

Machine Learning for Bioinformatics & Systems Biology

1. Introduction & density estimation

Marcel Reinders Delft University of Technology

Perry Moerland Amsterdam UMC, University of Amsterdam

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin, David Tax & Dick de Ridder

Programme

Day	Lecturer	Subjects
Monday 26/9	Marcel Reinders	Introduction to machine learning Bayesian framework Density estimation Bayesian classification
Tuesday 27/9	Perry Moerland	Parametric classifiers Nonparametric classifiers Discriminant analysis Decision trees & random forests
Wednesday 28/9	Lodewyk Wessels	Feature selection Sparse classifiers Feature extraction Embeddings
Thursday 29/9	Perry Moerland	Hierarchical clustering Agglomerative clustering Model-based clustering Hidden Markov models
Friday 30/9	Marcel Reinders	Artificial neural networks Support vector machines Classifier ensembles Complexity

Schedule

K01-222-1: basement

When	What	Where
9.00-12.00	Lecture	AMC/HvA
12.00-13.00	Lunch break	The Box (G0-114)
13.00-17.00	Computer lab	AMC/HvA

- Coffee/tea etc. and lunch will be provided
- Wednesday there will be drinks and bites at 17.00 in Grand-Café ZO (at 5 minutes walking distance from the AMC)

Certificates and examination

- To obtain a certificate of successful completion:
 - Analyse a biological dataset (preferably one from your own practice) using the tools provided in the course
 - Write a short report (5-10 pages) on the results
 - Hand this in no later than October 21, 2022 (3 weeks after end of course)
- If you have no dataset available, one will be provided
- Grade will be "pass" or "fail", with at most one resubmission
- If no report or "fail": certificate of attendance

BioSB: The Netherlands Bioinformatics and Systems Biology research school

Yearly conference: 9-10 May 2023

Courses:

- Algorithms for Genomics, Delft, 10-14 October 2022
- Computational Metagenomics, Wageningen, 10-12 October 2022
- Single cell Analysis, Leiden, 10-14 October 2022
- Integrated modeling and optimization, 12-16 December 2022
- Constraint-based modeling, 13-17 February 2023
- YoungCB: Regional Student Group (RSG) Netherlands of the International Society of Computational Biology

Course

Modelling Learning from examples

Machine learning

- Wikipedia:
 - "the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead ... Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task."
- Christopher M. Bishop:
 - "Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these ... can be viewed a two facets of the same field"

Machine learning (2)

- The construction of approximate, generalizing (predictive)
 models by learning from examples, for problems for which
 no full physical model is known (yet)
- Focus in this course will be on classification and statistical machine learning, not (so much) on regression, structural/syntactic pattern recognition and reinforcement learning.
- Related areas
 - Applied statistics
 - Pattern recognition
 - Artificial intelligence
 - Computer vision
 - Data mining

Machine learning (3)

Examples:

- Computer vision: license plate reading, people counting, face detection, smart cameras, ...
- Signal processing: thermostat, speech/speaker recognition, ...
- Information retrieval: Google, Amazon, automated translation, ...
- Biometrics: fingerprint recognition, iris scan, signature verification...
- Defensive: friend-or-foe recognition, target tracking, ...
- Medicine: interpreting scans, diagnostic systems, ...

Machine learning (4)

- Bioinformatics:
 - Gene (function) prediction, SNP prioritization, ...
 - Diagnosis/prognosis, biomarker discovery, ...
 - Network inference: PPI, metabolic networks, ...
 - Cell-type identification, ...
 - Etc.

Goal

- After having followed this course, the student has a good understanding of a wide range of machine learning techniques and is able to recognize what method is most applicable to data analysis problems (s)he encounters in bioinformatics and systems biology applications.
- Many problems are in fact machine learning problems!

Machine learning (5)

- Finding structure in data
 - Outlier/anomaly detection
 - Clustering
 - Dimensionality reduction,
 selecting useful (combinations of) features
 - Regression
 - Classification
 - •
- All aimed at generalisation:
 making a prediction for data you have not yet seen

Clustering

Can we find natural groups in the data?

E.g. red vs green fruit

Outlier detection

Dimensionality reduction

Can we find predictive measurements?

Regression

Can we predict real-valued outputs?

Classification

Can we distinguish apples from pears?

Technical error / rare patient-rare genetic background

Tools applicable to any type of biological data

Examples:

- Protein sequence data:
 - Clustering: finding orthologous groups
 - Classification: prediction of EC number, subcellular localization, ...
 - Regression: predicting secondary structure
- TF binding data (ChIP):
 - Clustering: finding functional gene groups
 - Classification: predicting gene annotation
 - Regression: finding cis-regulatory modules

•

Terminology

Measurements and features

- To automate these tasks, we have to find a mathematical representation of objects
- Objects are usually represented by features,
 i.e. sets of useful measurements obtained from some sensors

Measurements and features (2)

- This course assumes measurements as given, i.e. sensor accuracy etc. are not explicitly modeled
- However,
 - in general measurements will never be perfect
 - objects within a class will vary intrinsically
- Hence, we need statistics to model all variation

This is important!

If we know everything and there is no noise, you'll need different algorithms/models

- A dataset is a set of measurements on many objects
- For clustering:

Object	Weight	Colour	
Apple #1	25	36	
Apple #2	20	34	
Apple #3	35	40	
Pear #1	35	55	
Pear #2	37	55	
Pear #3	40	57	
Pear #4	36	41	

- A dataset is a set of measurements on many objects
- For regression:

Object	Weight	Colour	Price
Apple #1	25	36	0.21
Apple #2	20	34	0.17
Apple #3	35	40	0.33
Pear #1	35	55	0.41
Pear #2	37	55	0.26
Pear #3	40	57	0.35
Pear #4	36	41	0.29

- A dataset is a set of measurements on many objects
- For classification:

Object	Weight	Colour	Label
Apple #1	25	36	A
Apple #2	20	34	A
Apple #3	35	40	A
Pear #1	35	55	Р
Pear #2	37	55	Р
Pear #3	40	57	Р
Pear #4	36	41	Р

• A dataset is a set of measurements on many objects

For classification:

Object	Weight	Colour	Label	
Apple #1	25	36	Α	
Apple #2	20	34	Α	1
Apple #3	35	40	A	object
Pear #1	35	55	Р	
Pear #2	37	55	Р	
Pear #3	40	57	Р	datase
Pear #4	36	41	P	dataoo
asurem	ent fea	oture -	labels	_

Datasets (2)

- What objects, labels/targets and features are depends on the problem...
- Gene expression-based diagnostics:
 - object: patient
 - feature: gene expression, copy number, mutational pattern,
 - label: relapse; regressor/dependent variable: survival time

Datasets (2)

- What objects, labels/targets and features are depends on the problem...
- Protein-protein interactions:
 - object: protein PAIR
 - feature: gene expression correlation, difference in annotation, ...
 - label: complex or not; regressor/dependent variable: binding strength

Datasets (2)

- What objects, labels/targets and features are depends on the problem...
- Gene prediction:
 - object: gene
 - feature: sequence (representation), conservation of sequence, ...
 - label: gene or not; regressor/dependent variable: conservation

Datasets (2)

- What objects, labels/targets and features are depends on the problem...
- TFBS detection:
 - object: location on genome
 - feature: ChIP-seq, sequence features, distance to TSS ...
 - label: TFBS or not; regressor/dependent variable: specificity

Measurements and features (3)

- Problems
 - simple
 - knowledge present
 - a few good features
 - almost separable classes (classification) or a linear relation (regression)

- complex
- lack of knowledge
- many poor features
- overlapping classes
 (classification) or
 highly non-linear relation
 (regression)

Measurements and features (3)

- Problems
 - simple
 - knowledge present
 - a few good features

- complex
- lack of knowledge
- many poor features

Features (object representations) are important!

We don't deal too much with which features are measured, although we will touch upon derived features (Day 5: kernels) and learning features (Day 5: neural networks)

Feature space

We can interpret objects as vectors in a vector space

$$\mathbf{x} = [x_1, x_2, x_3, ..., x_p]^T$$

Iris flower dataset, introduced by **Ronald Fisher (famous statistician)** in 1936 as an example of discriminant analysis

Clustering

• Given unlabeled data x, find labels ω for natural groups in the data

Dimensionality reduction

Given unlabeled data x,
 map it to a lower dimensional feature vector y

Classification

• Given labeled data x, assign each point in feature space to a class ω_i (in effect partitioning the feature space)

Regression

Given labeled data x,
 assign each point in feature space a real-valued output y

General model

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data

General model (2)

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data
- Ideally, we know $p(y \mid x)$ or $p(\omega \mid x)$ over the entire feature space

General model (3)

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data
- Ideally, we know $p(y \mid x)$ or $p(\omega \mid x)$ over the entire feature space

General model (4)

Clustering: find cluster labels ω given object x fit model using dataset {x_i}

$$p(\omega | \mathbf{x})$$

• Dimensionality reduction: find mapping y given object x fit model using dataset $\{x_i\}$

• Classification: find class labels ω given object x fit model using dataset $\{x_i, \omega_i\}$

$$p(\omega | \mathbf{x})$$

Regression: find target y given object x
 fit model using dataset {x_i, y_i}

Machine learning pipeline

10min break

Statistics

Required background

- The course is aimed at PhD students with a background in bioinformatics, systems biology, computer science or a related field, and life sciences. A working knowledge of basic statistics and linear algebra is assumed.
- Self-assessment; if you have problems, read the primers
- Now, a brief recap

Recall: probability

- Ω: all possible outcomes (sample space)
 e.g. the number of eyes on a dice: 1, 2, 3, 4, 5, 6
- $A \in \Omega$: event e.g. "throwing a 3"
- *P* : probability measure
 - $0 \le P(A) \le 1$
 - $P(\Omega) = 1$
 - $P(A \cup B) =$ $P(A) + P(B) - P(A \cap B)$
 - E.g. P(A) = 1/6

Recall: probability (3)

Subjective approach:

"the probability of A is a number between 0 and 1 indicating how likely people believe A to be true"

Frequentist approach:

"the probability of A is a number between 0 and 1 indicating the average ratio of A being true in a large number of repeated experiments"

Is really a philosophical debate...
 the "right" approach depends on the problem and the data available

Recall: CDFs

- Cumulative distribution function
- $P_X(x) = F(x)$: probability that $X \le x$, $\Re \to [0,1]$

Recall: PDFs

• $p(x) = \frac{dP(x)}{dx}$: probability density function

•
$$p(x) \ge 0$$

$$\cdot \int_{-\infty}^{\infty} p(x) dx = 1$$

•
$$\int_{a}^{b} p(x)dx =$$

$$P(a \le x \le b)$$

• p(x) is not the probability of X being x!

Recall: expectation

Expectation: mean of distribution,

$$\mu = E[X] = \int_{-\infty}^{\infty} x \ p(x) \ dx$$

Note: expectations are over entire distributions;
 on data sets {x} we can only estimate the mean,

$$m = \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- E[c] = c
- $\operatorname{E}\left[aX + bY\right] = a \operatorname{E}[X] + b \operatorname{E}[Y]$

Important to realize that estimates are always based on a finite dataset! m is an estimate(!) of μ ; that is why there is a hat!

Recall: variance

Variance: average deviation from expected value,

$$\sigma^2 = \operatorname{var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) \ dx$$
 or

$$\sigma^2 = E[(X - E(X))^2] = E[X^2] - (E[X])^2$$

- σ is called the standard deviation
- $\operatorname{var}(X) \ge 0$
- var(c) = 0
- $\operatorname{var}(aX) = a^2 \operatorname{var}(X)$

Recall: variance (2)

 Again, on data sets {x} we can only estimate the variance:

$$s^2 = \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Usually, this unbiased estimator is used:

$$S^{2} = \hat{\sigma}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \hat{\mu})^{2}$$

Recall: joint distributions

• For p > 1 measurements $x = (x_1, ..., x_p)$, joint distributions & densities:

Recall: covariance

Covariance: measure of how two random variables vary together,

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$
$$= E[XY] - E[X]E[Y]$$

Correlation: normalised covariance,

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} \in [-1,1]$$

• cov(X,Y) = 0 : X and Y are uncorrelated

Recall: covariance (2)

• For a set of random variables $X_1 ... X_p$, we can calculate a covariance matrix,

$$\Sigma = \begin{bmatrix} \cos(X_1, X_1) & \cos(X_1, X_2) & \dots & \cos(X_1, X_p) \\ \cos(X_2, X_1) & \dots & \dots & \cos(X_2, X_p) \\ \dots & \dots & \dots & \dots \\ \cos(X_p, X_1) & \cos(X_p, X_2) & \dots & \cos(X_p, X_p) \end{bmatrix}$$

Pairwise covariance of all features!

Recall: covariance (3)

Example: IMOX data (images of handwritten digits 1:8)

Recall: covariance (4)

Example: IMOX data

Recall: independence

- Important concept: often needed as assumption!
- Two events A and B are independent iff $P(A \cap B) = P(A) P(B)$
- Two random variables X and Y are independent iff p(x,y) = p(x) p(y)

Uncorrelated: "there's no linear dependence"
 Independent: "there's no dependence at all"

Recall: Bayes' theorem

Conditional probability of A given B,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

As a consequence,

$$P(A \cap B) = P(A \mid B)P(B)$$
$$= P(B \mid A)P(A)$$

Bayes' theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Bayes' theorem (2)

- Bayes' theorem is very useful, but controversial:
 - reverses causality
 - introduces subjective (prior) probabilities

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- ... but the cornerstone of pattern recognition and machine learning
 - $P(disease|temperature) = \frac{P(temperature|disease)P(disease)}{P(temperature)}$
 - What is P (disease)? How to measure / know?

Recall: total probability

- Total probability:
- $P(A) = \sum_{\forall B_i} P(A \cap B_i)$
- $P(A) = \sum_{\forall B_i} P(A|B_i) P(B_i)$

Bayesian estimation

Bayes' theorem (3)

- In statistical learning, we want to know p(y|x) so that we can predict (for example) the most probable output y for a given input x
- Problem: this is often very hard to model or estimate...
 - Predict gender based on height measurement:
 p(gender|height)?
 - Predict fruit type based on color measurement:
 p(fruit|color)?
 - Predict temperature based on thermometer reading: p(temperature|thermometer reading)?

problem is that you need to measure too much:

for every height you need a number of examples of different genders

feature = continuous & class label not

Bayes' theorem (4)

- Solution: combine probabilities
 - y = cause, outcome, target, label (ω), ...
 - *x* = effect, measurement, feature, ...

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$

$$posterior \quad normalisation$$
probability

Bayes' theorem (5)

- Classification example $p(\omega | x)$:
 - ω ∈ { 'man', 'woman' } = label
 - $x \in \mathbb{R}^1$ = height measurement(m)
- p(ω): prior probability of seeing a 'man' or a 'woman' here: ...?
- $p(x|\omega)$: density of x (height) when the person is actually a 'man' or a 'woman'
 - p(x): density of height measurement x here (total probability):

$$p(x) = \sum_{i} p(x \mid \omega_{i}) p(\omega_{i})$$

Bayes' theorem (6)

- Regression example p(y | x):
 - $y \in \mathbb{R}^1$ = outside temperature (°C)
 - $x \in \mathbb{R}^1$ = thermometer measurement (°C)
- p(y): prior probability of having some outside temperature y
 p(x|y): density of x (measured temperature) when outside temperature is actually y
- p(x): density of a certain thermometer measurement x here:

$$p(x) = \int p(x \mid y) p(y) dy$$

Again: Prior for outside temperature in NL, this month? Realise that p(x|y) is still difficult to estimate because now y is continuous.

Bayesian estimation

- Estimate prior, p(y), and conditional, p(x|y)
- Use this to obtain posterior, p(y|x)
- Construct a cost function $\Lambda(y',y)$: the cost of predicting y' when the true outcome is y
 - for classification: cost matrix
 - when all mistakes are equally bad:
 - $\Lambda(y',y) = 0$ when y' = y
 - $\Lambda(y',y) = 1$ otherwise
- Bayes risk of predicting y' for measurements x:

$$r(y' \mid x) = \int \Lambda(y', y) p(y \mid x) dy$$

```
Risk of saying y' = integral over all possible situations:
Remember total probabilty: P(r) = SUM\_all\_y \{ P(r|y)p(y) \}
= SUM\_all\_y \{ P(r and y) \}
```

Bayesian estimation (2)

Optimal prediction:

$$\hat{y} = \arg\min_{y'} r(y'|x)$$

$$= \arg\min_{y'} \int \Lambda(y', y) p(y|x) dy$$

Bayesian estimation: minimize overall risk

$$r^* = E[r(\hat{y} \mid x)] = \int r(\hat{y} \mid x) p(x) dx$$

Best prediction is the one that minimizes the risk Best system minimizes expected risk: over all possible x's

Bayesian estimation (3)

- Example: diagnostic system
 - $\omega = \{ h, d \}$ (healthy, diseased)

$$p(\omega = h|x) = 0.95$$
(by definition)

BioSB

• Say the system predicts $p(\omega \neq d|x) = 0.05$, then

$$r(\omega' = h|x) = (\Lambda(h,h))p(\omega = h|x) + (\Lambda(h,d))p(\omega = d|x)$$
$$= p(\omega = d|x) = 0.05$$

$$r(\omega' = d|x) = \Lambda(d,h) p(\omega = h|x) + \Lambda(d,d) p(\omega = d|x)$$
$$= p(\omega = h|x) = 0.95$$

• Choose minimum risk, thus assign to h (in agreement with what you would expect by $p(\omega = d|x) = 0.05$)

Bayesian estimation (4)

- Example: diagnostic system
 - $\omega = \{ h, d \}$ (healthy, diseased)

• Say the system predicts $p(\omega = d|x) = 0.05$, then

$$r(\omega' = h|x) = \Lambda(h,h) p(\omega = h|x) + \Lambda(h,d) p(\omega = d|x)$$

$$= 0 \cdot 0.95 + 25 \cdot 0.05 = 1.25$$

$$r(\omega' = d|x) = \Lambda(d,h) p(\omega = h|x) + \Lambda(d,d) p(\omega = d|x)$$

$$= 1 \cdot 0.95 + 0 \cdot 0.05 = 0.95$$

Realize that minimum risk now says to assign to d!

Bayesian estimation (5)

- Cost function can have large influence on optimal decision!
- Think about:
 - Fingerprint identification (e.g. in database)
 - Cost of identifying incorrect person
 - Fingerprint verification (e.g. mobile phone)
 - Cost of incorrectly rejecting fingerprint owner
 - Cost of incorrectly allowing imposter
- Cost can often be quantified, e.g. cost of additional human intervention

Scenarios: priors and risks

- Gene expression-based data classification
 - for artefact detection
 - for generating biological hypotheses
 - for validating biological hypotheses
 - for diagnosis of the common flu
 - for diagnosis of a form of cancer
- Protein-protein interaction prediction
 - for protein complex prediction
 - for discovering signaling pathways
 - for suggesting in vitro experiments
 - for suggesting in vivo experiments
 - for drug target analysis

Recapitulation

- Machine learning is concerned with the construction of approximate, generalizing models by learning from examples
- The machine learning pipeline consists of defining objects and measurements, constructing a predictive function and applying it to unseen data
- Bayes' theorem plays a central role in statistical machine learning
- Bayesian estimation
 - provides a framework for minimizing cost due to errors
 - combines class-conditional and prior distributions into posterior ones

10min break

Bayesian classification

Classification in bioinformatics

As example, consider a single gene expression measurement x

Posterior probability

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

Posterior probability (2)

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

Posterior probability (2)

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

- healthy
- diseased

• Of course:
$$\sum_{c=1}^{C} p(\omega = c \mid x) = 1$$

Posterior probability (3)

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

Labels ω

- healthy
- diseased

A classifier

There are several ways to describe a classifier:

• if
$$p(\omega = h \mid x) > p(\omega = d \mid x)$$
 then assign to h otherwise to d
• if $p(\omega = h \mid x) - p(\omega = d \mid x) \ge 0$ then assign to h otherwise to d
• if $\frac{p(\omega = h \mid x)}{p(\omega = d \mid x)} \ge 1$ then assign to h otherwise to d

• if $\ln[p(\omega = h \mid x)] - \ln[p(\omega = d \mid x)] \ge 0$ then assign to h otherwise to d

 A Bayesian classifier is a threshold on the difference between posterior probabilities

Bayes' rule

- In many cases, the posterior is hard to estimate
- Often a certain functional form can be assumed for the class-conditional distributions
- Use Bayes' theorem to rewrite one into the other:

• posterior distribution:
$$p(\omega = c \mid x) = \frac{p(x \mid \omega = c)p(\omega = c)}{p(x)}$$

- class-conditional distribution: $p(x \mid \omega = c)$
- prior distribution: $p(\omega)$

• data distribution:
$$p(x) = \sum_{c=1}^{C} p(x \mid \omega = c) p(\omega = c)$$

Bayes' rule (2)

The decision rule becomes

$$p(\omega = h \mid x) > p(\omega = d \mid x)$$

$$\frac{p(x \mid \omega = h)p(\omega = h)}{p(x)} > \frac{p(x \mid \omega = d)p(\omega = d)}{p(x)}$$

$$p(x \mid \omega = h)p(\omega = h) > p(x \mid \omega = d)p(\omega = d)$$

Bayes' rule (3)

The effect of the prior:

Prior can shift the decision boundary (as can risk, recall the h/d example)
If one class is very unlikely, we will not make a large error if we misclassify that class

V. 11.6

Bayes' rule (4)

Bayes' error: minimal attainable error
 (if data follows class-conditional contributions...)

- $\Lambda(\omega',\omega) = 0$ when $\omega' = \omega$
- $\Lambda(\omega', \omega) = 1$ otherwise

Bayes' rule (5)

In practice:

Density estimation

Plug-in Bayes classifier

Bayes' rule:

$$c_{opt} = \operatorname{arg\,max}_c p(\omega = c \mid x) = \operatorname{arg\,max}_c p(x \mid \omega = c) p(\omega = c)$$

- Given priors, we only require the class conditional distributions $p(x|\omega=c)$
- In practice we will always have to estimate $p(x|\omega=c)$ by $\hat{p}(x|\omega=c)$ and hope that the classifier resulting when we plug in this approximation will still perform well
- Density estimation is a very hard problem!
- The resulting classifier will be sub-optimal and in general will not attain Bayes' error

Plug-in Bayes classifier (2)

• Same problem, two different density estimates $\hat{p}(x \mid \omega = c)$

Which one is best (Parzen)
Which one is optimal (none: true dist = normal perpendicular to two half-circles)

Density estimation

Simplest approach: approximate density by histogram

Density estimation (2)

Problem: accuracy

Gauss: 50 bin -> 50 parameters to estimate

Density estimation (3)

For 1 - dimensional data,
 ± 1000 points needed

For p - dimensional data, $\pm 1000^{p}$ points needed

• Unworkable for p > 2 measurements

Curse of dimensionality

- Intuitively, using more measurements
 (e.g. width, height, color etc.) should give us
 more information about the outcome to predict
- But we never know the densities, so we have to estimate them
- The number of parameters (e.g. histogram bins)
 to estimate increases with the number of measurements
- To estimate these well, you need more objects
- Consequence:
 there is an optimal number of measurements to use

Curse of dimensionality (2)

So, realize if n -> INF than you can have many features

Density estimation (4)

- Two main approaches:
 - parametric: assume simple global model,
 e.g. Gaussian, and estimate its parameters
 - non-parametric: assume simple local model,
 e.g. uniform, Gaussian, and aggregate

The Gaussian distribution

- Why Gaussians?
 - Special distribution: the Central Limit Theorem says that sums of large numbers of i.i.d. (independent, identically distributed) random variables will have a Gaussian distribution
 - Simple, few parameters
 - Often occurs in real life

e.g. sum of eyes of 10,000 dice throws (expectation = 3.5 per throw)

The Gaussian distribution (2)

Not necessarily too restrictive: mixture models (discussed later)

— Gaussian

Mixture of Gaussians

The Gaussian distribution (3)

- Normal distribution =
 Gaussian distribution
- Standard normal distribution: $\mu = 0, \ \sigma^2 = 1$
- 95.45% of data between $[\mu 2\sigma, \mu + 2\sigma]$ (in 1D!)

1-dimensional density:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$

Multivariate Gaussian distribution

$$\Sigma = \begin{bmatrix} 3 & 1\frac{1}{2} \\ 1\frac{1}{2} & 2 \end{bmatrix}$$

• *p* - dimensional density:

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Multivariate Gaussian distribution (2)

Special properties

The Gaussian distribution is a special case:

• Proof: if uncorrelated, Σ is diagonal ($\sigma_1 \dots \sigma_p$)

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^{p} \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} \exp\left(-\frac{1}{2}(x_{1} - \mu_{1})^{T} \sigma_{1}^{-2}(x_{1} - \mu_{1})\right) \times \frac{1}{\sqrt{2\pi\sigma_{2}^{2}}} \exp\left(-\frac{1}{2}(x_{2} - \mu_{2})^{T} \sigma_{2}^{-2}(x_{2} - \mu_{2})\right)$$

$$\times ... \times \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}} \exp\left(-\frac{1}{2}(x_{p} - \mu_{p})^{T} \sigma_{p}^{-2}(x_{p} - \mu_{p})\right) = p(x_{1}) p(x_{2}) ... p(x_{p})$$

Special properties (2)

 Any projection of a high-dimensional Gaussian is itself again Gaussian

Parametric estimation

- Assume model, e.g. Gaussian and estimate mean μ and covariance Σ from data
- Sounds simple, but for p dimensional data set:
 - μ : vector with p elements
 - Σ : matrix with 0.5 p(p+1) elements
- Number of parameters increases quadratically with p: need a lot of data for high-dimensional problems

10min break

Density estimation (4)

- Two main approaches:
 - parametric: assume simple global model,
 e.g. Gaussian, and estimate its parameters
 - non-parametric: assume simple local model,
 e.g. uniform, Gaussian, and aggregate

Histogramming

Histogram method:

 Divide feature space into N^p bins (N bins per feature)

- Count number of objects in each bin
- Normalize:

$$\hat{p}(\mathbf{x}) = \frac{n_i}{\sum_{i=1}^{N^p} n_i dx dy}$$

Histogramming (2)

• For example, using N=50 bins per dimension

Histogramming (3)

Histogram density estimate:

$$\hat{p}(x \mid dx) = \left(\frac{\text{fraction of objects}}{\text{volume}}\right)$$

- Fix cell size (dx)
- Count #objects per cell

k-nearest neighbor density estimation

• *k*-nearest neighbor estimate:

$$\hat{p}(\mathbf{x} \mid k) = \left(\frac{\text{fraction of objects}}{\text{volume}}\right) \hat{p}(\mathbf{x})$$

$$= \frac{k}{n\Delta x_k} = \frac{k}{n\|\mathbf{x} - \mathbf{x}_k\|}$$

- Fix #objects per cell (k)
- Determine cell size (volume)

k-nearest neighbor density estimation (2)

• The density estimate for k = 1 contains singularities:

- Procedure:
 - Fix volume of cell
 - Vary positions of cells
 - Add contributions of cells
- Define cell shape (kernel),
 e.g. uniform

$$K(r,h) = \begin{cases} 0 & \text{if } |r| > h \\ \frac{1}{V} & \text{if } |r| \le h \end{cases}$$

(with *V* the volume of the kernel) or Gaussian

or Gaussian
• For test object z, sum all cells: $\hat{p}(z \mid h) = \frac{1}{n} \sum_{i=1}^{n} K(||z-x_i||,h)$

• With Gaussian kernel: $K(r,h) = \frac{1}{2\pi^{1/2}h} \exp\left(-\frac{1}{2}\frac{r^2}{h^2}\right)$

• Example: viral insertions in each chromosome

Density of viral insertions

Feature: position along chromosome

- Maximum likelihood (ML) estimate: choose kernel width h
 such that the probability of the observed data is maximal
 - PDF of observing a point z :

$$\hat{p}(z \mid h) = \frac{1}{n} \sum_{i=1}^{n} K(||z - x_i||, h)$$

• PDF of observing dataset $x_1, ..., x_n$ (likelihood):

$$\hat{p}(X|h) = \prod_{i=1}^{n} \hat{p}(x_i|h)$$

(this assumes independence!)

• **Maximize log-likelihood** w.r.t. *h* (convenient to avoid multiplication):

$$LL = \log(g(\mathbf{x}_1, \square, \mathbf{x}_n)) = \sum_{i=1}^n \log(\hat{p}(\mathbf{x}_i \mid h))$$

- Maximum likelihood on training set:
 - $h \rightarrow 0$: $LL \rightarrow \infty$
 - Extreme example of overtraining : fitting data too much

Cross-validation

Solution:

- Split data into training set and validation set
- Optimise h w.r.t. likelihood of validation set, given Parzen model trained on training set

Problems:

- Uses a lot of valuable data
- Sensitive to split of data

Cross-validation (2)

- Better solution: K-fold crossvalidation
 - Split data into K parts (K = n: leave-one-out)
 - Repeat *K* times:
 - Find h using (K 1) parts for training and 1 part for testing
 - Use average of h's as kernel width

Cross-validation (3)

- (Prefer) K-fold cross-validation over leave-one-out
 - Smoother (less variance) and more biased (conservative)

Bootstrap

- Alternative to cross-validation:
 - Repeat K times:
 - Draw n objects from the dataset, with replacement (some objects will be selected more than once)
 - Test using objects that were not selected
- Cross-validation and bootstrap estimates are biased
 - They are conservative (i.e. too pessimistic) because they do not use all data available

You want to get an estimate when you fit on complete/all data. CV/Bootstrap are thus biased wrt fitting on complete data!

Training, test and validation sets

- Terminology:
 - A training set is used to estimate parameters
 - An optional validation set is used to optimize parameter settings,
 e.g. by calculating classifier error on this set
 - A test set is only used to judge performance of the entire classifier (only used once!)
- Error estimates:
 - On training set: apparent error
 - On test set: true error

Training, test and validation sets (2)

Training, test and validation sets (3)

The test set should never be used to set any parameters!
 This leads to biased estimates of performance -- in practice we may do much worse than we predict

Training, test and validation sets (4)

Can lead to complicated schemes for estimating parameters,
 e.g. double/nested cross-validation loops

Recapitulation

- Bayesian estimation
 - provides a framework for minimizing cost due to errors
 - combines class-conditional and prior distributions into posterior ones
- We never know these distributions, so we have to estimate them;
 this is problematic due to the curse of dimensionality
- Possible approaches:
 - Parametric: e.g. Gaussian
 - Nonparametric: histogramming, k-nearest neighbor density estimation, Parzen density estimation

Recapitulation (2)

- Maximum likelihood estimation is a method for estimating parameters of density functions
- To optimize parameters, the error should be calculated on a validation set
- A completely independent test set should only be used to judge performance of the final classifier
- Cross-validation and bootstrapping can help to estimate performance when little data is available

