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& Systems Biology

1. Introduction & density estimation
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Perry Moerland Amsterdam UMC, University of Amsterdam
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Programme

Day

Monday 26/9

Lecturer

Marcel Reinders

Subjects

Introduction to machine learning
Bayesian framework

Density estimation

Bayesian classification

Tuesday 27/9

Perry Moerland

Parametric classifiers
Nonparametric classifiers
Discriminant analysis

Decision trees & random forests

Wednesday 28/9

Lodewyk Wessels

Feature selection

Sparse classifiers
Feature extraction
Embeddings

Thursday 29/9

Perry Moerland

Hierarchical clustering
Agglomerative clustering
Model-based clustering
Hidden Markov models

Friday 30/9

Marcel Reinders

Artificial neural networks
Support vector machines
Classifier ensembles
Complexity

"BioSB



K01-222-1: basement

Schedule

9.00-12.00 Lecture AMC/HVA
12.00-13.00 Lunch break The Box (G0-114)
13.00-17.00 Computer lab AMC/HVA

« (Coffee/tea etc. and lunch
will be provided

- Wednesday there will be
drinks and bites at 17.00 in
Grand-Café ZO (at 5
minutes walking distance
from the AMC)




Certificates and examination

To obtain a certificate of successful completion:

« Analyse a biological dataset (preferably one from your own
practice) using the tools provided in the course

» Write a short report (5-10 pages) on the results

« Hand this in no later than October 21, 2022 (3 weeks after end
of course)

If you have no dataset available, one will be provided
Grade will be “pass” or “fail”, with at most one resubmission
If no report or “fail”: certificate of attendance



BioSB: The Netherlands Bioinformatics and
Systems Biology research school

Yearly conference: 9-10 May 2023

Courses:

 Algorithms for Genomics, Delft, 10-14 October 2022

- Computational Metagenomics, Wageningen, 10-12 October 2022
« Single cell Analysis, Leiden,10-14 October 2022

 Integrated modeling and optimization, 12-16 December 2022

« Constraint-based modeling, 13-17 February 2023

YoungCB: Regional Student Group (RSG) Netherlands of the
International Society of Computational Biology

"BioSB



Course



Modelling .... Learning from examples




Machine learning

- Wikipedia:

"the scientific study of algorithms and statistical

models that computer systems use to perform a specific task
without using explicit instructions, relying on patterns

and inference instead ... Machine learning algorithms build
a mathematical model based on sample data, known as
"training data", in order to make predictions or decisions
without being explicitly programmed to perform the task.”

Christopher M. Bishop:

- "Pattern recognition has its origins in engineering, whereas
machine learning grew out of computer science. However,
these ... can be viewed a two facets of the same field"



Machine learning (2)

The construction of approximate, generalizing (predictive)
models by learning from examples, for problems for which
no full physical model is known (yet)

Focus in this course will be on classification and
statistical machine learning, not (so much) on
regression, structural/syntactic pattern recognition and
reinforcement learning.

Related areas

* Applied statistics

- Pattern recognition
- Artificial intelligence
« Computer vision

- Data mining




Machine learning (3)

Examples:

Computer vision: license plate reading, people counting,
face detection, smart cameras, ...

Signal processing: thermostat, speech/speaker recognition, ...
Information retrieval: Google, Amazon, automated translation, ...

Biometrics: fingerprint recognition, iris scan, signature
verification...

Defensive: friend-or-foe recognition, target tracking, ...
Medicine: interpreting scans, diagnostic systems, ...



Machine learning (4)

+ Bioinformatics:
- Gene (function) prediction, SNP prioritization, ...
- Diagnosis/prognosis, biomarker discovery, ...
- Network inference: PPI, metabolic networks, ...

- Cell-type identification, ...
- Etc.

20




Goal

After having followed this course, the student has a good
understanding of a wide range of machine learning techniques
and is able to recognize what method is most applicable to

data analysis problems (s)he encounters in bioinformatics and
systems biology applications.

Many problems are in fact machine learning problems!



Machine learning (5)

Finding structure in data
 Qutlier/anomaly detection
 Clustering

- Dimensionality reduction,
selecting useful (combinations of) features

* Regression
 Classification

All aimed at generalisation:
making a prediction for data you have not yet seen



Clustering

Can we find natural groups in the data?
E.g. red vs green fruit

s



Outlier detection

- Can we find strange objects?




Dimensionality reduction

« Can we find predictive measurements?

ot e



Regression

- Can we predict real-valued outputs?

ot e



Classification

Can we distinguish apples from pears?

ot e



Machine learning in bioinformatics genes
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Machine learning in bioinformatics

* Example: 1s
gene expression o
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Machine learning in bioinformatics

Clustering
- Example: -

gene exprzssion 2
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Machine learning in bioinformatics

- Example: 16
gene expression 2
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Machine learning in bioinformatics

- Example: 7
gene expression
diagnostics o
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Machine learning in bioinformatics

- Example:
gene expression
diagnostics
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Machine learning in bioinformatics

- Example: 7
gene expression 12
diagnostics 3-2
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Machine learning in bioinformatics (2)

Tools applicable to any type of biological data

Examples:

* Protein sequence data:
Clustering: finding orthologous groups

Classification: prediction of EC number, subcellular localization, ...

Regression: predicting secondary structure
- TF binding data (ChIP):

Clustering: finding functional gene groups

Classification: predicting gene annotation

Regression: finding cis-regulatory modules



Terminology



Measurements and features

« To automate these tasks, we have to find a

mathematical representation of objects

Objects are usually represented by features,

i.e. sets of useful measurements obtained from some sensors

__—>» weight

[r—

—> colour

N

shape



Measurements and features (2)

This course assumes measurements as given, i.e.
sensor accuracy etc. are not explicitly modeled

However,
* in general measurements will never be perfect
 objects within a class will vary intrinsically

Hence, we need statistics to model all variation

This is important!
If we know everything and there is no noise, you’ll need
different algorithms/models

—~<0SB



Datasets

A dataset is a set of measurements on many objects

For clustering:

Object Weight Colour

Apple #1 25 36
Apple #2 20 34
Apple #3 35 40
Pear#1 35 55
Pear #2 37 95
Pear #3 40 Y4
Pear#4 36 41




Datasets

For regression:

A dataset is a set of measurements on many objects

Object Weight Colour Price
Apple #1 25 36 0.21
Apple #2 20 34 0.17
Apple #3 35 40 0.33
Pear#1 35 55 0.41
Pear#2 37 55 0.26
Pear#3 40 Y4 0.35
Pear#4 36 41 0.29

"BioSB



Datasets

For classification:

A dataset is a set of measurements on many objects

Object Weight Colour Label
Apple #1 25 36 A
Apple #2 20 34 A
Apple #3 35 40 A
Pear#1 35 55 P
Pear#2 37 55 P
Pear#3 40 o7 P
Pear#4 36 41 P

"BioSB



Datasets
- A dataset is a set of measurements on many objects

* For classification:

N

Object Meight Colour Label

>

A
Apple[#@ 40 A | D object
Peari*1 35 P
Pear#)@ 37 55 P
Pear#é\ 40 57 P dataset
Pear #4 \(36 1) \P|

\J \J
measurement._feature labels



Datasets (2)

- What objects, labels/targets and features are
depends on the problem...
+ (Gene expression-based diagnostics:
 object: patient
- feature: gene expression, copy number, mutational pattern, ....
* label: relapse; regressor/dependent variable: survival time
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Datasets (2)

- What objects, labels/targets and features are
depends on the problem...
* Protein-protein interactions:
 object: protein PAIR
- feature: gene expression correlation, difference in annotation, ...
- label: complex or not; regressor/dependent variable: binding strength
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Datasets (2)

- What objects, labels/targets and features are
depends on the problem...
* Gene prediction:
* object: gene
- feature: sequence (representation), conservation of sequence, ...
* label: gene or not; regressor/dependent variable: conservation

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
ROmm 15
/E
i)
)]
[%2]
2
o
x
L
N
(@)
il ! i 2 ar " .
il (M By vl -
Pl ) | A ] %[F” H | of 1 | il BlOSB
LT il Hll i1 I 7 |l b 2 e
00 D RIS
©




Datasets (2)

- What objects, labels/targets and features are
depends on the problem...

* TFBS detection:
 oObject: location on genome
- feature: ChlP-seq, sequence features, distance to TSS ...
 label: TFBS or not; regressor/dependent variable: specificity
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Measurements and features (3)

* Problems
* simple
* knowledge present

- a few good features

« almost separable classes

(classification) or
a linear relation
(regression)

A )

colour

A

® o %o
% o
°

°

B

smoothness

>

g

complex
lack of knowledge
many poor features

overlapping classes
(classification) or

highly non-linear relation
(regression)

maximum " BioSB
curvature



Measurements and features (3)

* Problems
- simple « complex
« knowledge present - lack of knowledge
- a few good features “ * many poor features

[
P_NY .Amlﬁu\u\lu\n AIAAAAA

Features (object representatlons) are important!

We don’t deal too much with which features are measured,
although we will touch upon derived features (Day 5:
kernels) and learning features (Day 5: neural networks)
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Feature space

We can interpret objects as vectors in a vector space

X:[xl,xz,x3,...,xp]T

Iris plants
45 . .
N + lris Setosa
40! + N * lris Versicolour ||
+ O Iris Virginica
T+
S35 T Eo+ =
(e + + Tt + * @ 4
3 - — ¥ T80 O
8 301 ++ H o« % o, oo
7 % * O O
25+ Q * ® O
+ * @ 5F
20+ * | | |
50 60 70 80
sepal lenath

Iris flower dataset, introduced by Ronald Fisher (famous statistician) in 1936
as an example of discriminant analysis




Clustering

« Given unlabeled data x,
find labels w for natural groups in the data

Feature 2

45 50 55 60 65 70 75 80

Feature 1



Dimensionality reduction

Given unlabeled data x,
map it to a lower dimensional feature vector y

45F .
+
Y= 3
40+ +
+
+
o 30T
o + +
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+ A+ A+
T A gt
j/ + 4+ +
25+ i + i++ + )}Lz 7 5
+ + + + ’
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20_ 1 —‘:_ 1 1 1 1 1 1
45 50 55 60 65 70 75 80
Feature 1



Classification

+ Given labeled data x,
assign each point in feature space to a class o,
(in effect partitioning the feature space)
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Regression

Given labeled data x,
assign each point in feature space a real-valued output y

Feature 2

45 50 55 80 B85 70 75 80
Feature 1



General model

+ Construct a model f(x) that outputs » or y
- This model should be fit to the data

N
(@)]

N
o

@ =

Feature 2

w
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45 50 55 60 65 70 75 80
Feature 1

) f(x)=o or f(x)=)



General model (2)

+ Construct a model f(x) that outputs » or y
- This model should be fit to the data

* |deally, we know p(y | x) or p(w | x) over the entire feature space
45
- Py | x)
40 =~ or
% /i e / o T oo oy ) . .
L mEm) f0-oor [y
25 RN
20 a

45 50 55 60 65 70 75 80
Feature 1

if we know the probability distributions, we can make the most informed decision




General model (3)

+ Construct a model f(x) that outputs » or y
- This model should be fit to the data
- Ideally, we know p(y | x) or p(@ | x) over the entire feature space

p(y|x)

or
p(@ | x)

) f(x)=o or f(x)=)

Feature 2 ) Feature 1

if we know the probability distributions, we can make the most informed decision




General model (4)

Clustering: find cluster labels @ given object x

fit model using dataset {x} pl@]x)
Dimensionality reduction: find mapping y given object x p(v|x)
fit model using dataset {x}
Classification: find class labels @ given object x (0] x)
fit model using dataset {x,, v} P
Regression: find target y given object x (y]x)
fit model using dataset {x,, y} P
BI.OSB

Statistical machine learning




Machine learning pipeline

Define

Dataset =S
‘ Extract
features X, £0)
_____v_____ Output
New or label
object ~ Evaluate S or o >
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Statistics



Required background

The course is aimed at PhD students with a background in
bioinformatics, systems biology, computer science or a related
field, and life sciences. A working knowledge of basic statistics
and linear algebra is assumed.

Self-assessment; if you have problems, read the primers
Now, a brief recap



Recall: probability

« Q: all possible outcomes (sample space)
e.g. the number of eyes on a dice: 1, 2, 3,4, 5,6

« A e Q:event
e.g. “throwing a 3’ Q
« P : probability measure
« 0<PUA)<1
. PQ)=1

- PAUB)=
P(4) + P(B) - P(A " B)

- E.g. P(4) = 1/6




Recall: probability (3)

Subjective approach:
“the probability of 4 is a number between 0 and 1
indicating how likely people believe A4 to be true”

Frequentist approach:
“the probability of 4 is a number between 0 and 1
indicating the average ratio of 4 being true in
a large number of repeated experiments”

Is really a philosophical debate...
the “right” approach depends on the problem
and the data available

problems (can) arise in interpretation: what does it mean? BlOSB




Recall: CDFs

Cumulative distribution function

Py(x) = F(x) : probability that X < x, R — [0,1]

|

1.0 -

0.8

0.6

0.4

0.2

1 2 3 4
e.g. 10,000 dice throws
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Recall: PDFs

© plx)= dpP(x) . probability density function
dx
0.5
o >
p(x)=0 0.4

: ._OO p(x)dx =1 03

0.2

. .bp(x)dx =
P(a<x<b)

0.1

-4 -2

* p(x) is not the probability of X being x !



Recall: expectation

Expectation: mean of distribution,

u=E[X]=] x p(x) dr

Note: expectations are over entire distributions;
on data sets {x} we can only estimate the mean,

N — 40
AT NG )
Hlel = 20
E [aX+ bY]=a E[X] + b E[Y]
10
00 150 200 250
Important to realize that estimates are always based on a finite dataset! BI.OSB

m is an estimate(!) of u; that is why there is a hat!




Recall: variance

Variance: average deviation from expected value,

o = var(X) = jo‘; (x— 11)* p(x) dx

or
o’ =E[(X -E(X))']=E[X"]-(E[X])’

o Is called the standard deviation

var(X) >0

var(c) =0

var(aX) = a? var(X)



Recall: variance (2)

Again, on data sets {x} we can

400
only estimate the variance:
300
1 N
S2: & :—Z(xi—l&)z 200
N 5
_ _ ] 100
Usually, this unbiased estimator J
iS Used: 00 B 150 200 250

1 N
2= 62 =—— 3 (x.— 1)’
> N1 &L



Recall: joint distributions

For p > 1 measurements x = (x, , ..., x,),

joint distributions & densities:




Recall: covariance

Covariance: measure of how two random variables
vary together,

cov(X,Y) =E[(X —E(X))(Y - E(Y))]
= B[ XY]- E[X]E[Y]

Correlation: normalised covariance,
cov(X,Y)
\/ var(X)var(Y)

cov(X,Y)=0: X and Y are uncorrelated

p(X,Y)= e[-1,1]




Recall: covariance (2)

> =

e.g.

For a set of random variables X, ... X,
we can calculate a covariance matrix,

cov(X;, X)) cov(X, X))
cov(X, X7)

cov(X, Xj) cov(X, X))

5

I0.03
0.025
0.02

0.015

0.01

I0.005

0 5

cov(Xy, X)) ]
cov(X,, X))

Pairwise covariance of all features!

Y




Recall: covariance (3)

ONOO1TPA WN -

Example: IMOX data (images of handwritten digits 1:8)

123456 7 8

imagesc (cov (\l-\a) )

\

I8
F e

12345678

ONO OV WN -

image§é(corrcoef(+a))

/

characters 5/6 are alike ' BioSB



Recall: covariance (4)

O~NOOUTDAWN =

Example: IMOX data

123456 7 8

©® N O O &~ W N o=

imagesc (cov (+a)

-’




Recall: independence

Important concept: often needed as assumption!

Two events 4 and B are independent iff

P(4 N B)=P(A4) P(B)

Two random variables X and Y are independent iff
p(x.y) =px) p(y)

X Y > X Y
iIndependent >< uncorrelated

Uncorrelated: “there’s no linear dependence”
Independent: “there’s no dependence at all”

ot e



Recall: Bayes’ theorem

- Conditional probability of 4 given B,
P(ANB)
P(B)

- As a consequence,

P(A4|B) =

P(AN B)=P(A|B)P(B)

= P(B| A)P(A)
- Bayes’ theorem:
P(4|B)="2 (Bjjfg (4)

QAmB

v

12—




Bayes’ theorem (2)

Bayes’ theorem is very useful, but controversial:
* reverses causality
« introduces subjective (prior) probabilities

P(effect | cause)P(cause)

P(cause | effect) = P(effect)

... but the cornerstone of pattern recognition and machine
learning

p(temperature|disease)pr(disease)
P(temperature)

P(disease|temperature) =

* What is P (disease)? How to measure / know?

"BioSB



Recall: total probability

- Total probability:
* P(4) = Xyp, P(AN B;)

* P(A) = Xyp, P(A|B)P(B;)

Q 5

s



Bayesian estimation



Bayes’ theorem (3)

In statistical learning, we want to know p(y | x)
so that we can predict (for example) the most
probable output y for a given input x

Problem: this is often very hard to model or estimate...
* Predict gender based on height measurement:
p(gender|height)?
 Predict fruit type based on color measurement:
p(fruit|color)?
* Predict temperature based on thermometer reading:
p(temperature|thermometer reading)?

problem is that you need to measure too much:
for every height you need a number of examples of different genders
feature = continuous & class label not




Bayes’ theorem (4)

Solution: combine probabilities
* y = cause, outcome, target, label (), ...

* x = effect, measurement, feature, ...

conditional  prior
probability probability

A A

) - LELIPG)
p(x)

\ v J )
posterior  normalisation
probability

We update our prior belief (prior) using observations (conditional)



Bayes’ theorem (5)

Classification example p(@ | x)
e {‘'man’, ‘woman’ } = label
* x € R! = height measurement(m)
p(w) . prior probability of seeing a ‘man’ or a ‘woman’
here: ...?

p(x|w) : density of x (height) when the person is actually
a ‘'man’ or a ‘woman’

p(x):  density of height measurement x
here (total probability):

p(x) =), p(x|@)p(a)

Issue: Prior for man/woman? In NL? In Delft? In classroom?




Bayes’ theorem (6)

Regression example p(y | x)
* y € R! = outside temperature (°C)
* x € R! =thermometer measurement (°C)

p(y) :  prior probability of having some outside temperature y
p(x|y) . density of x (measured temperature) when outside
temperature is actually y

p(x) : density of a certain thermometer measurement x
here:

p(x) = [ p(x| ) p(3)dy

Again: Prior for outside temperature in NL, this month?
Realise that p(x|y) is still difficult to estimate because now y is continuous.




Bayesian estimation

Estimate prior, p(y), and conditional, p(x|y)
Use this to obtain posterior, p(y|x)

Construct a cost function A(y’,y):
the cost of predicting y” when the true outcome is y

- for classification: cost matrix
« when all mistakes are equally bad:
AOY’Yy)=0 wheny’ =y
A’ y)=1 otherwise
Bayes risk of predicting y’ for measurements x :

(' |x) = [ A, »)p(y | X)dy

Risk of saying y’ = integral over all possible situations:

Remember total probabilty: P(r) = SUM_all _y { P(rly)p(y) }
=SUM all y {P(rand y)}




Bayesian estimation (2)

Optimal prediction:

y=argminzr(y'|x)
y

= argmin [ A(, ) p(y | x)dy

y

Bayesian estimation: minimize overall risk

%k

r' = E[r(P| )] = [ (3| 2) p(x)dx

Best prediction is the one that minimizes the risk
Best system minimizes expected risk: over all possible x’s




Bayesian estimation (3)

Example: diagnostic system

- o= {h,d} (healthy, diseased) 0
wo=ho=d
* AMw,0) = @=h| 0 1 p(@=hix) =0.95

(by definition)
w=d| 1 0 / ;

* Say the system predi @ =dlx)=0.05, tp
r(@' =hlx) =(a)=h|x) p(w=dlx)
e =d|x) = 0.05

— P\
r(o' =djx) = A(d,h) p(w=hlx) + A(d,d) p(w=d|x)
= p(w=h|x) =0.95

« Choose minimum risk, thus assign to h (in agreement with what
you would expect by p(w=d|x) =0.05)



Bayesian estimation (4)

Example: diagnostic system
- w={h,d} (healthy, diseased)

wo=hw=d
c Mo',w) = @’=h| 0 25
w=d| 1 0

« Say the system predicts p(w = d|x) = 0.05, then
r(o"=hlx) = A(h,h) p(@=hlx) + A(h,d) p(w=d|x)

=0-0.95 +25-0.05 = 1.25
r(w'=dx) =A(d,h) p(@=hlx) + A(d,d) p(w=d|x)

=1:-0.95+0:0.05=0.95
+ Realize that minimum risk now says to assign to d !



Bayesian estimation (5)

Cost function can have large influence on optimal decision!

Think about:
 Fingerprint identification (e.g. in database)
Cost of identifying incorrect person
 Fingerprint verification (e.g. mobile phone)
Cost of incorrectly rejecting fingerprint owner
Cost of incorrectly allowing imposter

Cost can often be quantified, e.g. cost of additional human
Intervention

"BioSB



Scenarios: priors and risks

Gene expression-based data classification

- for artefact detection

- for generating biological hypotheses

- for validating biological hypotheses

» for diagnosis of the common flu

- for diagnosis of a form of cancer
Protein-protein interaction prediction

« for protein complex prediction

for discovering signaling pathways

for suggesting in vitro experiments

for suggesting in vivo experiments

for drug target analysis



Recapitulation

Machine learning is concerned with the construction of
approximate, generalizing models by learning from examples

The machine learning pipeline consists of defining objects and
measurements, constructing a predictive function and applying
it to unseen data

Bayes’ theorem plays a central role in statistical machine
learning

Bayesian estimation
 provides a framework for minimizing cost due to errors

« combines class-conditional and prior distributions
into posterior ones



10min break

research school

( g
L] [ TT1 LISR J
......llll““
4, "apguus
Ay )
¥ g



Bayesian classification



Classification in bioinformatics

- Example: 7
gene expression 12
data g;z

, ’ il
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i .'4, :- i
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- But again: theory applies to any type of datal! BtoSB
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As example, consider a single gene expression measurement X

BlObB




Posterior probability

For each object, we have to estimate p(w|x) or p(y|x)

Labels w
@ healthy
@ diseased



Posterior probability (2)

For each object, we have to estimate p(w|x) or p(y|x)

p(o="h|x)

Labels w
@ healthy
@ diseased



Posterior probability (2)

- For each object, we have to estimate p(wl|x) or p(y|x)

p(o=h|x) p(o=d|x)

Labels o X
@ healthy
@ diseased

C
+ Of course: Z plo=c|x)=1
o=1 " BioSB



Posterior probability (3)

- For each object, we have to estimate p(wl|x) or p(y|x)

l“p(w=hIX)>p(w=dIX) p(o=d[x)>plo=h|x)

0.5

Labels w
@ healthy
@ diseased



A classifier

There are several ways to describe a classifier:
- if plw=h|x)>p(w=d|x) then assign to 7
otherwise to d
« if plo=h|x)—plo=d|x)=0 then assign to
otherwise to d

o if plo=h|x) > 1 then assign to /4
plo=d|x) otherwise to d

- if In[ p(@=h|x)]-In|p(w=d|x)] >0 then assign to &
otherwise to d

A Bayesian classifier is a threshold on the
difference between posterior probabilities



Bayes’ rule

In many cases, the posterior is hard to estimate

Often a certain functional form can be assumed
for the class-conditional distributions

Use Bayes' theorem to rewrite one into the other:

p(x|ow=c)p(w=c)

- posterior distribution: plw=cl|x)=
p(x)
« class-conditional distribution: p(x|w = ¢)
- prior distribution: p(w)
C
- data distribution: p(x)= Zp(x o =c)p(w=rc)
c=1 -



Bayes’ rule (2)

The decision rule becomes

p(o=h|x)>plo=d|x)

4

pixlo=hplw=h) px|lo=d)p(w=4d)
p(x) p(x)

$

pixlo=h)p(o=h)>plx|o=d)p(o=4d)

Seems trivial, but this is something we can measure!




Bayes’ rule (3)

The effect of the prior:

pixlo=h) | p(xlo=d)

p(%|w=h)p(w=h)J p(x|lo=d)p(w=d)

Prior can shift the decision boundary (as can risk, recall the h/d example)
If one class is very unlikely, we will not make a large error if we misclassify that class




Bayes' rule (4)

Bayes’ error: minimal attainable error
(if data follows class-conditional contributions...)

H|D
p(x|o=h)p(eo=nh) p(xlo=d)p(o=d)
c A(w’,w)=0 when v’ = w
c Aw’,w)=1 otherwise



Bayes’ rule (5)

* In practice:

Density
estimation

Healthy

Data set ' Splitin classes Classify

Density

Diseased estimation

Plug in:
Gaussian
Histogram Bayes’ rule
k-nearest neighbour
Parzen

S, e,
e getiatar e
Sat'e K
oo
| B. S B
ST e e
cranne



Density estimation



Plug-in Bayes classifier

Bayes’ rule:

c . =argmax,K p(w=c|x)=argmax, p(x|w=c)p(w=c)

/4
Given priors, we only require the

class conditional distributions p(x|w=c)

In practice we will always have to estimate p(x|w=c) by p(x| o = ¢)
and hope that the classifier resulting when we plug in
this approximation will still perform well

Density estimation is a very hard problem!

The resulting classifier will be sub-optimal -
and in general will not attain Bayes’ error "BioSB



Plug-in Bayes classifier (2)

- Same problem, two different density estimates p(x| @ =c)

Normal density estimation Parzen density estimation

Banang Sel Banang Sel

Feahire 2

Feahire 2
& m 4+ R S R+ m

' ' ' '
=] =] - ] =] ] - =]
T T T T T T

'
—_

' =]
'
—_

' =]
T

Feature 1

Which one is best (Parzen)

5B




Density estimation

Simplest approach: approximate density by histogram

e.g. 10,000 throws

1 measurement

6 parameters

of a dice
N
10,000 objects Y oz
px)
. dP(x fraction of objects o
plx) = LX) =( ) j
dx volume 0.1

0.05

But...

0 2 4 6 '



Density estimation (2)

Problem: accuracy

100 repetitions

100 objects

0.6

0.5}

0.4}

0.3+

0.2}

0.1}

0

0.6

0

1,000 objects

0.2 :
0.
0.1
0.
0.0
0 2 4 6

0.5+

0.4

0.3+

0.2+

0.1

10,000 objects

0.25

0.2

0.15

0.

0.0

0

0.6

0.5

0.4

0.3

0.2

0.1

0

Gauss: 50 bin -> 50 parameters to estimate




Density estimation (3)

For 1 - dimensional data,
+ 1000 points needed

50 parameters

-5 0

For p - dimensional data,
+ 1000 » points needed

50% parameters

Unworkable for p > 2 measurements



Curse of dimensionality

Intuitively, using more measurements
(e.g. width, height, color etc.) should give us
more information about the outcome to predict

But we never know the densities, so we have to estimate them

The number of parameters (e.g. histogram bins)
to estimate increases with the number of measurements

To estimate these well, you need more objects

Consequence:
there is an optimal number of measurements to use



Curse of dimensionality (2)

overall
risk
]"*

# objects n

#features

So, realize if n -> INF than you can have many features {'oSB




Density estimation (4)

Two main approaches:

« parametric: assume simple global model,
e.g. Gaussian, and estimate its parameters

-4-3-2-101234 4 3 -2 -1 0 1 2 3 4

4 -3 -2 1 0 1

2




The Gaussian distribution

Why Gaussians?

« Special distribution: the Central Limit Theorem says that sums
of large numbers of i.i.d. (independent, identically distributed)
random variables will have a Gaussian distribution

- Simple, few parameters
- Often occurs in real life

e.g. sum of eyes of
10,000 dice throws
(expectation = 3.5 per throw)

34000 34500 35000 35500 36000



The Gaussian distribution (2)

Not necessarily too restrictive: mixture models (discussed later)

0.6

0.4

0.2

0.

Gaussian
Mixture of Gaussians



The Gaussian distribution (3)

05

e Normal distribution =
Gaussian distribution

0.4

0.3

e Standard normal

v distribution:
o pu=0,0°=1

. » 95.45% of data between

s 0 5 [ 1-20, u+20](in 1D!)

* 1-dimensional density:
I I (x—p)°
p(X) — > CXP| — )
27O 2 o



Multivariate Gaussian distribution

Y =
p - diménsional density:
1 1
p(x) = eXp(— ~(x—
V27" det(2) 2




Multivariate Gaussian distribution (2)




Special properties

« The Gaussian distribution is a special case:

X Y > X, Y
independent uncorrelated

* Proof: if uncorrelated, X is diagonal (c; ... 5,)

p(x) = ——
J277 det()

1

exp[—%(x—ufz*(x—mj

1

= ex (—l(x— Y o2 (x, — ))x;exp(
270 P 2 Al o A \ 270, 2

_l(xz _ﬂz)To-z_z(xz _ﬂz)j

XX e eXp[—%(xp —u,) o, (x, —up)j = p(x)p(x,)...p(x,)

2
27[0'p



Special properties (2)

Any projection of a
high-dimensional
Gaussian is itself
again Gaussian




Parametric estimation

*  Assume model, e.g. Gaussian and estimate
mean x and covariance X from data
*  Sounds simple, but for p - dimensional data set:
« u:vector with p elements °r
« X :matrix with 0.5 p(p+1) elements s
*  Number of parameters |
Increases quadratically

with p : need a /ot of data
for high-dimensional problems .

| ee
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Density estimation (4)

Two main approaches:

* non-parametric: assume simple /local model,
e.g. uniform, Gaussian, and aggregate

-4-3-2-101234 4 3 -2 -1 0 1 2 3 4

4 -3 -2 -1 0 1 2




Histogramming

*  Histogram method:

« Divide feature space
into A? bins (N bins per feature)

« Count number of
objects in each bin

* Normalize:
S
p(x)=— %

Z n.dxdy T i '
i=1




Histogramming (2)

For example, using N=50 bins per dimension




Histogramming (3)

Histogram density estimate:

fraction of objects

ﬁ<x|dx>=(

volume

« Fix cell size (dx)
« Count #objects per cell

J

|

p(x)




k-nearest neighbor density estimation

k-nearest neighbor estimate: i

P

) fraction of objects ) =

p(x k) =( ) j
volume

k k

nAx, n Hx - X, H

» Fix #objects per cell (k)
» Determine cell size (volume)



k-nearest neighbor density estimation (2)

The density estimate for £ =1 contains singularities:

n=10,k=1 n=10,k=5
X X



Also known as Kernel-based density estimation
Parzen density estimation

*  Procedure: 4
* Fix volume of cell 3
» Vary positions of cells

- Add contributions of cells IR
+ Define cell shape (kernel), ot . +H
e.g. uniform Tt e
01f (riI>h ° R
K(r,h) = < ° -3-2 -1 0 1 2 3 4 5 6 7
Voif (r|<h

(with 7 the volume of the kernel)
or Gaussian

. 1 <
+ For test object z, sum all cells: p(z|h) == K (|z—xi
n i

"



Parzen density estimation (2)

With Gaussian kernel: K (1, h)=

2ml/2h




Parzen density estimation (3)

Example: viral insertions in each chromosome

1 , 2 3 - 4

Density of highly

expressed genes L 7
Density of E—
viral insertions

LA L

7

10

11 , 12 , 13 - 14

15

16 , 17

| 18 19
Sl A NN A
Y

Feature: position along chromosome




Parzen density estimation (4)

Maximum likelihood (ML) estimate: choose kernel width 4
such that the probability of the observed data is maximal
« PDF of observing a point z :

p(z|h)= %ZZ’?K(Hz—xZ. ,h)

- PDF of observing dataset x, ..., x, (likelihood):

n
pexiny = | [pexiin)
i—1
(this assumes independence! )
- Maximize log-likelihood w.r.t. i (convenient to avoid multiplication):

LL =log(g(x,]) ,x ))= Zlog(ﬁ(x,. | 1))



Parzen density estimation (5)

Maximum likelihood on training set:

0.045
0.04;
0.035;
0.03;
0.025;
0.02;
0.015;
0.01}

0.005;

h =10.000000: LL = -32.279747




Parzen density estimation (5)

Maximum likelihood on training set:

h =5.000000: LL = -25.538351

0.09
0.08' —
0.07/\
0.06' —
0.05
0.04/
0.03'
0.02

0.01-




Parzen density estimation (5)

Maximum likelihood on training set:

0.45;

04

0.35)

0.3r

0.25/

0.2

0.15;

0.1

0.05;

h =1.000000: LL = -13.554438




Parzen density estimation (5)

Maximum likelihood on training set:

1.6¢

1.4/

1.2/

0.8;

0.6

0.4;

0.2

h =0.100000: LL = -4.170235




Parzen density estimation (5)

Maximum likelihood on training set:

18

16+

14/

12;

10/

h=0.010000: LL = 16.605494




Parzen density estimation (5)

Maximum likelihood on training set:

e h >0 LL — h = 0.001000: LL = 36.877153

- Extreme example of 45
overtraining : 40,
fitting data too much 35

30/
25/
20/
15

10/




Cross-validation

Solution:

« Split data into
training set and validation set

« Optimise # w.r.t. likelihood
of validation set,
given Parzen model
trained on training set

Problems:
- Uses a lot of valuable data
« Sensitive to split of data

h =0.650406: LL = -12.017858

0.5




Cross-validation (2)

- Better solution: K-fold crossvalidation
« Split data into K parts (K = n: leave-one-out)
* Repeat K times:

Find 4 using (K - 1) parts for training
and 1 part for testing

« Use average of /'s as kernel width

— training data

— testdata —— /7,

(will return)



Cross-validation (3)

(Prefer) K-fold cross-validation over leave-one-out
« Smoother (less variance) and more biased (conservative)

0.75 T w T 0.75

o
J
2
N

=
o)
o

=
Ul
Ul

200-fold CV performance (%)
o
(@)]
LOOCV performance (%)

o
”n
o
n

0.45 ‘ ‘ ‘ 0.45 : ‘ ‘ ;
0 50 100 150 200 0 20 40 60 80 100

nr of features nr of features



Bootstrap

Alternative to cross-validation:

* Repeat K times:

Draw n objects from the dataset, with replacement
(some objects will be selected more than once)

Test using objects that were not selected

Cross-validation and bootstrap estimates are biased

- They are conservative (i.e. too pessimistic)
because they do not use all data available

You want to get an estimate when you fit on complete/all data.
CV/Bootstrap are thus biased wrt fitting on complete data!




Training, test and validation sets

Terminology:
* A training set is used to estimate parameters

* An optional validation set is used to optimize parameter settings,
e.g. by calculating classifier error on this set

- A test setis only used to judge performance of the entire
classifier (only used once!)

Error estimates:

« On training set: apparent error
« On test set: true error

"BioSB



Training, test and validation sets (2)

Error

70¢

60

50

40

20

10

I }rror on test set (true error)

@

Error on training set (apparent error)

0
0

20

40

60 80 100 120 140
Number of features

160 180 200



Training, test and validation sets (3)

The test set should never be used to set any parameters!
This leads to biased estimates of performance -- in practice
we may do much worse than we predict

0.3r

0.25/+

Error rate
o
o

o
no

0.1F

AE
CV1IE
B.632+
CV10E
TE

4 6 8
log2(number of genes)

Ambroise et al.,
PNAS 2002

Especially in bioinformatics
I.e. p>>n problems




Training, test and validation sets (4)

Can lead to complicated schemes for estimating parameters,
e.g. double/nested cross-validation loops

Wessels et al.,

Repeat 100 times

Data
Set
(X)

Split

m3
" -

equal
parts

Fold j of 3-Fold CV to validate predictor

Validate
o Average
Test Validation Validation
) 95-'-' o= Validate final predictor » Performance |ty performance
Xy, ) (V)
Train o
o Final ; i dverage
. ) Optimal Tramning “ &
Train final p edlzc_m reporter set || performance Training
predictor G i t*) performance
: (T
i i
. 10-Fold CV o 0
Training _ , - .
L ser L, to optimize Combine results
v number of of 10 folds
7 reporters

Bioinformatics 2005



Recapitulation

Bayesian estimation

 provides a framework for minimizing cost due to errors

« combines class-conditional and prior distributions into posterior ones
We never know these distributions, so we have to estimate them;
this is problematic due to the curse of dimensionality
Possible approaches:

« Parametric: e.g. Gaussian

« Nonparametric: histogramming, k-nearest neighbor density
estimation, Parzen density estimation



Recapitulation (2)

Maximum likelihood estimation is a method for
estimating parameters of density functions

To optimize parameters, the error should be calculated
on a validation set

A completely independent test set should only
be used to judge performance of the final classifier

Cross-validation and bootstrapping can help to estimate
performance when little data is available



