of dimensions retained. Does this graph tell you anything?
Why?

Exercise 3.7 (a) Based on the script you made for the large feature selection experiment4

(Exercise 3.3), create a script which investigates classifier performance as a function of
the number of dimensions d retained: simply replace the line

w = fsel(trn,’forward’,’NN’);

by

w = pca(trn);

Now apply this script to the housing data, splitting it into a training set (70%) and a
test set (30%):

a = gendatdd(200,10);

becomes

load housing;

4Copy & paste are your friends here...
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and

[trn,tst] = gendat(a,0.5);

becomes

[trn,tst] = gendat(a,0.7);

(b) How do the results you find here (in terms of test error) compare to the test errors
you obtained using feature selection? Why?

(c) According to test error, how many dimensions would you say are needed to obtain
good performance?

(d) According to the amount of retained variance v = pca(a,0), how many dimensions
would you say are needed according to PCA?

(e) Inspect the first PCA basis vector, using w.data.rot(:,1). What feature(s) are
important according to PCA? Why? Use var(a) to learn more.

(f) Try PCA on normalised data: after loading housing, apply the following:

[n,p] = size(a);

a = (a - ones(n,1)*mean(a)) ./ (ones(n,1)*std(a));

or, equivalently,

a = a*scalem(a,’variance’);

(what does this do?). Are your conclusions still valid?

The nistdigs dataset contains 16 × 16 pixel images of handwritten digits – pre-processed
versions of the NIST database digits. There are 2,000 samples in total of 10 classes (“0” ...
“9”). See the slides for a few examples.

Exercise 3.8 (a) Load the nistdigs dataset. Can you find out what the intrinsic dimen-
sionality of this dataset is?

(b) Inspect all PCA basis vectors, using show(w). What do you observe?

3.3 Supervised linear feature extraction

In this section, you will experiment with the PRTools implementation of the Fisher mapping,
fisherm. The Fisher mapping (often called linear discriminant analysis or LDA) can also be
considered to be a variant of the Karhunen-Loève transformation.

Exercise 3.9 Load the iris dataset and train a Fisher mapping: w = fisherm(a). Plot
the mapped data using scatterd(a*w).

(a) Why is the data mapped from 4 to 2 dimensions?

Exercise 3.10 Load the nistdigs dataset.

(a) How many dimensions can a Fisher mapping of this dataset have at most?
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Change the script you created for Exercise 3.7 to use Fisher mapping instead of PCA:
replace pca by fisherm and change the second for-loop to go up to the maximum
number of dimensions instead of 10.

(b) Run the script. How many dimensions are optimal for classification?

(c) Run the script again, but select only 10% of the data as training set instead of 70%
(change [trn,tst] = gendat(a,0.7); into [trn,tst] = gendat(a,0.1);). What
happens?

(d) Inspect the first two dimensions of the mapped training data:
scatterd(trn*w(:,1:2)). What do you notice? Why do you think this hap-
pens?

(e) Plot the mapped test data in a different figure: figure;

scatterd(tst*w(:,1:2)). What do you see? Can you now explain the poor
performance?

3.4 Multi-dimensionial scaling

As discussed in the lectures, multi-dimensional scaling (MDS) is a technique for nonlinear
mapping. That means that the mapping cannot be expressed as a linear operation, for
example in the form new data = data * A. In the exercises below, you will mostly be looking
at data and judging MDS mappings visually.

Multi-dimensional scaling works on distance matrices rather than datasets. A routine is
available to calculate a squared distance matrix for you: distm. To actually perform multi-
dimensional scaling, you need two more things:

• a stress function, and

• an optimisation technique.

As these are quite hard to program, a routine has been prepared for you to experiment with:
mds. In mds, you can supply a structure opt with a number of settings. The parameter opt.q
decides which stress function to use. Recall from the lectures that a general stress function
is:

Stress =
1∑

i

∑
j>i d

(q+2)
ij

∑
i

∑
j>i

dqij (δij − dij)2 (3.2)

where dij is the distance between two objects x i and x j in the original space; and δij is
the distance between the mapped objects y i and y j in the lower-dimensional space. The
parameter q controls whether short distances are emphasised (q < 0) or large distances
(q > 0). In mds, opt.q can be varied between -2 and 2.

The other thing needed for MDS is the optimisation technique. In mds, this is fixed; but you
can choose whether the mapped objects y are initialised using PCA (’pca’) or randomly
(’random’).

Now you know all this, it is time to put MDS to the test:
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Figure 3.3: Two artificial datasets, generated by circles3d (a) and lines5d (b).

Exercise 3.11 Create 100 objects in a very simple 3D dataset using circles3d (see Fig-
ure 3.3 (a)); call it a. Use scatterd to visualise it. The goal is to find out how MDS
“distorts” the two circles, compared to other methods.

(a) First, apply PCA to visualise the dataset in 2D: scatterd(a*pca(a,2)). What
do you see?

(b) Next, apply MDS with opt.q = 0 to visualise the dataset in 2D; use
mds(sqrt(distm(a)),2); How does the result compare to PCA? What distortions
are introduced? Remember the stress value you find.

(c) Try the same with opt.q = -2 (stressing small distances) and opt.q = 2 (stressing
large distances). How do the results differ? Are the stress values the same? Why
(not)?

(d) Apply MDS using opt.q = 0 again, but this time using random initialisation
(supply a 100 x 2 matrix of random values as starting configuration, see the help of mds).
Do you find the same stress and visualisation? How does the algorithm behave?

(e) Repeat the exercise using data created by lines5d, which contains objects on 3
non-crossing, non-parallel lines in 5D. What is the advantage of MDS over PCA?

You should now have a bit of a feeling of what MDS can do. It can help you see structure
in the data that linear methods cannot show you; but it also holds the danger of distorting
structure. You should always be aware of this when applying non-linear techniques. The next
exercise shows how this may happen on real-world data.

Exercise 3.12 (a) Load the dataset nederland, which contains a distance matrix D between
12 Dutch cities. Calculate an MDS mapping w to 2D and visualise the end result using
scatterd(D*w,’both’). If you are confused about what city should go where when
looking at the results, run the command nlkaart to show a (unfortunately mirrored;
you correct this by View - Property Editor - Y Axis and uncheck Reverse) map of The
Netherlands, or see Figure 3.4. If you get strange results with MDS, try rotate3d. For
which opt.q does the result look best?

(b) Now try to visualise the cities in 3D (use scatterd(D*w,3,’both’)). Compare
the stress values and inspect the result. What do you notice when comparing it to the
2D result? Why do you think this is?
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Figure 3.4: A map of The Netherlands.

(c) Try a couple of random initialisations with opt.q = -2 and opt.q = 2. What do
you see? How does the algorithm behave?

This last exercise shows ones of the problems of MDS, in that it works on distances only.
These distances may be calculated from a real dataset, for example using distm, but in some
problems you may only have a distance matrix. If MDS starts to calculate object positions
which minimise the stress, it is not clear beforehand how many dimensions these objects
should have. You can try to find out in how many dimensions the data can be embedded,
though, by repeating experiments for different dimensions d:

Exercise 3.13 For the nederland dataset, pick a value for opt.q. Next, using standard
initialisation, calculate the stress for d = 1, 2, . . . , 5 dimensions. Plot the stress as a
function of d. What do you see?

Exercise 3.14 Load the nistdigs dataset. To avoid waiting for hours for the algorithms to
finish, randomly select 1000 samples out of it.

Apply PCA and MDS to map these samples to 2D. Use the ’both’ option in scatterd

to plot the labels of the PCA-projected samples. What is the difference between PCA-
and MDS-projected data?
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Day 4

Clustering &
hidden Markov models

Today we will first discuss the problem of clustering. This practical session is intended to
familiarise you with cluster validation and the different techniques that were discussed during
this morning’s lecture, more specifically hierarchical clustering, the K-means algorithm, and
mixtures-of-Gaussians. In the second part we will move towards modeling biological sequences
using (hidden) Markov models.

4.1 Hierarchical clustering

Yesterday you learned how to select features, i.e. you learned which variables “contain most
information”. Today we will shift the emphasis to determining which objects belong together
in groups or clusters. This clustering process enables us to extract structure from the data,
and to exploit this structure for various purposes such as building a classifier or creating a
taxonomy of objects.

The most difficult part of clustering is to determine whether there is truly any structure
present in the data and if so, what this structure is. To this end, we will also employ cluster
validity measures to estimate the quality of the clustering we have obtained.

In the lectures we discussed hierarchical clustering at length. There are basically two choices
that need to be made in hierarchical clustering in order to construct a dendrogram:

1. the dissimilarity measure;

2. the type of linkage.

In this lab session, we will only employ the Euclidean distance between two samples as a
measure of dissimilarity. As you will recall from the lecture, there are three types of linkage:
complete, single and average linkage. Once the dendrogram has been constructed, we need to
cut the dendrogram at an appropriate level to obtain a clustering. Simple interactive routines
are available to create, visualise and cut the dendrograms.
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Exercise 4.1 Start with the hall dataset, an artificial dataset with clear structure.

(a) Load the dataset (load hall). Use scatterd to visualise it. How many clusters
are visible in the plot?

(b) What is the most suitable clustering?

An interactive clustering function is provided; it is called interactclust. Look at the help

to familiarise yourself with the inputs. This function performs hierarchical clustering, draws
a dendrogram in Matlab Figure 1 and then waits for user input. The input is provided
by positioning the cross-hairs in Figure 1 at the desired vertical level, corresponding to the
desired number of clusters. The number of vertical stems of the dendrogram intersected by
the horizontal line of the cross-hairs, corresponds to the number of clusters.

After positioning the cross-hairs and clicking on the left-mouse button, the chosen clustering
is displayed in two ways. First, coloured rectangles are drawn on the dendrogram to indicate
samples that are clustered together. In Figure 2, a scatterplot, colour-coded in the same
fashion, is made of the samples, thus revealing the clustering (note that when there are more
than two features in the dataset, the clustering is performed taking all features into account,
but that only the first two features are displayed in Figure 2). The program remains in a
loop where new clusterings can be obtained by left-mouse clicking on the dendrogram. To
terminate the program, right-click anywhere on the dendrogram.

Exercise 4.2 Load dataset rnd. Make a scatterplot. This is a uniformly distributed dataset,
with no apparent cluster structure. We will hierarchically cluster this dataset to get an
idea of what a dendrogram looks like when there is no structure in the data.

(a) Perform hierarchical clustering with interactclust on the rnd dataset with com-
plete linkage: interactclust(+a,’c’);

(b) Cut the dendrogram at arbitrary levels to see how the samples are clustered. Look
at the structure of the dendrogram. What is apparent?

(c) Repeat this for single and average linkage. Do you observe the same behavior as
with complete linkage?

Exercise 4.3 (a) Perform hierarchical clustering with interactclust on the hall dataset
with complete linkage: what do the lengths of the vertical stems in the dendrogram tell
us about the clustering?

(b) Cut the dendrogram at different levels, i.e. inspect different numbers of clusters
by left-mouse clicking at the desired level. Can you think of ways in which a good
clustering can be defined?

(c) Can you devise a simple rule-of-thumb (in terms of vertical stem lengths) for finding
a good clustering in the dendrogram?

Exercise 4.4 (a) Now perform single linkage hierarchical clustering:
(interactclust(+a,’s’);) on the hall dataset. Do you notice any significant
differences with the complete linkage dendrogram?

(b) Do you notice any differences with the average linkage dendrogram
(interactclust(+a,’a’))?
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Exercise 4.5 (a) Load and plot the cigars dataset. What is an appropriate number of
clusters? Why?

(b) Perform single linkage hierarchical clustering on the cigars dataset. Can you
obtain the desired clustering with single linkage hierarchical clustering?

(c) Now perform complete linkage hierarchical clustering on the cigars data. Does
the optimal number of clusters obtained with single linkage hierarchical clustering also
produce acceptable results in complete linkage hierarchical clustering? If not, why not?

Exercise 4.6 (a) Perform complete linkage hierarchical clustering on the messy dataset.
What is an appropriate number of clusters? Why?

(b) Now perform single linkage clustering on this dataset. Select the same number of
clusters that you determined to be optimal with complete linkage. Is it also optimal in
this case?

(c) What is an appropriate number of clusters for the single linkage case? Why?

optional

Exercise 4.7 Perform hierarchical clustering on a dataset of your choice, for example the
Golub or Khan datasets. Bear in mind that only the first two dimensions of higher
dimensional datasets are displayed in the scatterplot. To visualise other dimensions,
reorganise the columns in your dataset so that the appropriate variables are in columns
one and two.

end optional

4.2 K-means clustering

The operation of this algorithm was explained at length in the lecture. In this practical
session, we will familiarise ourselves with the K-means algorithm by applying it in various
settings. A function kmclust is provided to perform K-means clustering. Take a moment to
familiarise yourself with the input, output and operation of this function.

Exercise 4.8 The initialisation of the K-means algorithm (positioning of the prototypes)
can be done in several ways. Two simple ways are:

1. placing the prototypes uniformly distributed in the domain (approximated by the
bounding box) of the data; or

2. selecting a number of the samples at random as prototypes.

For reasons of simplicity we recommend the second option.

(a) Can you think of possible advantages and disadvantages to these two initialisation
approaches?

(b) Apply kmclust with plotflag and stepflag set on the cigars and messy datasets
for different numbers of prototypes. Is K-means better suited to one of these datasets,
and if so, why?
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4.2.1 The local minimum problem

You might recall that the K-means algorithm is a simple iterative way of attempting to find
those prototype positions that correspond to the global minimum of the total within-scatter.
However, sometimes K-means ends up in a local minimum. The following exercise illustrates
this.

Exercise 4.9 (a) Load dataset triclust. Inspect it with the aid of a scatterplot. There
are clearly three equally spaced, spherical clusters.

(b) Run your K-means algorithm several times, for g = 3 clusters, until a solution is
found where there are two prototypes in a single cluster, and the third is positioned
between the remaining two clusters. Why is this a local minimum?

(c) Does hierarchical clustering also suffer from this problem?

(d) What can we do to overcome the local minimum problem?

4.3 Cluster validation

Above, you applied hierarchical clustering with different linkage types and the Euclidean dis-
similarity measure as well as K-means clustering to several datasets. One aspect of clustering
that we only touched briefly upon was the determination of the “optimal” number of clusters
in the dataset. More specifically, given a particular hierarchical clustering, one needs to de-
termine where to cut the dendrogram to produce a clustering of the data and one needs to
know which value of g to use as input in the K-means clustering algorithm.

The following exercises are intended to familiarise you with the different cluster validity
measures that were discussed in the lecture.

4.3.1 Fusion graphs

The fusion graph plots the fusion level as a function of the number of clusters (g). For example,
the fusion level at g = 2 represents the (single, complete, average) link distance between the
clusters that are merged to create two clusters from three clusters. A simple heuristic to
determine the number of clusters in hierarchical clustering is to cut the dendrogram at the
point where we observe a large jump in the fusion graph.

Exercise 4.10 Why is this a reasonable heuristic to employ?

The following three exercises focus on the estimation of the number of clusters based on the
fusion graph.

Exercise 4.11 (a) Load the triclust dataset. Perform single linkage hierarchical
clustering and display the fusion graph by setting the third optional argument:
interactclust(triclust,’s’,1). Where do you observe the largest jump?

(b) Cut the dendrogram at this position, to check whether this is a reasonable number
of clusters. Now perform complete linkage hierarchical clustering. Does the fusion graph
give a clear indication of the number of clusters in the data? If not, why not?
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Exercise 4.12 (a) Load the hall dataset. Perform single linkage hierarchical clustering
and display the fusion graph. What do you observe in the fusion graph?

Exercise 4.13 (a) Finally, load the messy dataset. Perform single linkage hierarchical clus-
tering. According to the fusion graph, where should the dendrogram be cut?

(b) Does a satisfactory clustering result from cutting the dendrogram at this point?
Motivate.

(c) Now perform complete linkage clustering. Is the clustering suggested by the fusion
graph better or worse than the clustering obtained with single linkage clustering?

4.3.2 The within-scatter criterion

Exercise 4.14 (a) Now, generate a two-cluster, 2D dataset: a = +gendats([50,50],2,d),
for d = 10. Make a scatterplot of the data.

(b) Recall that the function kmclust outputs the within-scatter associated with the
obtained clustering. For the generated two-cluster dataset, compute the cluster within-
scatter for g = [1, 2, 3, 5, 10, 20, 40, 50, 100], and compute the normalised within-scatter
values as a function of g (normalise by dividing all within-scatter values by the within-
scatter for g = 1). Repeat this 10 times, and employ the errorbar function to plot the
average and standard deviation of the cluster within-scatter as a function of g.

(c) What are the most prominent characteristics of this curve?

(d) Now for d = 5, generate a new dataset. For this dataset, generate the same
normalised within-scatter plot as in the previous exercise, i.e. the within-scatter as a
function of g. What is the biggest difference between the datasets? What is the biggest
difference between the within-scatter curves?

optional

Exercise 4.15 Generate a dataset consisting of a single Gaussian, i.e. use d = 0. Plot the
same within-scatter curve. How does this curve differ from the other curves?

end optional

4.3.3 The Davies-Bouldin index

D.L. Davies and D.W. Bouldin1 introduced a cluster separation measure which is based on
both the within-scatter of the clusters in a given clustering and the separation between the
clusters. Formally, this measure is known as the Davies-Bouldin index (DBI). It assumes that
clusters are spherical, and that a desirable clustering consists of compact clusters that are
well-separated.

Suppose we wish to compute the DBI for a clustering consisting of n objects assigned to g
clusters. We can compute a score for every possible pair of clusters in this clustering, which

1IEEE Transactions on Pattern Analysis and Machine Intelligence 1, pp. 224–227, 1979.
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is inversely proportional to the distance between the cluster means and directly proportional
to the sum of the within-scatters in the pair of clusters. This score is given by

Rjk =
σj + σk
‖µj − µk‖

, j, k = 1, 2, . . . , g; k 6= j. (4.1)

Here µj is the mean of all the objects in cluster j and σj is the within scatter of cluster j,
given by:

σj =

√√√√ 1

nj

∑
x i∈Cj

‖x i − µj‖2, (4.2)

where Cj is the set of objects associated with cluster j and nj is the number of objects in
cluster j. The score, Rjk, is small when the means of clusters j and k are far apart and the
sum of the within-scatter for these clusters is small. Since cluster j can be paired with g − 1
other clusters, resulting in g−1 pair-scores, Rjk, j = 1, 2, . . . , g; k 6= j, a conservative estimate
of the cluster score for cluster j, when paired with all other clusters, is obtained by assigning
the maximal pair-score with cluster j:

Rj = max
k=1,2,...,g; k 6=j

Rjk. (4.3)

The Davies-Bouldin index of the complete clustering is then determined by averaging these
maximal pair-scores for all clusters:

IDB =
1

g

g∑
j=1

Rj . (4.4)

Exercise 4.16 We will employ the Davies-Bouldin index to evaluate the clustering produced
by hierarchical clustering. We will do so for a range of clusters in order to determine
the optimal number of clusters, i.e. the best level to cut the dendrogram at. To achieve
this we employ the function hdb().

(a) The function hdb() has as inputs a dataset, the linkage type, the distance measure
and the maximum number of clusters for which you wish to evaluate the quality of
the clustering. It computes, for each clustering, the DBI. Familiarize yourself with the
operation of this function.

(b) Load the triclust dataset and make a scatterplot. What do you expect the DBI
curve as a function of the number of clusters to look like?

(c) Now apply hdb to this dataset with Euclidean distance, complete linkage clustering,
starting at 2 clusters and stopping at 10. What is evident from the DBI curve?

(d) Apply hdb to the hall dataset with Euclidean distance, complete linkage clustering,
starting at 2 clusters and stopping at 20. What do you observe in the obtained curve?
Can you explain your observation?

(e) Finally, apply hdb to the cigars dataset with Euclidean distance, complete linkage
clustering, starting at 2 clusters and stopping at 20. Inspect the DBI curve. Do you
detect the expected number of clusters? Now try single linkage clustering. Does this
help? Why (not)?
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4.4 Clustering with a mixture-of-Gaussians

During the lectures, the concept of clustering based on the quality of a mixture-of-Gaussian
density fit to the data was discussed. The operation of the Expectation-Maximisation (EM)
algorithm, which is employed to estimate the parameters of the mixture model, was also
discussed in detail. In the following set of exercises, mixture model clustering will be explored
with the aid of the function em.

Exercise 4.17 (a) Load the triclust dataset and play around with the function
em (em(data,nmodels,type,0,1,0);). Vary the number of Gaussians employed
(nmodels) in the mixture model, and also vary the type of Gaussian employed. Re-
late the type (’circular’,’aligned’,’gauss’) of the Gaussian to its covariance ma-
trix.

(b) On the cigars dataset, fit an unconstrained Gaussian (type = ’gauss’) mixture
model using the function em. For the number of clusters g, assume the following values:
g = 1, 2, 3, 4, 5. Which g do you expect to be the best?

(c) Repeat this 20 times (without plotting, i.e. setting the plot mix and plot resp

arguments to zero) and plot the average log-likelihood (first output argument of em)
and its standard deviation as a function of g (hint: use the errorbar function). What
characteristic of the log-likelihood function indicates the preferable number of models
(clusters)?

(d) Do the same for the rnd dataset (which has no structure) to confirm the relationship
between the log-likelihood curve and the number of clusters. What is the behavior of
the curve for the random dataset?

(e) Now try clustering the messy dataset. What is the best shape to employ for the
Gaussians? What is the optimal number of clusters?

4.5 Hidden Markov models

In the last part of today’s lab session you will look into various probabilistic models for
biological sequences presented in the lecture: weight matrices, Markov models, and hidden
Markov models.

Exercise 4.18 Assume that we have made three different models for a signal of length five:

1. all positions are identically and independently distributed (iid),

2. a weight matrix,

3. a first-order Markov chain.

(a) For each of the models and each of the sequences CCGAT and CATAT find the prob-
ability of the sequence given the model. The three models are:

• IID: P (A) = 0.2, P (C) = 0.1, P (G) = 0.1, P (T ) = 0.6
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• Weight matrix:

W =


1 2 3 4 5

A 0.2 0.3 0.2 0.1 0.1
C 0.1 0.2 0.15 0.6 0.6
G 0.3 0.4 0.6 0.1 0.15
T 0.4 0.1 0.05 0.2 0.15


• First-order Markov chain with initial distribution P (A) = 0.2, P (C) = 0.1, P (G) =

0.1, P (T ) = 0.6 and transition matrix

A =


A C G T

A 0.1 0.8 0.05 0.05
C 0.35 0.1 0.1 0.45
G 0.3 0.2 0.2 0.3
T 0.6 0.1 0.02 0.05


Exercise 4.19 This exercise illustrates how you can use Markov chains for deciding whether

a stretch of sequence comes from a CpG island or not. CpG denotes neighbouring
nucleotides C and G along one DNA strand. Due to biochemical reasons CpG is relatively
rare in most DNA sequences. However, in parts of the genome, such as promoters
or start regions of many genes, CpG dinucleotides are more frequent. These regions
are called CpG islands. The ability to identify CpG islands along a chromosome will
therefore help us find regions of interest.

An oracle gave us two matrices describing the probability of dinucleotides in CpG islands
(M+) and in non-CpG islands (M−), respectively.

M+ =


A C G T

A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.187
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

 M− =


A C G T

A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292


where, for example, the first row contains the probability with which an A is followed
by each of the four bases. Note that the transition probability of C to G in CpG islands
(M+) is relatively high compared to non-CpG islands (M−), as you would expect.

(a) What criterion does any transition matrix have to satisfy?

(b) Draw the Markov chain corresponding to transition matrix M+.

(c) Start the script cpgislands. The script starts by generating 50 sequences of
random length (but less than 1000 bases long) from each of the two Markov chains.
From these sequences we can estimate the transition probabilities of the chain (see
lecture). Compare the estimated transition matrices with the ones given by the oracle.
How do you explain the differences?

(d) From a noisy version of the transition matrices given above, we generate again 100
(50 CpG/50 non-CpG) sequences of random length (but less than 1000 bases long). You
can use the log-odds ratio matrix (see lecture) to calculate a score for each sequence
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Figure 4.1: Hidden Markov model derived from the alignment discussed in the lecture. A box
is called a state. The state number and the corresponding terms of the regular expression are
given below the states. Transitions are shown with arrows the thickness of which indicates
their probability. In each state the histogram shows the probabilities of the four nucleotides.

and decide whether a sequence is a CpG island or not. Look at the log-odds ratio for C
followed by G. Does this correspond to what you would expect? Explain. Now plot the
log-odds scores for the 50 CpG and the 50 non-CpG islands. The score discriminates
reasonably well between the two types of sequences.

(e) A more likely problem is that you have a long unannotated sequence and want to
find CpG islands in it. We can use our Markov chains for this purpose, by calculating the
log-odds scores using a sliding window. CpG islands should then stand out as positive
scores. Executing the last part of the script cpgislands does exactly this for an almost
100000 bases long sequence with a sliding window of 50 nucleotides. You might want
to visualize the result:
load ’seq_a.results’

plot(seq_a(:,1),seq_a(:,2))

Can you find two stretches of positive log-odds scores of length at least 100?

(f) What is a disadvantage of using Markov chains to detect CpG islands in unan-
notated sequences? Would a hidden Markov model be better suited for this problem?
Why or why not?

In a Markov chain each state corresponds to just one symbol, as in the CpG island finder
above. Hidden Markov models can be interpreted as a combination of weight matrices and
Markov chains in one model by making the states generate symbols according to a certain
probability distribution. Such models turn out to be a convenient tool for modeling un-
certainty in (biological) sequences. A well-known example in the field of bioinformatics are
so-called profile HMMs. A profile HMM can be used to model a “family” of sequences from
a given reliable multiple alignment. Using the forward algorithm explained in the lecture,
one can search a set of sequences for other likely members of the family. The other principal
use of a profile HMM is to align a new sequence to it. This can be done by finding the most
probable state sequence in the profile HMM using the Viterbi algorithm.

Exercise 4.20 What is the optimal state sequence for the consensus sequence ACACATC in
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the profile HMM of Figure 4.1? Once you have done this manually, you can verify your
result by running the script profile vit.
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Day 5

Selected topics

5.1 Artificial neural networks

In the lecture, the multilayer perceptron was discussed in depth, including the design choices
one has to make when applying them. PRTools offers a number of wrapper functions around
the Matlab neural network toolbox, which do something similar. Weights are initialised to
“sensible” values, the learning rate is adapted automatically (increased if training goes well,
decreased if it goes wrong) and training is stopped automatically as well. See the help of
bpxnc or lmnc for more information. PRTools even has a function which automates almost
everything, neurc.

Exercise 5.1 In this exercise, you will investigate the influence of the number of hidden layers
and the number of units they contain. It is best to optimise these using cross-validation,
but this is very time-consuming. Here, you will manually change the settings. For the
same reason of speed, you will use the lmnc ANN routine here, which optimises using
the Levenberg-Marquardt algorithm, rather than backpropagation (bpxnc). Enter the
following code in a script:

prprogress on; w = []; u = 1;

rand(’state’,99); randn(’state’,99); a = gendatb(100);

for i = 1:20

w = lmnc(a,u,5,w);

figure(1); clf; scatterd(a); plotc(w); drawnow;

end;

The variable u contains the number of hidden units.

(a) Run the script; stop it by pressing Ctrl-C when the output does not change much
anymore. What do you see?

(b) Change u to 2, 3, 5 and 10 respectively and run the script again. What do you
notice now?

(c) Now change u to [10 10], i.e. 2 hidden layers of 10 units each. What do you
see?

(d) How many hidden layers would you use, containing how many hidden units?
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Exercise 5.2 (a) Use the data you generated in the previous exercise and train a radial
basis function network (rbnc) with 5, 10, 20 and 50 Gaussians. Plot the data and
classifiers. What do you see?

optional

Exercise 5.3 (a) Load the Golub or Khan dataset, split into a training and test set, se-
lect 5 good features and train a multilayer perceptron. What architecture performs
best?

(b) Compare performance to a number of standard classifiers (nmc, ldc, qdc,
knnc).

(c) Repeat this for 10 and 20 features. Do the conclusions change?

end optional

5.2 Support vector classifiers

In PRTools, the support vector classifier is implemented in the function svc. Several differ-
ent kernels are provided as well; type help svc to find out which. The final parameter, C,
will be kept at 1 for these exercises.

Exercise 5.4 (a) Make a linearly separable dataset using a=gendats([20 20],2,5). Train
a linear support vector classifier [w,I] = svc(a,’p’,1). Scatter the data and plot the
classifier.

(b) Looking at the data, which objects are the support vectors? Check with the index
vector I, which contains the indices of the support vectors.

Exercise 5.5 (a) Make a slightly more challenging dataset a=gendatb([30 30]). Train a
linear support vector classifier and plot it. Does the model fit well?

(b) Use polynomial kernels of higher degrees and plot them. Which one looks accept-
able?

(c) Also try the radial basis kernel for a few values of the σ. For which values of σ do
you get acceptable results?

optional

Exercise 5.6 Support vector classifiers have been used extensively in integrative bioinfor-
matics, for example to predict protein interactions. The input consists of a number of
standard features on protein pairs (e.g. experimental data such as TAP, immunopre-
cipitation, interologs, mRNA expression correlation etc. However, it is also possible
to calculate specific kernels (such as sequence similarity kernels) and sum the kernel
matrices to combine the features.

46



Here we use a dataset of 46 features1 of protein pairs, as well as three sequence ker-
nel matrices (spectrum, eMotif, PFAM) calculated on proteins, which still have to be
converted to protein pair kernels using the pairwise kernel function2

(a) Load the datasets: load vanberlo.mat loads the feature data, load hulsman.mat

loads the kernel data. Note that the full dataset is given in trainsets, split into 7 parts
used for cross-validation. However, using the full dataset would take too much time, so
a small selected training set a and a small selected test set b is given as well. Inspect
the features: calculate mean, standard deviation and make some scatterplots. What do
you notice?

(b) Train a standard support vector classifier on the feature data. We use a non-
PRTools version of the classifier, which allows precomputed kernel matrices as input:

>> wk = proxm(a,’homogeneous’);

>> Ka = a*wk;

>> Kb = b*wk;

>> w = svc_kernel(Ka,1);

Calculate the error of this classifier on the training set and test set. Also plot the ROC.
What do you see? What part of the ROC do you think will be of interest if you would
use this classifier to guide wet lab experiments?

(c) Calculate the pairwise kernel on the first protein sequence kernel matrix:

>> wk = pairwise_km(a,Kp{1},’n’);
>> Kpwa = a*wk;

>> Kpwb = b*wk;

>> w = svc_kernel(Kpwa);

Investigate the performance of this classifier on the training set and test set as
well.

(d) Now combine the kernels:

>> Kca = combine_kernels({Ka,Kpwa},[0.5 0.5]);

>> Kcb = combine_kernels({Kb,Kpwb},[0.5 0.5]);

>> w = svc_kernel(Kca);

Experiment with the combination weights – the last parameter of combine kernel –
and see how this influences results. Also try to add the other two protein kernels, Kp{2}
and Kp{3}, after converting them to pair kernels using the pairwise kernel function. Can
you improve performance?

Exercise 5.7 Perform exercise 5.3, but use a support vector classifier and optimise the kernel.
Try to play with the parameter C – what effect does it have?

end optional

1van Berlo RJP, Wessels LFA, de Ridder D and Reinders MJT. Protein complex prediction using an
integrative bioinformatics approach. Journal of Bioinformatics and Computational Biology 5(4):839-864, 2007.

2Hulsman M, Reinders MJT and de Ridder D. Evolutionary optimization of kernel weights improves protein
complex co-membership prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics
6(3):427-437, 2009.
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5.3 Classifier combination

Classifiers to be combined may be trained in the same feature space, or in different feature
spaces. If w is a classifier, the output of a*w*classc can be interpreted as estimates for
the posterior probabilities of the objects in a. Different classifiers produce different posterior
probabilities. This illustrated by the following exercise.

Exercise 5.8 (a) Generate a dataset of 50 points per class by gendatb. Train two linear
classifiers: w1, e.g. by nmc, and w2, e.g. by fisherc. Determine the posterior probabil-
ities by p1 = a*w1*classc and p2 = a*w2*classc. Combine them into one dataset p
= [p1 p2] which has four features (why?).

(b) Make a scatter plot of the features 1 and 3. Study this plot. Next, make an
ROC plot with the combined classifier (help roc). The original classifiers correspond
to horizontal and vertical lines at 0.5. There may be other straight lines, combining the
two classifiers, that perform better.

PRTools offers three ways of combining classifiers, called sequential, parallel and stacked.

• In sequential combining, classifiers operate directly on the outputs of other classifiers,
e.g. w = w1*w2. So the features of w2 are the outputs of w1.

• In stacked combining, typically classifiers computed for the same feature space are
combined. They are constructed by w = [w1, w2, w3]. If applied as a*w, the result is
p = [a*w1 a*w2 a*w3].

• In parallel combining, typically classifiers computed for different feature spaces are
combined. They are constructed as w = [w1; w2; w3]. If applied as a*w then a should
be the combined dataset a = [a1 a2 a3], in which a1, a2 and a3 are datasets defined
for the feature spaces in which w1, w2, respectively w3 are found. As a result, p = a*w

is equivalent with p = [a1*w1 a2*w2 a3*w3].

Parallel and stacked combining may be followed by a combining rule. The above constructed
datasets of posterior probabilities p contain multiple columns (features) for each of the classes.
A combining rule reduces this to a single set of posterior probabilities, one for each class, by
combining all columns referring to the same class. PRTools offers the following fixed rules
for combining:

• maxc maximum selection

• minc minimum selection

• medianc median selection

• meanc mean combiner

• prodc product combiner

• votec voting combiner

48



If the base classifiers (w1, w2, . . .) do not produce posterior probabilities, but for instance
distances, then these combining rules operate similarly. This is illustrated by the following
exercises:

optional

Exercise 5.9 Generate a small dataset, e.g. a = gendatb. Train three classifiers, e.q. w1 =

nmc(a)*classc, w2 = fisherc(a)*classc, w3 = qdc(a)*classc.

Create a combining classifier v = [w1, w2, w3]*meanc.

Generate a testset b and compare the performances of w1, w2, w3 individually with that
of v.

(a) Inspect the architecture of the combined classifier by parsc(v).

end optional

Exercise 5.10 Load three of the mfeat datasets and generate training and test sets, e.g.:

>> a = mfeat_kar; [b1,c1] = gendat(a,0.25)

>> a = mfeat_zer; [b2,c2] = gendat(a,0.25)

>> a = mfeat_mor; [b3,c3] = gendat(a,0.25)

Note the differences in feature sizes of these sets. Train three nearest mean classifiers

>> w1 = nmc(b1)*classc; w2 = nmc(b2)*classc; w3 = nmc(b3)*classc;

and compute the combined classifier

>> v = [w1; w2; w3]*meanc

Compare the performance of the combining classifier with the three individual classifiers:

>> [c1 c2 c3]*v*testc

>> c1*w1*testc, c2*w2*testc, c3*w3*testc

Instead of using fixed combining rules like maxc and meanc, it is also possible to use a trained
combiner. In this case the outputs of the base classifier are used to train a combining classifier
like nmc or fisherc. This demands the following operations:

>> a = gendatb(50)

>> w1 = nmc(a)*classc, w2 = fisherc(a)*classc, w3 = qdc(a)*classc

>> a out = [a*w1 a*w2 a*w3]

>> v1 = [w1 w2 w3]*fisherc(a_out)

PRTools offers the possibility to define untrained combining classifiers:

>> v = [nmc*classc fisherc*classc qdc*classc]*fisherc

Such a classifier can simply be trained by v2 = a*v.

optional

Exercise 5.11 Stacked combining.
(a) Load the mfeat zer dataset. Split it into a training and a test set of equal size.
Train the following classifiers: nmc, ldc, qdc, knnc([],3), treec.
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Determine the performance of each of these base classifiers.

(b) Try to find a combining classifier that performance better than the best base
classifier.

Exercise 5.12 Parallel combining.
(a) Load all mfeat datasets. Split the data into training and test sets of equal size.
Make sure that these sets relate to the same objects, e.g. by resetting the random seed
each time by rand(’seed’,1) before calling gendat.

Compute for each dataset the nearest mean classifier and estimate their perfor-
mances.

(b) Try to find a combining classifier that performance better than the best base
classifier.

Exercise 5.13 Bootstrapping and averaging.
The routine baggingc computes a set of classifiers on a single training set by boot-
strapping and averaging all coefficients. Compare the performance of a simple classifier
like nmc with its bagged version for a 2-dimensional dataset of 20 objects generated by
gendatd. Use a a test set of 200 objects. Study the performance for bagging sets of
sizes between 10 and 200.

Exercise 5.14 Bootstrapping and aggregating.
The routine baggingc can also be used to combine a set of classifiers based on boot-
strapping. using the posterior probability estimates. Combining rules like voting, min,
max, mean, and product can be used. Compare the performance of a simple classifier
like nmc with its bagged version for a datasets generated by gendatd. Study the scatter
and classifier plots.

Exercise 5.15 Decision stumps.
A decision stump is a simplified decision tree, trained to a small depth, usually just
for a single split. The command stumpc constructs a decision tree classifier until a
specified depth. Generate objects according to the banana dataset (gendatb), make
a scatterplot and plot the decision stump classifiers for the depth levels 1, 2 and 3.
Estimate the classification errors using an independent test set and compare the plots
and the resulting error with a full size decision tree (treec).

end optional

Exercise 5.16 Weak classifiers.
A family of weak classifiers is available through the command w =

weakc(a,alf,iter,r) in which alf (0 < alf < 1) determines the size of a
randomly selected subset of the training set a to train a classifier determined by r,
with r = 0: nmc; r = 1: fisherc; r = 2: udc and r = 3: qdc. In total, iter
classifiers are trained and the best one according to the total set a is selected and
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returned in w. Define a set of linear classifiers (r = 0,1) for increasing iter, and
include the strong version of the classifier:

>> v1 = weakc([],0.5,1,0); v1 = setname(v1,’weak0-1’);

>> v2 = weakc([],0.5,3,0); v2 = setname(v2,’weak0-3’);

>> v3 = weakc([],0.5,20,0); v3 = setname(v3,’weak0-20’);

>> w = {nmc,v1,v2,v3};
Generate some datasets, e.g. by a=gendath and a=gendatb. Train and plot these
classifiers by v = a*w and plotc(v) in the scatterplot (scatterd(a)).

optional

Exercise 5.17 (a) Using cleval, compute and plot learning curves for the Highleyman
data averaged over 5 repetitions of crossvalidation for the above defined set of classi-
fiers.

(b) Compute and plot learning curves for the circular classes (gendatc) averaged over
5 repetitions of crossvalidation for a set of quadratic weak classifiers.

Exercise 5.18 Adaboost.
The Adaboost classifier [w,v] = adaboostc(a,base-classf,n,comb-rule) uses the
untrained (weak) classifier base-classf for generating n base classifiers by the training
set a, iteratively updating the weights for the objects in a. These weights are used as
object prior probabilities for generating subsets of a for training. The entire set of base
classifiers is returned in v. They are combined by base-classf into a single classifier
w. Default is the standard weighted voting combiner.

Study the Adaboost classifier for two datasets: gendatb and gendatc. Use as base
classifier stumpc (decision stump), weakc([],[],1,1) and weakc([],[],1,2).

Plot the final classifier in the scatterplot by plotc(w,’r’,3). Plot also the un-
weighted voting combiner by plotc(v*votec,’g’,3) and the trained Fisher combiner
by plotc(a*(v*fisherc),’b’,3). It might be needed to improve the quality of the
plotted classifiers by giving gridsize(300), before plotc is executed.

Exercise 5.19 Compute the Adaboost error curve for the sonar dataset for some numbers
of boosting steps, e.g. 5 and 100 (advanced users may try to write a script that plots an
entire error curve). Use stumpc as a base-classifier and weighted voting for combining.
Try to improve the result by using other base classifiers and other combiners.

end optional

5.4 Complexity

5.4.1 Learning curves

Exercise 5.20 (a) Generate a large training set from the Highleyman distribution: a =

gendatb([200 200]). Generate a learning curve using cleval for several classifiers,
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like the nmc, ldc, qdc and parzenc over a large range of training set sizes, TR=[2 3 5

10 25 50 100].

(b) Which classifier has the best performance for 2 training objects per class? And
which for 100 per class?

(c) Which classifier would benefit most from more training samples?

(d) Which classifier is the most simple, which is the most complex?

optional

Exercise 5.21 (a) Create learning curves for a number of PRTools classifiers on the Golub
and Khan datasets (select a small number of interesting features first). What do you
notice?

(b) Use the test set as a “tuning” set in the call to cleval. What effect does this
have?

5.4.2 Bias-variance trade-off

The bias-variance trade-off can be observed in all methods which fit a model to some data.
When a model is fitted to some data, there will always be some fitting errors. It is always
possible to distinguish two types of fitting errors. To illustrate this, the mean-squared-error
in regression problems will be used, because here it can be demonstrated best.

The mean-squared error between a function f(x i;β) and some desired output yi for input
object x i is defined as:

eMSE(f(x i;β), yi) = (f(x i;β)− yi)2 (5.1)

This error can be rewritten, and there two contributions to the error appear: bias and variance.

Bias : the first contribution is due to the basic mismatch between the model f(x i;β) and
the data yi.

Variance : the second contribution is due to the difficulty in estimating the optimal weights
β from a limited set of data.

The derivation is very simple, you can only be confused by the notation. To simplify the
notation, assume that the outputs in the training set yi are noise-free.3 Then the expected
mean squared error EX tr [eMSE(f,β,X tr)] can be computed over all training sets X tr and we

3If that is not the case, we have to decompose the observed outputs into a model and a noise contribution:
yi = E[y|x i] + ε. The first term E[y|x i] represents the deterministic part of the data which we try to model.
The second term ε contains all stochastic contributions and is often assumed to have zero mean. The bias-
variance decomposition considers the difference between what a function f can represent and the deterministic
part of the data E[y|x ]. When yi contains some stochastic elements, replace yi by E[y|x i] in the coming
decomposition.
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can expand to:

EX tr [eMSE(f,β,X tr)] = EX tr

[
1

n

∑
i

(f(x i;β)− yi)2

]

= EX tr

[
1

n

∑
i

(f(x i;β)− EX tr [f(x i;β)] + EX tr [f(x i;β)]− yi)2

]

= EX tr

[
1

n

∑
i

(f(x i;β)− EX tr [f(x i;β)])2

]
+ EX tr

[
1

n

∑
i

(EX tr [f(x i;β)]− yi)2

]

+ EX tr

[
1

n

∑
i

2 (f(x i;β)− EX tr [f(x i;β)]) (EX tr [f(x i;β)]− yi)

]
(5.2)

Here EX tr [f(x ;β)] is the expectation of the output of the classifier f(x ;β) over all possible
training sets (with the same sample size n).

The expected mean square error was computed over all possible training sets X tr to investigate
the average behavior. If one is lucky, one might have a very good training set, which results
in a very good generalization performance. On the other hand, for a very atypical training
set, only poor generalization results can be expected. To investigate how well a function fits
the data, these contributions have to be averaged out.

Because of the averaging over all the training sets, the second part of the last term,
(EX tr [f(x i;β)]−yi) in ((5.2)), can be removed from the expectation since this does not depend
on X tr. Then the first part of the last term becomes zero: EX tr [f(x i;β)−EX tr [f(x i;β)]] = 0
and therefore the third term in ((5.2)) vanishes:

EX tr

[
eMSE(f,β,X tr)

]
= EX tr

[
1

n

∑
i

(f(x i;β)− EX tr [f(x i;β)])2

]
+ EX tr

[
1

n

∑
i

(EX tr [f(x i;β)]− yi)2

]
= variance + (bias)2 (5.3)

This means that:

Bias : can be estimated by computing the difference between the average actual output and
the “truth”.

Variance : can be estimated by calculating the difference between the actual output and
the average output.

For other types of errors, like the log-likelihood, a bias-variance decomposition can be made
as well. This indicates that the bias-variance trade-off is a fundamental problem in fitting a
model to some data.

To investigate the bias-variance trade-off, the outputs of many classifiers or regressors have
to be compared with the ground truth. When the ground truth is not available, it cannot
find out where errors are made consistently. Furthermore, as it is necessary to train models

53



on several training sets, we have to be able to generate datasets over and over again. This
means that for looking at the bias-variance trade-off in the exercises below, artificial data has
to be used.

Exercise 5.22 In this exercise, the emphasis is on interpretation rather than programming:
most of the code will be given, but do not enter it without understanding what it does.

(a) To get a feeling for the data we are working with, generate some data using
genregres (say 25 training objects), fit a linear function and plot it. Run this a
number of times. Is the line a good fit? Does it change a lot when you run it over
and over?

(b) Now write a script containing the following code:

clear all;

n = 25; deg = 1; % Parameters: dataset size (n), degree (deg)

gx = (0:0.05:1)’; % Grid

ftrue = genregres(gx,0); % Generate true function

ytrue = gettargets(ftrue); % and extract the y-values

for i = 1:100

x = genregres(n); % Generate a regression dataset

w = linearr(x,deg); % Fit a polynomial with DEG degrees

f(i,:) = +(gx*w)’; % and calculate predictions

end;

f = f’;

bias2 = (mean(f,2)-ytrue).^2;

variance = mean((f-repmat(mean(f,2),1,100).^2),2);

err = sum(bias2+variance);

figure(2); clf; scatterr(ftrue,’b-’); hold on;

plot(gx,bias2,’g-’); plot(gx,variance,’r-’);

legend(’Function’,’Bias’,’Variance’);

title([’Total error:’ num2str(err)]);

(c) Explain how the variance is calculated; what does it measure?

(d) Explain how the squared bias is calculated; what does it measure?

(e) Explain the plot: why is the bias high on the sides and low in the middle? Why is
the variance low?

(f) Put the code above in a loop which performs this for deg = 0 ... 6. Put the
resulting code in a loop which repeats this 10 times. Store the error found for each
repeat, for each degree. At the end, make an errorbar plot of the error as a function of
the number of degrees. Is there a clear optimum?

end optional
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Appendix A

Introduction to Matlab

Ela P ↪ekalska and Marjolein van der Glas

A.1 Getting started with Matlab

Matlab is a tool for mathematical (technical) calculations. First, it can be used as a scientific
calculator. Next, it allows you to plot or visualize data in many different ways, perform ma-
trix algebra, work with polynomials or integrate functions. You can create, execute and save
a sequence of commands to make your computational process automatic. Finally, Matlab
is also a user-friendly programming language, which gives the possibility to handle mathe-
matical calculations in an easy way. In summary, as a computing/programming environment,
Matlab is especially designed to work with data sets as a whole such as vectors, matrices
and images.

On most systems, after logging in, you can enter Matlab with the system command matlab

and exit with the command exit or quit. Running Matlab creates one or more windows
on your screen. The most important is the Matlab Command Window , which is the place
where you interact with Matlab. The string >> (or EDU>> for the Student Edition) is the
Matlab prompt. When the Command window is active, a cursor appears after the prompt,
indicating that Matlab is waiting for your command.

A.1.1 Input via the command-line

Matlab is an interactive system; commands followed by Enter are executed immediately.
The results are, if desired, displayed on the screen. Execution of a command is only possible
when the command is typed according to the rules. Table A.1 shows a list of commands used
to solve indicated mathematical equations (a, b, x and y are numbers). Below you find basic
information to help you starting with Matlab:

• Commands in Matlab are executed by pressing Enter or Return. The output will be
displayed on the screen immediately. Try the following:

>> 3 + 7.5

>> 18/4 - (3 * 7)

Note that spaces are not important in Matlab.
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• The result of the last performed computation is ascribed to the variable ans, which is
an example of a Matlab built-in variable. It can be used on the next command line.
For instance:
>> 14/4

ans =

3.5000

>> ans^(-6)

ans =

5.4399e-04

5.4399e-04 is a computer notation of 5.4399∗10−4. Note that ans is always overwritten
by the last command.

• You can also define your own variables (more on variables in Section A.2.1), e.g. a and
b as:
>> a = 14/4

a =

3.5000

>> b = a^(-6)

b =

5.4399e-04

• When the command is followed by a semicolon ’;’, the output is suppressed. Compare:

>> 3 + 7.5

>> 3 + 7.5;

• It is possible to execute more than one command at the same time; the commands should
then be separated by commas (to display the output) or by semicolons (to suppress the
output display), e.g.:

>> sin(pi/4), cos(pi); sin(0)

ans =

0.7071

ans =

0

Note that the value of cos(pi) is not printed.

• By default, Matlab displays only 5 digits. The command format long increases this
number to 15, format short reduces it to 5 again. For instance:

>> 312/56

ans =

5.5714

>> format long

>> 312/56

ans =

5.57142857142857

• The output may contain some empty lines; this can be suppressed by the command
format compact. In contrast, the command format loose will insert extra empty
lines.

• Matlab is case sensitive, for example, a is written as a in Matlab; A will result then
in an error.
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Mathematical notation Matlab command

a+ b a + b

a− b a - b

ab a * b
a
b a / b or b \ a

xb x^b√
x sqrt(x) or x^0.5

|x| abs(x)

π pi

4 · 103 4e3 or 4*10^3

i i or j

3− 4i 3-4*i or 3-4*j

e, ex exp(1), exp(x)
lnx, log x log(x), log10(x)
sinx, arctanx, ... sin(x), atan(x),...

Table A.1: Translation of mathematical notation to Matlab commands.

• All text after a percent sign % until the end of a line is treated as a comment. Enter
e.g. the following:

>> sin(3.14159) % this is an approximation of sin(pi)

You should skip comments while typing the examples.

• Previous commands can be fetched back with the ↑ -key. The command can also be
changed, the ← and → -keys may be used to move around in a line and edit it.

A.1.2 help-facilities

Matlab provides assistance through extensive online help. The help command is the simplest
way to get help. It displays the list of all possible topics. To get a more general introduction
to help, try:

>> help help

If you already know the topic or command, you can ask for a more specified help. For instance:

>> help elfun

provides information on the elementary math functions of Matlab. The topic you want help
on must be exact. The lookfor command is useful if you do not know the exact name of the
command or topic, e.g.:

>> lookfor inverse

displays a list of all commands, with a short description, for which the word inverse is
included in its help-text. Besides the help and lookfor commands, there is also a separate
mouse driven help. The helpwin command opens a new window on screen which can be
browsed in an interactive way.
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A.1.3 Interrupting a command or program

Sometimes you might spot an error in your command or program. Due to this error it can
happen that the command or program does not stop. Pressing Ctrl-C (or Ctrl-Break on
PC) forces Matlab to stop the process. After this, the Matlab prompt (>>) re-appears.
This may take a while, though.

A.1.4 Workspace issues

If you work in the Command Window, Matlab memorizes all commands that you entered and
all variables that you created. These commands and variables reside in the Matlabworkspace
and they might be easily recalled when needed, e.g. to recall previous commands, the ↑ -key
is used. Variables can be verified with the commands who, which gives a list of variables
present, and whos, which includes also extra information. Assuming that you performed all
commands given in Section A.1, after typing who you would obtain:

>> who

Your variables are:

a ans b x

The command clear <name> deletes the variable <name> from the Matlab workspace, clear
or clear all removes all variables. This is useful when starting a new task. For example:

>> clear a x

>> who

Your variables are:

ans b

A.1.5 Saving and loading data

The easiest way to save or load Matlab variables is by using (clicking) the File menu-bar,
and then the Save Workspace as... and Load Workspace... items. Alternatively, the
Matlab commands save and load can be used. save allows for saving your workspace
variables either into a binary file or an ASCII file. Binary files automatically get the ’.mat’

extension. For ASCII files, it is recommended to add a ’.txt’ or ’.dat’ extension. Study
the use of the save command:
>> s1 = sin(pi/4);

>> c1 = cos(pi/4); c2 = cos(pi/2);

>> str = ’hello world’; % a string

>> save data % saves all variables in binary format to data.mat

>> save numdata s1 c1 % saves numeric variables: s1 and c1 to numdata.mat

>> save allcos.dat c* -ascii % saves c1,c2 in 8-digit ascii format to allcos.dat

The load command allows for loading variables into the workspace. It uses the same syntax
as save. It might be useful to clear the workspace before each load and check which variables
are present in the workspace (use who) after loading. Assuming that you have created the
files above, the variables can be now loaded as:

>> load data % loads all variables from data.mat

>> load data s1 c1 % loads only specified variables from data.mat
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It is also possible to read ASCII files that contain rows of space separated values. Such a file
may contain comments that begin with a percent character. The resulting data is placed into
a variable with the same name as the ASCII file (without the extension). Check, for example:

>> load allcos.dat % loads data from allcos.dat into variable allcos

>> who % lists variables present in the workspace now

A.2 Mathematics with vectors and matrices

The basic element of Matlab is a matrix (or an array). Special cases are:

• a 1× 1-matrix: a scalar or a single number;

• a matrix existing only of one row or one column: a vector.

Note that Matlab may behave differently depending on input, whether it is a number, a
vector or a 2D matrix.

A.2.1 Assignments and variables

Formally, there is no need to declare (i.e. define the name, size and the type of) a new
variable in Matlab. A variable is simply created by an assignment (e.g. a = 15/4). Each
newly created numerical variable is always of the double type. You can change this type by
converting it into e.g. the single type1.

Bear in mind that undefined values cannot be assigned to a variable. So, the following is not
possible:

>> clear x; % to make sure that x does not exist

>> f = x^2 + 4 * sin (x)

It becomes possible by:

>> x = pi / 3; f = x^2 + 4 * sin (x)

Here are some examples of different types of Matlab variables (check their types by using
whos):

>> M = [1 2; 3 4; 5 6] % a matrix

>> 2t = 8 % what is the problem with this command?

>> c = ’E’ % a character

>> str = ’Hello world’ % a string

There is also a number of built-in variables, e.g. pi, eps or i, presented in Table A.2. In
addition to creating variables by assigning values to them, another possibility is to copy one
variable, e.g. b into another, e.g. a. In this way, the variable a is automatically created (if a
already existed, its previous value is now lost):

>> b = 10.5;

>> a = b;

1A variable a is converted into a different type by performing e.g. a = single(a), etc.
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Variable name Value/meaning

ans the default variable name used for storing the last result
pi π = 3.14159...
eps the smallest positive number that added to 1, creates a result

larger than 1
inf representation for positive infinity, e.g. 1/0
nan or NaN representation for not-a-number, e.g. 0/0
i or j i = j =

√
−1

nargin/nargout number of function input/output arguments used
realmin/realmax the smallest/largest usable positive real number

Table A.2: Built-in variables in Matlab.

If min is the name of a function (see Section A.4.2), then a defined as:

>> b = 5; c = 7;

>> a = min (b,c);

will call that function, with the values b and c as parameters. The result of this function (its
return value) will be written (assigned) into a.

A.2.2 Vectors

Row vectors are lists of numbers separated either by commas or by spaces. They are examples
of simple arrays. First element has index 1. The number of entries is known as the length of
the vector (the command length exists as well). Their entities are referred to as elements or
components. The entries must be enclosed in [ ]:

>> v = [-1 sin(3) 7]

v =

-1.0000 0.1411 7.0000

A number of operations can be performed on vectors. A vector can be multiplied by a
scalar, or added/subtracted to/from another vector with the same length, or a number can
be added/subtracted to/from a vector. A particular value can be also changed or displayed.
All these operations are carried out element-by-element. Vectors can be also built from the
already existing ones:

>> v = [-1 2 7]; w = [2 3 4];

>> z = v + w % an element-by-element sum

z =

1 5 11

>> t = [2*v, -w+2]

ans =

-2 4 14 0 -1 -2

>> v(2) = -1 % change the 2nd element of v

v =

-1 -1 7

60



A colon notation is an important shortcut, used when producing row vectors (see Table A.3
and help colon):

>> 2:5

ans =

2 3 4 5

In general, first:step:last produces a vector of entities with the value first, incrementing
by the step until it reaches last:

>> -0.2:0.5:1.7

ans =

-0.2000 0.3000 0.8000 1.3000

>> 5.5:-2:-2.5 % a negative step is also possible

ans =

5.5000 3.5000 1.5000 -0.5000 -2.5000

Parts of vectors can be extracted by using a colon notation:

>> r = [-1:2.5:6, 2, 3, -2]; % r = [-1 1.5 4 2 3 -2]

>> r(2:2:6) % get the elements of r from the positions 2, 4 and 6

ans =

1.5 2 -2

To create column vectors, you should separate entries by a semicolon ’;’ or by new lines.
The same operations as on row vectors can be done on column vectors. However, you cannot
for example add a column vector to a row vector. To do that, you need an operation called
transposing, which converts a column vector into a row vector and vice versa:

>> f = [-1; 3; 5] % a column vector

f =

-1

3

5

>> f’ % f’ is a row vector

ans =

-1 3 5

>> v = [-1 2 7]; % a row vector

>> f + v % you cannot add a column vector f to a row vector v

??? Error using ==> +

Matrix dimensions must agree.

>> f’ + v

ans =

-2 5 12

You can now compute the inner product between two vectors x and y, xT y =
∑

i xi yi, in a
simple way:

>> v = [-1; 2; 7]; % v is now a column vector; f is also a column vector

>> f’ * v % this is the inner product! f * v’ is the outer product

ans =

42
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Command Result

A(i,j) Aij
A(:,j) j-th column of A
A(i,:) i-th row of A
A(k:l,m:n) (l − k + 1) × (n − m + 1) matrix with elements Aij with

k ≤ i ≤ l, m ≤ j ≤ n
v(i:j)’ ’vector-part’ (vi, vi+1, . . . , vj) of vector v

Table A.3: Manipulation of (groups of) matrix elements.

A.2.3 Matrices

An n × k matrix is a rectangular array of numbers having n rows and k columns. Defining
a matrix in Matlab is similar to defining a vector. The generalization is straightforward, if
you know that a matrix consists of row vectors (or column vectors). Commas or spaces are
used to separate elements in a row, and semicolons are used to separate individual rows. For
example, a matrix can be defined as:

>> A = [1 2 3; 4 5 6; 7 8 9] % row by row input

A =

1 2 3

4 5 6

7 8 9

Transposing a vector changes it from a row to a column or the other way around. This idea
can be extended to a matrix, where transposing interchanges rows with the corresponding
columns, as in the example:

>> A2 = [1:4; -1:2:5], A2’

A2 =

1 2 3 4

-1 1 3 5

ans =

1 -1

2 1

3 3

4 5

>> size(A2), size(A2’) % returns the size (dimensions) of a matrix

ans =

2 4

ans =

4 2

There are also built-in matrices of size specified by the user (see Table A.4). A few examples
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Command Result

n = rank(A) n becomes the rank of matrix A
x = det(A) x becomes the determinant of matrix A
x = size(A) x becomes a row-vector with 2 elements: the number of rows and columns of A
x = trace(A) x becomes the trace (sum of diagonal elements) of matrix A
x = norm(v) x becomes the Euclidean length of vector v

C = A + B sum of two matrices
C = A - B subtraction of two matrices
C = A * B multiplication of two matrices
C = A .* B ’element-by-element’ multiplication (A and B are of equal size)
C = A ^ k power of a matrix (k ∈ Z; can also be used for A−1)
C = A .^ k ’element-by-element’ power of a matrix
C = A’ the transposed of a matrix; AT

C = A ./ B ’element-by-element’ division (A and B are of equal size)
X = A \ B finds the solution in the least squares sense to the system of equations AX = B
X = B / A finds the solution of XA = B, analogous to the previous command

C = inv(A) C becomes the inverse of A
C = null(A) C is an orthonormal basis for the null space of A obtained from the singular

value decomposition
C = orth(A) C is an orthonormal basis for the range of A
C = rref(A) C is the reduced row echelon form of A
L = eig(A) L is a vector containing the (possibly complex) eigenvalues of a square matrix A
[X,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix X whose columns

are the corresponding eigenvectors of A
S = svd(A) S is a vector containing the singular values of A
[U,S,V] = svd(A) S is a diagonal matrix with nonnegative diagonal elements in decreasing order;

columns of U and V are the accompanying singular vectors

x = linspace(a,b,n) generates a vector x of n equally spaced points between a and b
x = logspace(a,b,n) generates a vector x starting at 10a and ended at 10b containing n values
A = eye(n) A is an n× n identity matrix
A = zeros(n,m) A is an n×m matrix with zeros (default m = n)
A = ones(n,m ) A is an n×m matrix with ones (default m = n)
A = diag(v) gives a diagonal matrix with the elements v1, v2, . . . , vn on the diagonal
X = tril(A) X is lower triangular part of A
X = triu(A) X is upper triangular part of A
A = rand(n,m) A is an n×m matrix with elements uniformly distributed between 0 and 1
A = randn(n,m) ditto - with elements standard normal distributed

v = max(A) v is a vector with the maximum value of the elements in each column of A
or v is the maximum of all elements if A is a vector

v = min(A) ditto - with minimum
v = sum(A) ditto - with sum

Table A.4: Frequently used matrix operations and functions.
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are given below:

>> I = eye(2) % the 2-by-2 identity matrix

I =

1 0

0 1

>> B = randn(1,2) % a vector of normally distributed random numbers

B =

-0.4326 -1.6656

>> r = [1 3 -2]; R = diag(r) % create a diagonal matrix with r on the diagonal

R =

1 0 0

0 3 0

0 0 -2

It is often needed to build a larger matrix from the smaller ones:

>> x = [4; -1]; y = [-1 3]; X = [x y’]

X = % X consists of the columns: x and y’

4 -1

-1 3

>> T = [-1 3 4; 4 5 6]; t = 1:3;

>> A = [[T; t] ones(3,2)]] % add a row vector t, then add two columns of 1’s

A =

-1 3 4 1 1

4 5 6 1 1

1 2 3 1 1

It is possible to manipulate (groups of) matrix elements (see Table A.3). A part can be
extracted from a matrix in a similar way as from a vector. Each element in the matrix is
indexed by a row and a column to which it belongs, e.g. A(i,j) denotes the element from
the i-th row and the j-th column of the matrix A.

>> A(3,4)

ans =

1

>> A(4,3) % A is a 3-by-5 matrix! A(4,3) does not exist

??? Index exceeds matrix dimensions.

It is easy to extend a matrix automatically. For the matrix A it can be done e.g. as follows:

>> A(4,3) = -2 % assign -2 to the position (4,3); the uninitialized

A = % elements become zeros

-1 3 4 1 1

4 5 6 1 1

1 2 3 1 1

0 0 -2 0 0

>> A(4,[1:2,4:5]) = 4:7; % assign A(4,1)=4, A(4,2)=5, A(4,4)=6 and A(4,5)=7
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Different parts of the matrix A can be now extracted:

>> A(:,2) % extract the 2nd column of A; what will you get?

>> A(4,:) % extract the 4th row of A

ans =

4 5 -2 6 7

>> A(2:3,[1,5])

4 -1

1 1

Table A.4 shows some frequently used matrix operations and functions. A few examples are
given below:

>> B = [1 4 -3; -7 8 4]; C = [1 2; 5 1; 5 6];

>> (B + C’)./4 % add matrices and divide all elements of result by 4

ans =

0.5000 2.2500 0.5000

-1.2500 2.2500 2.5000

>> D = [1 -1 4; 7 0 -1];

>> D = B * D’; D^3 % D^3 is equivalent to D * D * D

ans =

-4205 38390

3839 -150087

>> D.^3 - 2 % for all elements: raise to the power 3, subtract 2

ans =

-3377 998

-1 -148879

The concept of an empty matrix [] is also very useful in Matlab. For instance, a few
columns or rows can be removed from a matrix by assigning an empty matrix to it. Try for
example:

>> C = [1 2 3 4; 5 6 7 8; 1 1 1 1];

>> D = C; D(:,2) = [] % now a copy of C is in D; remove the 2nd column of D

>> C ([1,3],:) = [] % remove the 1st and 3rd rows from C

A.3 Control flow

A control flow structure is a block of commands that allows conditional code execution and
making loops.

A.3.1 Logical and relational operators

To use control flow commands, it is necessary to perform operations that result in logical
values: TRUE or FALSE, which in Matlab correspond to 1 or 0 respectively (see Table A.5
and help relop). The relational operators <, <=, >, >=, == and ~= can be used to compare
two arrays of the same size or an array to a scalar. The logical operators &, | and ~ allow
for the logical combination or negation of relational operators. The logical & and | have equal
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Command Result

a = (b > c) a is 1 if b is larger than c. Similar are: <, >= and <=

a = (b == c) a is 1 if b is equal to c

a = (b ~= c) a is 1 if b is not equal c
a = ~b logical complement: a is 1 if b is 0

a = (b & c) logical AND: a is 1 if b = TRUE AND c = TRUE
a = (b | c) logical OR: a is 1 if b = TRUE OR c = TRUE

Table A.5: Relational and logical operations.

precedence in Matlab, which means that those operators associate from left to right. In
addition, three functions are also available: xor, any and all (use help to find out more).

The command find You can extract all elements from the vector or the matrix satisfying
a given condition, e.g. equal to 1 or larger than 5, by using logical addressing. The same
result can be obtained via the command find, which return the positions (indices) of such
elements. For instance:
>> x = [1 1 3 4 1];

>> i = (x == 1)

i =

1 1 0 0 1

>> j = find(x == 1) % j holds indices of the elements satisfying x == 1

j =

1 2 5

>> y = x(i), z = x(j)

y =

1 1 1

z =

1 1 1

find operates in a similar way on matrices. It reshapes first the matrix A into a column
vector, i.e. all columns all concatenated one after another. Therefore, e.g. k = find (A >

2) is a list of indices of elements larger than 2 and A(k) gives the values. The row and column
indices can be returned by [I,J] = find (A > 2).

A.3.2 Conditional code execution

Selection control structures, if-blocks, are used to decide which instruction to execute next
depending whether expression is TRUE or not. The general description is given below. In
the examples below the command disp is frequently used. This command displays on the
screen the text between the quotes.
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• if ... end

Syntax

if logical_expression

statement1

statement2

....

end

Example

if (a > 0)

b = a;

disp (’a is positive’);

end

• if ... else ... end

Syntax

if logical_expression

block of statements

evaluated if TRUE

else

block of statements

evaluated if FALSE

end

Example

if (temperature > 100)

disp (’Above boiling.’);

toohigh = 1;

else

disp (’Temperature is OK.’);

toohigh = 0;

end

• if ... elseif ... else ... end

Syntax

if logical_expression1

block of statements evaluated

if logical_expression1 is TRUE

elseif logical_expression2

block of statements evaluated

if logical_expression2 is TRUE

else

block of statements evaluated

if no other expression is TRUE

end

Example

if (height > 190)

disp (’very tall’);

elseif (height > 170)

disp (’tall’);

elseif (height < 150)

disp (’small’);

else

disp (’average’);

end

Another selection structure is switch, which switches between several cases depending on an
expression, which is either a scalar or a string. Learn more by using help.
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A.3.3 Loops

Iteration control structures, loops, are used to repeat a block of statements until some condi-
tion is met:

• the for loop that repeats a group of statements a fixed number of times;

Syntax

for index = first:step:last

block of statements

end

Example

sumx = 0;

for i=1:length(x)

sumx = sumx + x(i);

end

You can specify any step, including a negative value. The index of the for-loop can
be also a vector. See some examples of possible variations:

Example 1

for i=1:2:n

...

end

Example 2

for i=n:-1:3

....

end

Example 3

for x=0:0.5:4

disp(x^2);

end

Example 4

for x=[25 9 81]

disp(sqrt(x));

end

• while loop, which evaluates a group of commands as long as expression is TRUE.

Syntax

while expression

statement1

statement2

statement3

...

end

Example

N = 100;

iter = 1;

msum = 0;

while iter <= N

msum = msum + iter;

iter = iter + 1;

end;

A.4 Script and function m-files

A.4.1 Script m-files

Script m-files are useful when the number of commands increases or when you want to change
values of some variables and re-evaluate them quickly. Formally, a script is an external file
that contains a sequence of Matlab commands. However, it is not a function, since there
are no input/output parameters and the script variables remain in the workspace. When
you run a script, the commands in it are executed as if they have been entered
through the keyboard. To create a script, open the Matlab editor (go to the File menu-
bar, choose the New option and then m-file or Script; the Matlab Editor Window will
appear), enter the lines listed below and save as sinplot.m:
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x = 0:0.2:6; y = sin(x); plot(x,y);

title(’Plot of y = sin(x)’);

The script can be run by calling sinplot. Note that m-script file must be saved in one of the
directories in Matlab’s path. The sinplot script affects the workspace. Check:

>> clear % all variables are removed from the workspace

>> who % no variables present

>> sinplot % run the script

>> who

Your variables are:

x y

These generic names, x and y, may be easily used in further computations and this can cause
side effects. They occur, in general, when a set of commands change variables other than the
input arguments. Remember that the commands within a script have access to all variables
in the workspace and all variables created in this script become a part of the workspace.
Therefore, it is better to use function m-files (see Section A.4.2) for a specific problem to be
solved.

A.4.2 Function m-file

Functions m-files are true subprograms, as they take input arguments and/or return output
parameters. They can call other functions, as well. Variables defined and used inside a
function, different from the input/output arguments, are invisible to other functions and to
the command environment. The general syntax is:

function [outputArgs] = function_name (inputArgs)

outputArgs are enclosed in [ ]:

– a comma-separated list of variable names;

– [ ] is optional when only one argument is present;

– functions without outputArgs are legal2.

inputArgs are enclosed in ( ):

– a comma-separated list of variable names;

– functions without inputArgs are legal.

Matlab provides a structure for creating your own functions. The first line should be a
definition of a new function (called a header). After that, a continuous sequence of comment
lines, explaining what the function does, should appear. Since they are displayed in response
to the help command, also the expected input parameters, returned output parameters and
synopsis should be described there. Finally, the remainder of the function is called the body.
Function m-files terminate execution when they reach the end of the file or, alternatively,

2In other programming languages, functions without output arguments are called procedures.
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when the command return is encountered. The name of the function and the name of
the file stored should be identical . As an example, the function average, stored in a file
average.m, is defined as:

input argument
the first line must be
the function definition

help average

a blank line within the comment;
Notes information will NOT appear
when you ask:

%AVERAGE  computes the average value of a vector x

function avr = average (x)

function nameoutput argument

%         and returns it in avr

% Notes: an example of a function

n   = length(x);
avr = sum(x)/n;
return;

comment

function body

Here is an another example of a function:

function [avr,sd] = stat(x)

%STAT Simple statistics; computes the average and standard deviation of a vector x.

n = length(x);

avr = sum(x)/n;

sd = sqrt(sum((x - avr).^2)/n);

return;

Warning: The functions mean and std already exist in Matlab. As long as a function
name is used as a variable name, Matlab can not perform the function. Many other, easily
appealing names, such as sum or prod are reserved by Matlab functions, so be careful when
choosing your names.

When controlling the proper use of parameters, the function error may become useful. It dis-
plays an error message, aborts function execution, and returns to the command environment.
Here is an example:

if (a >= 1)

error (’a must be smaller than 1’);

end;

A.4.3 Scripts vs. functions

The most important difference between a script and a function is that all script’s parameters
and variables are externally accessible (i.e. in the workspace), where function variables are
not. Therefore, a script is a good tool for documenting work, designing experiments and
testing. In general, create a function to solve a given problem for arbitrary parameters; use
a script to run functions for specific parameters required by the assignment.
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Appendix B

PRTools

B.1 Datasets

This section will give a brief overview of methods to generate standard datasets, and a number
of other datasets available for loading. For more information on the dataset object, please
refer to Day 1.

B.1.1 Data generation methods

Notation

p number of features, e.g. p = 2

n number of samples (na, nb for classes A and B), e.g. n = 20

c number of classes, e.g. c = 2

u class mean: (1,p) vector (ua, ub for classes A and B), e.g. u = [0,0]

v variance value, e.g. v = 0.5

s class feature deviations: (1,p) vector, e.g. s = [1,4]

G covariance matrix, size (p,p), e.g. G = [1 1; 1 4]

a dataset, size (n,p)

lab label vector, size (n,1)

dataset generating routines

gauss Generation of multivariate Gaussian distributed data
gendatb Generation of banana shaped classes in 2D
gendatc Generation of circular classes
gendatd Generation of two difficult classes
gendath Generation of Higleyman classes in 2D
gendatl Generation of Lithuanian classes in 2D
gendatm Generation of 8 classes in 2D
gendats Generation of two Gaussian distributed classes
gencirc Generation of circle with radial noise in 2D
lines5d Generation of three lines in 5D
boomerang Generation two boomerang-shaped classes in 3D
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Resampling routines

gendatk Nearest neighbour data generation
gendatp Parzen density data generation
gendat Generation of subsets of a given dataset

Data generation examples
a = rand(n,p).*(ones(n,1)*s)+ Uniform distribution
ones(n,1)*u

a = randn(n,p)*(ones(n,1)*s)+ Normal distribution with diagonal
ones(n,1)*u covariance matrix (s.*s)

lab = genlab(n,lablist) Generate a set of labels, n(i) times lablist(i,:), for all
values of i

a = dataset(a,lab,featlab) Define a dataset from an array of feature vectors a and a set
of labels lab, one for each datavector. Feature labels can be
stored in featlab

a = gauss(n,u,G) Arbitrary normal distribution

a = gencirc(n,s) Noisy data on the perimeter of a circle

a = gendatc([na,nb],p,ua) Two circular normally distributed classes

a = gendatd([na,nb],p,d1,d2) Two ’difficult’ normally distributed classes (pancakes)

a = gendath(na,nb) Two classes of Highleyman (fixed normal distributions)

a = gendatm(n) Generation of n objects in 8 normally distributed classes
(means are generated randomly for each call)

a = gendats([na,nb],p,d) Two ’simple’ normally distributed classes, distance d

a = gendatl([na,nb],v) Generate two 2D ’sausages’

a = gendatk(b,n,k,v) Random generation by ’adding noise’ to a given dataset b

using the k-nearest neighbor method. The standard deviation
is v × the nearest neighbour distance

a = gendatp(b,n,v,G) Random generation from a Parzen density distribution based
on the dataset b and smoothing parameter v. In case G is
given it is used as covariance matrix of the kernel

[b,c] = gendat(a,n) Generate at random two datasets out of one. The set b will
have n objects per class, the remaining ones are stored in c

B.1.2 Datasets

In the table below, a list of datasets is given that can be stored in the variable a provided prdatasets

is added to the path, e.g.:

a = iris;

>> a

Iris plants, 150 by 4 dataset with 3 classes: [50 50 50]
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Public domain datasets
x80 45 by 8 with 3 classes: [15 15 15]

auto mpg 398 by 6 with 2 classes: [229 169]

malaysia 291 by 8 with 20 classes

biomed 194 by 5 with 2 classes: [127 67]

breast 683 by 9 with 2 classes: [444 239]

cbands 12000 by 30 with 24 classes: [500 each]

chromo 1143 by 8 with 24 classes

circles3d 100 by 3 with 2 classes: [50 50]

diabetes 768 by 8 with 2 classes: [500 268]

ecoli 272 by 7 with 3 classes: [143 77 52]

glass 214 by 9 with 4 classes: [163 51]

heart 297 by 13 with 2 classes: [160 137]

imox 192 by 8 with 4 classes: [48 48 48 48]

iris 150 by 4 with 3 classes: [50 50 50]

ionosphere 351 by 34 with 2 classes: [225 126]

liver 345 by 6 with 2 classes: [145 200]

mfeat fac 2000 by 216 with 10 classes: [200 each]

mfeat fou 2000 by 76 with 10 classes: [200 each]

mfeat kar 2000 by 64 with 10 classes: [200 each]

mfeat mor 2000 by 6 with 10 classes: [200 each]

mfeat pix 2000 by 240 with 10 classes: [200 each]

mfeat zer 2000 by 47 with 10 classes: [200 each]

mfeat 2000 by 649 with 10 classes: [200 each]

nederland 12 by 12 with 12 classes: [1 each]

ringnorm 7400 by 20 with 2 classes: [3664 3736]

sonar 208 by 60 with 2 classes: [97 111]

soybean1 266 by 35 with 15 classes

soybean2 136 by 35 with 4 classes: [16 40 40 40]

spirals 194 by 2 with 2 classes: [97 97]

twonorm 7400 by 20 with 2 classes: [3703 3697]

wine 178 by 13 with 3 classes: [59 71 48]

Other data loading routines
prdataset Read dataset stored in mat-file
prdata Read data from file
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a = gendatc([50,50]); scatterd(a); a = gendath([50,50]); scatterd(a);
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Difficult Dataset

a = gendats([50,50],2,4); a = gendatd([50,50],2);

scatterd(a); axis(’equal’); scatterd(a); axis(’equal’);
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a = spirals; scatterd(a); a = gendatb([50,50]); scatterd(a);
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a = iris;

scatterd(a,’gridded’);

B.2 Mappings

Data structures of the class mapping store trained classifiers, feature extraction results, data scaling
definitions, nonlinear projections, etc. They are usually denoted by w.

mapping

mapping Define mapping
getlab Retrieve labels assigned by mapping

A mapping w is often created by training a classifier on some data. For instance, the nearest mean
classifier nmc is trained on some data a by:

>> a = gendatb(20);

>> w = nmc(a)

Nearest Mean, 2 to 2 trained classifier --> affine

w by itself, or display(w), lists the size and type of a classifier as well as the routine which is used for
computing the mapping a*w.

When a mapping is trained, it can be applied to a dataset, using the operator *:

>> b = a*w

Banana Set, 20 by 2 dataset with 2 classes: [7 13]

The result of the operation a*w is again a dataset. It is the classified, rescaled or mapped result of
applying the mapping definition stored in w to a.

mappings and classifiers
classc Converts a mapping into a classifier
labeld General classification routine for trained classifiers
testc General error estimation routine for trained classifiers

All routines operate on multi-class problems. For mappings which change the labels of the objects (so
the mapping is actually a classifier) the routines labeld and testc are useful. labeld and testc are
the general classification and testing routines respectively. They can handle any classifier from any
routine.
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Linear and polynomial classifiers
klldc Linear classifier by KL expansion of common cov matrix
loglc Logistic linear classifier
fisherc Fisher’s discriminant (minimum least square linear classifier)
ldc Normal densities based linear classifier (Bayes rule)
nmc Nearest mean classifier
nmsc Scaled nearest mean classifier
perlc Linear classifier by linear perceptron
pfsvc Pseudo-Fisher support vector classifier
qdc Normal densities based quadratic (multi-class) classifier
udc Uncorrelated normal densities based quadratic classifier

Nonlinear classifiers
knnc k-nearest neighbour classifier (find k, build classifier)
mapk k-nearest neighbour mapping routine
testk Error estimation for k-nearest neighbour rule
parzenc Parzen density based classifier
parzenml Optimization of smoothing parameter in Parzen density estimation.
parzen map Parzen mapping routine
testp Error estimation for Parzen classifier
edicon Edit and condense training sets
treec Construct binary decision tree classifier
tree map Classification with binary decision tree
bpxnc Train feed forward neural network classifier by backpropagation
lmnc Train feed forward neural network by Levenberg-Marquardt rule
rbnc Train radial basis neural network classifier
neurc Automatic neural network classifier
rnnc Random neural network classifier
svc Support vector classifier

B.3 Training and testing

There are many commands to train and use mappings between spaces of different (or equal) dimen-
sionalities. For example:

if a is an n by p dataset (n objects in a p-dimensional space)
and w is a p by d mapping (map from p to d dimensions)
then a*w is an n by d dataset (n objects in a d-dimensional space).

Mappings can be linear (e.g. a rotation) or nonlinear (e.g. a neural network). Typically they can be
used for classifiers. In that case a p by d mapping maps a p-feature data vector on the output space of a
d-class classifier (exception: two-class classifiers, such as discriminant functions, may be implemented
by a mapping to a 1D space, e.g. the distance to the discriminant: d = 1).

Mappings are of the data type mapping, have a size of [p,d] if they map from p to d dimensions.
Mappings can be instructed to assign labels to the output columns, e.g. the class names. These labels
can be retrieved by

labels = getlab(w); before the mapping, or
labels = getlab(a*w); after the dataset a is mapped by w.

Mappings can be learned from examples, (labeled) objects stored in a dataset a, for instance by training
a classifier:
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w3 = ldc(a); the normal densities based linear classifier
w2 = knnc(a,3); the 3-nearest neighbor rule
w1 = svc(a,’p’,2); the support vector classifier based on a 2nd order poly-
nomial kernel

optional

The mapping of a test set b using b*w1 is equivalent to b*(a*v1) or even, irregularly but sometimes
useful, to a*v1*b (or even a*ldc*b). Note that expressions are evaluated from left to right, so b*a*v1

may result in an error as the multiplication of the two datasets (b*a) is executed first.
end optional

B.4 Example

In this example a 2D Highleyman dataset A is generated, 100 objects for each class. Out of each class
20 objects are generated for training, C and 80 for testing, D. Three classifiers are computed: a linear
one and a quadratic one, both assuming normal densities (which is correct in this case) and a Parzen
classifier. Note that the data generation use the random generator. As a result they only reproduce
if they use the original seed. After computing and displaying classification results for the test set a
scatterplot is made in which all classifiers are drawn.

%PREX_PLOTC PRTools example on the dataset scatter and classifier plot

help prex_plotc

echo on

% Generate Higleyman data

A = gendath([100 100]);

% Split the data into the training and test sets

[C,D] = gendat(A,[20 20]);

% Compute classifiers

w1 = ldc(C); % linear

w2 = qdc(C); % quadratic

w3 = parzenc(C); % Parzen

w4 = lmnc(C,3); % neural net

% Compute and display errors

% Store classifiers in a cell

W = w1,w2,w3,w4;

% Plot errors

disp(D*W*testc);

% Plot the data and classifiers

figure

% Make a scatter-plot

scatterd(A);

% Plot classifiers

plotc(w1,w2,w3,w4);

echo off
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