
Machine Learning for
Bioinformatics & Systems Biology

2. Classification
Perry Moerland Amsterdam UMC, University of Amsterdam

Marcel Reinders Delft University of Technology

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin and David Tax

Classification

• How to distinguish between
the apples and the pears?

Classification in bioinformatics

100 200 300 400 500 600 700 800 900
2

150.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

lo
g 2

(e
xp

re
ss

io
n)

1-


0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
0

D 5260 B-PRE
R 8237 B-PRE
D 8237 B-PRE

R 5500 B-PRE
D 5500 B-PRE
R 5189 B-PRE
D 5189 B-PRE

D 6633 B-PRO
R 6633 B-PRO
D 6417 B-PRE
R 7263 B-COM
D 7263 B-COM
R 6417 B-PRE
R 7304 B-COM
D 7304 B-COM
R 6345 B-COM
D 6345 B-COM
R 6145 B-COM
D 6145 B-COM
R 6190 B-COM
D 6190 B-COM
R 5864 B-COM
D 5864 B-COM
R 6411 B-COM
D 6411 B-COM
R 6285 B-PRE
D 6285 B-PRE
R 5449 B-COM
D 5449 B-COM
R 5978 B-PRO
D 5978 B-PRO
R 7170 B-COM
D 7170 B-COM
R 6892 B-COM
D 6892 B-COM
R 5513 B-COM
D 5513 B-COM
R 5361 B-COM
D 5361 B-COM
R 6557 B-COM
D 6557 B-COM
R 6991 B-PRO
D 6991 B-PRO

R 6558 B-COM
D 6558 B-COM
R 6449 B-COM
D 6449 B-COM
R 8549 B-COM
D 8549 B-COM
R 6475 B-COM
D 6475 B-COM
R 6309 B-COM
D 6309 B-COM

R 6329 T-ALL
D 6329 T-ALL
R 5775 T-ALL
R 8198 T-ALL
D 8198 T-ALL
R 8711 T-ALL
D 8711 T-ALL
R 8148 T-ALL
D 8148 T-ALL
R 6083 T-ALL
D 6083 T-ALL
D 5775 T-ALL
R 4785 T-ALL
D 4785 T-ALL
R 8173 T-ALL
D 8173 T-ALL
R 6051 T-ALL
D 6051 T-ALL
R 5370 T-ALL
D 5370 T-ALL
R 7300 T-ALL
D 7300 T-ALL
R 6584 T-ALL
D 6584 T-ALL
R 5818 T-ALL
D 5818 T-ALL
R 4727 T-ALL
D 4727 T-ALL

R 5260 B-PRE

1-

Se
ve

rit
y

Classification in bioinformatics (2)

• Secondary structure prediction
amino acids of a protein sequence → {H,E,-} = {alpha helix,beta
strand,turn}

• Protein localization prediction
{sequence,...} → {cell organelle}

• Genome annotation
{sequence,...} → {exon,intron,splice site, …}

• ...

Classification (2)

• Formulation of two-class problems
• Logistic classifier
• Plug-in Bayes classifiers

• Density-based classification: Parzen, nearest neighbour,
Gaussian

• Linear discriminant analysis
• Fisher classifier

• Decision trees and random forests

Classification (3)

• Given labeled data:
• Assign to each object

a class label
• In effect splits the feature

space in separate regions
2

1

3x



decision boundarydecision boundary

Classification (4)

Class posterior probability

● For each object we have to estimate posterior

Labels 
 healthy
 diseased

x

p (ω=c∣x)

Class posterior probability (2)

● For each object we have to estimate posterior

1

0
Labels 
 healthy
 diseased

x

p (ω=c∣x)

(|)p h x 

p (ω=d∣x)

Class posterior probability (3)

• For each object we have to estimate posterior

Of course:

p (ω=c∣x)

p (ω=h∣x)

∑
c=1

C

p =c∣x=1

Labels 
 healthy
 diseased

p =d∣x p =h∣x 

Class posterior probability (4)

• For each object we have to estimate posterior

Of course:

• Assign label of class with the largest posterior probability

p (ω=c∣x)

p =h∣xp =d∣x 

∑
c=1

C

p =c∣x=1 decision boundary

Labels 
 healthy
 diseased

Description of a classifier

There are several ways to describe the classifier:

• If then assign to h otherwise to d

• If then assign to h

• If then assign to h

• If then assign to h

A Bayesian classifier is a threshold on the difference between
posterior probabilities

p =h∣x p =d∣x 

p =h∣x 
p =d∣x

1

ln p =h∣x −ln p =d∣x 0

p =h∣x−p =d∣x 0

Logistic classifier

• We can rewrite:

• Assume we can approximate:

• The classifier becomes (computer lab exercise):

ln p =h∣x−ln p =d∣x=lnp =h∣xp =d∣x 

p =d∣x = 1
1expwT xw0

lnp =h∣xp =d∣x =w0w
T x

logit, log-odds

Logistic function

• The function looks like:

f x= 1
1exp−x

logistic (sigmoid) function

Logistic classifier (2)

• On a two-dimensional dataset it looks like:

wT xw0=0

Logistic classifier (3)

• On a two-dimensional dataset it looks like:

Optimizing the logistic classifier

• To optimize the parameters on a training set, maximize the
likelihood

where is the i-th object from class j
• Maximization using gradient ascent
• Appears to be easier to maximize log(L)
• Weights are iteratively updated as:

L=∏
i=1

n1

p x i
1∣1∏

j=1

n2

p x j
2∣2

xi
(j)

wnew=wold
∂ log L
∂w

Optimizing the logistic classifier (2)

• Function to maximize

• Use log(L)

• Use Bayes' theorem

• Therefore

L=∏i=1
n1 p x i

1∣1∏ j=1
n2 p x j

2∣2

log L=∑
i=1

n1

log p x i
1∣1∑

j=1

n2

log p x j
2∣2

logL=∑
i=1

n1

log p 1∣x i
1∑

j=1

n2

log p 2∣x j
2C

logp(x i
(1)∣ω1)=logp (ω1∣x i

(1))−logp (ω1)+logp(x i
(1))

constant

Optimizing the logistic classifier (3)

• Filling in that

gives

p 2∣x =
1

1expwT xw0

log(L)=∑
i=1

n1

(w0+w
T x i

(1))− ∑
j=1

n1+n2

log(1+exp(w0+w
T x j))

Derivative of the log-likelihood

• The gradient of log(L) is

• Take initial values:
• Keep iterating

till convergence

∂ log L
∂w0

=n1− ∑
i=1

n1n2

p 1∣x i

∂ log L
∂w j

=∑
i=1

n1

x i
1 j− ∑

i=1

n1n2

p 1∣x ix i j , j=1,... ,p

w0=0,w=0
wnew=wold ∂ logL

∂w

Bayes' error

• The error we make can be described as

•

where is the complement of the region
in which objects are assigned to class c

c c

Bayes’ error (2)

•

• At every x, pick class label  s.t. the above integral is maximal:

• Bayes’ error:

d  h 

argmax (|) ()opt cc p x c p c   

1 max (|) ()ce p x c p c dx    

d  h 

Misclassification error

• What is…
• the maximum error for a problem with C classes?
• the error of a rather dumb classifier, labeling all data to class c ?
• the error of this classifier for a 10-class problem, with equal class

priors?

Reject option

• Reject classification of objects with insufficient certainty
(too low confidence in any class assignment)

• The reject area R can be written as:

• Rejected objects should be classified by an expert,
or by another classifier

• In Bayesian estimation, the reject option can be modeled
as an additional class with certain (high) misclassification cost

{ | max (|) }cR x p c x t  

Reject option (2)

• Define the threshold t
• Reject all objects in the green area R
• Objects in the yellow area are still errors

Error-reject curve

• By changing the threshold t,
the error decreases, but the percentage rejected increases

Recapitulation

• For classification we want the posterior
• We can approximate the posterior directly: logistic classifier
• Assigning an object to the class with maximum posterior

probability gives the Bayes classifier (but is in general
impossible to estimate)

• Bayes classifier is the optimal classifier
• The Bayes' error is the smallest error attainable
• (The Bayes' risk is the smallest risk attainable)

p ∣x

10min break

Exercises 2.1-2.7

Plug-in Bayes classification
• In many cases the posterior is hard to estimate
• Often a functional form of the class distributions can be

assumed
• Use Bayes' theorem to rewrite one into the other:

class-conditional distribution:

prior distribution:

data distribution:

p∣x =px∣p
px

px∣

p

px

Plug-in Bayes classification (2)

CUT

Data set Split in classes

Diseased

Healthy
Density

 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

p x∣=d
Classify

Bayes’
rule

p x∣=h

p x∣=dp =dp x∣=hp =h

Plug-in Bayes classification (3)

• For each object we estimate using Bayes' rulep (ω=c∣x)

p x∣=hp=hp x∣=dp =d

Bayes decision making

• Estimate the class-conditional
density (Day 1)

• Parametric
• Known distribution
• Estimate parameters on training

set

• Non-parametric
• No knowledge on distribution
• Manage the smoothness

of the distribution

px∣i

px∣i=N x ; ,

px∣i=
1
N∑y

K x ,y 

Example plugin

• Two examples

Normal density estimation Parzen density estimation

Parzen classifier

p x∣m=
1
N ∑i=1

N m

N  x ; xi , h I 

p x∣m p m∣x 

Parzen width parameter

• The width parameter h has a large influence

Optimization of h

• Use the average k-nearest neighbor distance
(k=10 is suggested...)

• Use a heuristic

• Optimize the likelihood using cross-validation

• and more...

h= 4
p2 

1
p4 n

−1
p4

2= 1
p∑i=1

p

sii

∏
i=1

n

p xi

Nearest neighbor classification

• For the k-nearest neighbor density we defined:

where V
k
 is the volume of the sphere centered at x, with

radius r the distance to the k-th nearest neighbor

px = k
nV k

k=3
V krk=3
V kx

Nearest neighbor classification (2)

• When more classes are present, count how many objects of
each of the classes are members of the k neighbors

• Class-conditional density:

k=5

V k

k 2=2k 1=3

px∣m=
k m

nm V k

Nearest neighbor classification (3)

• Using Bayes:

• Estimate the prior probability by counting:

• Fill in:

• No density estimation is needed!

p̂(x∣ωm) p̂(ωm)≥ p̂(x∣ωi) p̂(ωi)

p m=
nm

n

k m

nm V k

nm

n
≥

k i

ni V k

ni

n
k m≥k i

The choice of k

• When does the classifier become more smooth? When more
ragged?

• What happens for k = 1, and k = n ?

The choice of k (2)

• When does the classifier become more smooth? When
more ragged?

k=1
k=3

k=30

Sometimes strange results:

k=5

Sometimes strange results (2):

Rescaling the features has large influence!

k=5

Advantages/disadvantages

• simple and flexible classifier
• often a very good

classification performance
• it is simple to adapt the

complexity of the classifier

• you have to store the
complete training set

• distances to all training
objects have to be
computed

• scaling of the features should
be sensible

• you have to optimize
k or h

Classifying with densities

CUT

Data set Split in classes

Class 2

Class 1 Density
 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

Classify

Bayes’
rule

px∣1

px∣2

Plug-in Gaussian distribution

• Now take the most obvious choice: the Gaussian distribution

• So-called parametric density estimation
• We have to estimate the parameters via maximum likelihood:

p̂ (x∣ω)= 1
√2πpdet (Σ̂ω)

exp(−12 (x−μ̂ω)
T Σ̂ω

−1(x−μ̂ω))

=1
n∑i=1

n
x i

=1
n∑i=1

n
x i− x i− T

Example on banana data

• A single Gaussian distribution on each class:

Class-conditional densities

• Combining

we can derive for log(p):

px∣i=
1

2pdet  i
exp−1

2 x− i
T i

−1x−i

log(p̂ (ωi∣x))=−
p
2 log(2π)−

1
2 log(det Σi)

−12 (x−μi)
T Σi

−1(x−μi)+log(p (ωi))−log(p(x))

p∣x =px∣p
px

Normal density-based classifier

• p(x) is independent of the classes and can be dropped

• Classifier becomes:

assign x to class when for all :

gix=−
1
2
logdet  i−

1
2
x−i

T i
−1x− ilogpi

i gixgj x i≠ j

The two-class case

• Define the discriminant
• We get (computer lab exercise):

• This is a quadratic classifier because
the decision boundary is a quadratic function of x

f x =p 1∣x −p 2∣x 0

f x =xTWxwT xw0

Quadratic classifier on banana data

f x =0

f x 0 f x 0

Estimating the covariance matrix

• For the quadratic classifier you need to estimate

for each of the classes!
• When you have insufficient data, this covariance matrix cannot

be inverted
• Average over the covariance matrices of different classes:

k=
1
n∑i=1

n
x i−k x i−k

T

=1
c∑k=1

c k

Average covariance matrix

• When we use the averaged covariance matrix:

• First term and quadratic term are always the same for all
classes

• We end up with:

• This classifier is linear:
the linear normal density-based classifier.

gix =−
1
2 log det

−1
2 x−

i
T −1x−ilogp i

gix =−
1
2
 i
T −1  i−

1
2
i
T −1 xlogp i

The two-class case (2)

• Define the discriminant
• We get

with

f x =p 1∣x −p 2∣x 0
f x =wT xw0

w= −1 1−2

w0=
1
2
2
T −1 2−

1
2
1
T −1 1log

p 1
p 2

Linear classifier on banana data

No estimated full covariance matrix
• In some cases even the averaged covariance matrix is too much

to estimate
• Assume that all features have the same variance, and are

uncorrelated:

• Then it becomes even simpler:

=2I

gix =−
1
2 2   i

T i− i
T x logp i

Nearest mean classifier

• Define the discriminant:
• We get

with

• Again a linear classifier, but it only uses the distance to the
mean of each of the classes: nearest mean classifier

f x =p 1∣x −p 2∣x 0
f x =wT xw0

w= 1−2

w0=
1
2 2

T 2−
1
2 1

T 1 2 log
p 1
p 2

Nearest mean on banana data

Nearest mean on gene expression data

Van ‘t Veer et al, Nature 415, 530 (2002)

Two classes:

 no metastases > 5yr

 metastases < 5yr

good prognosis

bad prognosis

threshold

70 genes (= biomarkers)

78
 tu

m
or

s

ROC curve

• Recall minimum cost classification:

• In the two-class case, cost can be absorbed into prior:

 i.e. changing the costs is like changing the class priors

'
1

'
1

argmin (',) (|) ()

argmin (',) (|) ()

C

opt c
c

C

c
c

c c c p c x p x

c c p x c p c

  

   





    

     





2

'
1

argmin (|) ()opt c
c

c p x c p c 


   

• Error as a function of the threshold gives an overview of all
possible cost/prior scenarios: receiver-operator characteristic
curve

• Classifier: any x left of the threshold belongs to the blue class,
any x to the right to the red class

ROC curve (2)

ROC curve (3)

• Different classifiers have different ROC curves

error(2)

almost perfect classifier

ROC curve (4)

• Example: prediction of synthetic genetic interactions (SGAs)

ROC for two-class problems: changing threshold

• Changing class costs = changing priors = moving the decision
boundary = changing threshold

• Look at the general form of the normal-based classifiers:

• Changing the prior affects only the 'offset' (=threshold)
• It means only the thresholds have to be adapted:

f x =wT xw0

f x =xTWxwT xw0

gix=−
1
2
logdet  i−

1
2
x−i

T i
−1x− ilogpi

Changing threshold in banana data

Recapitulation

• Using the Parzen density and nearest neighbor density we
can derive the Parzen classifier and nearest neighbor
classifier

• Using the plug-in Bayes' rule with a normal distribution for
each of the classes gives different classifiers
• Separate mean and covariance matrix per class gives the

quadratic classifier
• Separate mean, equal covariance matrix per class gives

the linear classifier (see Fisher classifier, for two
classes)

• Separate mean, identity covariance matrix per class gives
the nearest mean classifier

• By changing the thresholds a ROC curve is obtained,
showing the error on both classes.

lunch break

Exercises 2.8-2.15

Discriminant analysis

• Different approach to classifiers: avoid estimating the (class
conditional) probabilities altogether

• Linear discriminant
• Fisher classifier

Avoid density estimation
• From the k-nearest neighbor we saw already that we don't

need to explicitly estimate a density
• Estimating densities is hard, in particular when we have a

high number of features (high dimensional feature space,
curse of dimensionality)

• Now, we start from the other end:
• Assume we have a function to describe the decision boundary
• Optimize the free parameters of this function directly
• No Bayes' theorem, no density estimates

Linear discriminant
• Let us assume we can describe the discriminant by:

• There are several ways to optimize w and w
0

• This is generally called linear discriminant analysis

f x =wT xw0

Linear discriminant (2)

• Classifier is a linear function of the features
• The classification depends on whether the weighted sum of

the features is above or below 0

f x =wT xw0=0

f  x=wT xw00

f  x=wT xw00

w

Fisher classifier

• Linear projection onto 1-D:

• Maximize Fisher criterion:

• Maximizing J implies that after projection:
• Means should be far apart
• Variances should be small

• Find a projection direction w for which J is optimized

J=
∣m1−m2∣

2

(s1
2+s2

2)

y=wT x

Derivation Fisher classifier

• Map the means on w:

• Compute the differences of the means:

• Compute the mapped variance:

m1=wT1, m2=wT 2

∣m1−m2∣
2=wT 1−w

T 2
2

=wT 1−21−2
Tw=wTSBw

si
2=∑ j w

T x j
i−wT  i

2

=∑ j w
T x j

i− ix j
i−i

Tw=wTSiw

Derivation Fisher discriminant

• Combine both results from the previous slide.
• The Fisher criterion

can be written in terms of the weights

where is the 'within scatter matrix'

and the 'between scatter matrix'.

J (w)=
wTSBw
wT SWw

J=
∣m1−m2∣

2

(s1
2+s2

2)

SW=∑i

ni

n Si

SB=1−21−2
T

Derivation Fisher discriminant (2)

• To optimize J, we set the derivative to 0:

• Because

 will always be in the direction

• We get:

wTSBw SWw=wTSWw SBw

SB=1−21−2
T

SBw 1−2

wT 1−2SWw=wT SWw 1−2

Derivation Fisher discriminant (3)

• Ignoring scalar factors, we get:

• Strictly speaking, we don't have a classifier yet, only a
direction on which to project our data

• In practice, take the decision boundary in the middle

wT 1−2SWw=wT SWw 1−2

w~SW
−11−2

SWw=C⋅1−2

The result

w~SW
−11−2

This is familiar...

• The expression for the Fisher discriminant

looks like the linear normal-based classifier:

• For a two-class problem, both classifiers are identical

w~SW
−11−2

f x =wT xw0

w= −1 1− 2

w0=
1
2
2
T −1 2−

1
2
1
T −1 1log

p 1
p 2

Comparison Fisher and Gauss

• The normal-based linear classifier assumes a density per
class

• Fisher classifier just tries to optimise the Fisher criterion
• For the Fisher classifier the bias term is (in principle) still free

to optimise

• Both classifiers rely on the inverse of , so it can
therefore become undefined when insufficient data is
available

SW

10min break

Exercises 2.16-2.18

Tree-based models

• Until now: mainly linear and quadratic decision surfaces, often
real data is more complex

• Classification trees
• Feature selection

• Random forests
• Ensemble of trees
• Randomization
• Bootstrapping

• More on Day 5: neural networks, support vector machines

Classification trees

x

+
+

+

++

x

x

x

Build a tree of (binary) splits parallel to the axes in a
greedy (=one by one) way.

4y

x + leaf

y=-4
+
1y 

x

y=1

x +

3y

y=-3

x +
1x 1x

root

x=1

split

Classification trees: new data

x +
1x 1x

root

4y

x ?=+ leaf

+
1y

x x +

3y

Can perfectly fit the data: overfitting

y=1

x

+
+

+

++

x

x

x

x=1

y=-4
y=-3

?

Follow path from root to one of the leaves

Classification trees: pruning

x +
1x 1x

x +

3y

x

+
+

+

++

x

x

x

Allow errors on training data in order to reduce overfitting

Tree ingredients

Main questions:

• How to choose a split

• How to choose a final tree?

• Amount of pruning

Rest: details (but might be important …)

Trees are constructed in a greedy way:
starting with an empty tree and adding splits one by one
(and never coming back on a decision taken)

How to choose a split?

x

+
+

+

++

x

x

x

x=1

4 x
5 +

x

+
+

+

++

x

x

x
3 x
1 +

1 x
4 +

1x 1x goody=2

2 x
2+

2 x
3 +

4 x
5 +

2y 2y bad

How to choose a split? (2)

A

B C

Good split at A:

- few x & many + in B, C

- many x & few + in B, C

Find some measure m that captures
goodness

m(P)

0 P 1
P = fraction of x in a node

m(0)=0

m(1)=0

m(P)=P(1-P)

Gini

How to choose a split? (3)

A

B C

m(P)

0 P 1

P = fraction of x in a node

maximize m(PA) - P(B)m(PB) - P(C)m(PC)

P(X): determined by number of x and + at node X

How to choose a split? (4)

4 x
5 +

3 x
1 +

1 x
4 +

1x 1x good

2 x
2+

2 x
3 +

4 x
5 +

2y 2y bad

m(PA) - P(B)m(PB) - P(C)m(PC)

4 5 4 3 1 5 1 4
9 9 9 4 4 9 5 5

  

4 5 4 2 2 5 2 3
9 9 9 4 4 9 5 5
0.0025

  

maximum

Pruning: one step back
er

ro
r

complexity=# of nodes

C

D

minimize: D = C + k(# of leaf nodes in the tree)

0 ≤ k k: complexity parameter

 k penalizes big trees

Pruning: one step back (2)

C

D

C

D

C D

small k: big tree

medium k: medium tree

large k: small tree

Pruning: CART

• Build a complete tree T

• With each subtree of T corresponds a choice of k

Cannot make choice of k on training set: overfitting

Optimal choice of k is made by cross-validation

10-fold cross-validation: mean +/- std. error

standard error (1-se)

Pruning: model selection

train

cv

er
ro

r

complexity=# of nodes

minimum
minimum

Decision tree: application

• Prediction of synthetic lethal genetic interactions
• Integrate multiple types of data: localization, mRNA expression,
 physical interaction, protein function, and characteristics of network
 topology

Wong et al, PNAS 2004

Advantages/disadvantages

• simple and flexible classifier
• combination of discrete and

continuous features
• feature selection (Day 3)
• interpretability

• hard splits
• splits are axis-aligned
• sensitive to small variations

in data (high variance, Day 5)

Classifier combination

• Idea: combine different classifiers and have them vote
• Design choices:

• Identical or different?
• Base classifiers, feature spaces, training sets, initialisations, etc.

• Combination by a fixed rule or by another classifier?

Example: random forests
• General overview: Day 5
• Specific example: random forest – an ensemble of decision trees

• Choices to be made:
• Base classifiers: identical – decision trees
• Feature spaces: for each node in each tree sample randomly m

features
• m << total number of features

• Training sets: sampling with replacement (bootstrapping)
• About two-third of the cases are used for training each tree

• Combination: majority vote

Characteristics

• Out-of-bag error (oob) estimate:
• Each tree can be tested on about one-third of the cases – the out-

of-bag samples

• Variable importance:
• For each tree: predict the class for oob cases and count the

number of votes cast for the correct class
• For each tree: randomly permute the values of variable n in the oob

cases and count the number of votes cast for the correct class
• Importance: rank (from high to low) based on average difference of

these two scores

Some intuition

• Breiman et al., Machine Learning (2001) paper
• Accuracy depends on two factors:

• Correlation between any two trees in the forest. Decreasing
correlation increases the forest accuracy: diversity

• Accuracy of each individual tree (strength) in the forest. Increasing
strength of individual trees increases the forest accuracy

• Trade-off:
• Reducing m reduces correlation and strength
• Increasing m increases correlation and strength

• Solution: somewhere in between is an optimal range of m -
usually quite wide. Using the oob error rate a value of m in the
range can be found

Random forests: example

• Prediction of genome-wide
DNA methylation

• Features:
• Neighbors
• Genomic position
• DNA sequence properties
• Cis-regulatory elements

• Random forest: feature
selection

Zhang et al., Genome Biology (2015)

Recapitulation

• Decision trees: simple and flexible classifier
• Incorporates feature selection
• Interpretable
• Hard, axis-aligned splits
• Pruning is essential to avoid overfitting

• Random forest: example of ensemble method
• Ensemble of decision trees
• Variation between members introduced via randomness
• When number of features is large and percentage of truly

informative features is small (gene expression-based diagnostics):
performance tends to decline significantly

Exercises 2.19-2.20

