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Classification

• How to distinguish between 
the apples and the pears?



Classification in bioinformatics
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Classification in bioinformatics (2)

• Secondary structure prediction 
amino acids of a protein sequence → {H,E,-} = {alpha helix,beta 
strand,turn}

• Protein localization prediction
{sequence,...} → {cell organelle}

• Genome annotation
{sequence,...} → {exon,intron,splice site, …}

• ...



Classification (2)

• Formulation of two-class problems
• Logistic classifier
• Plug-in Bayes classifiers

• Density-based classification: Parzen, nearest neighbour, 
Gaussian

• Linear discriminant analysis
• Fisher classifier

• Decision trees and random forests



Classification (3)

• Given labeled data:
• Assign to each object

a class label
• In effect splits the feature

space in separate regions
2

1

3x



decision boundarydecision boundary



 
 

Classification (4)



Class posterior probability

● For each object we have to estimate posterior 

Labels 
  healthy
  diseased

x

p (ω=c∣x )



Class posterior probability (2)

● For each object we have to estimate posterior 

1

0
Labels 
  healthy
  diseased

x

p (ω=c∣x )

( | )p h x 



p (ω=d∣x)

Class posterior probability (3)

• For each object we have to estimate posterior

Of course: 

p (ω=c∣x )

p (ω=h∣x)

∑
c=1

C

p =c∣x=1

Labels 
  healthy
  diseased



p =d∣x p =h∣x 

Class posterior probability (4)

• For each object we have to estimate posterior

Of course: 

• Assign label of class with the largest posterior probability

p (ω=c∣x )

p =h∣xp =d∣x 

∑
c=1

C

p =c∣x=1 decision boundary

Labels 
  healthy
  diseased



Description of a classifier

There are several ways to describe the classifier:

• If                                            then assign to h otherwise to d

• If                                                                 then assign to h
                                          

• If                                                                 then assign to h
                                      

• If                                                                 then assign to h

A Bayesian classifier is a threshold on the difference between 
posterior probabilities                               

p =h∣x p =d∣x 

p =h∣x 
p =d∣x

1

ln p =h∣x −ln p =d∣x 0

p =h∣x−p =d∣x 0



Logistic classifier

• We can rewrite:

• Assume we can approximate:

• The classifier becomes (computer lab exercise):

ln p =h∣x−ln p =d∣x=lnp =h∣xp =d∣x 

p =d∣x = 1
1expwT xw0

lnp =h∣xp =d∣x =w0w
T x

logit, log-odds



Logistic function

• The function looks like:

f x= 1
1exp−x

logistic (sigmoid) function



Logistic classifier (2)

• On a two-dimensional dataset it looks like:

wT xw0=0



Logistic classifier (3)

• On a two-dimensional dataset it looks like:



Optimizing the logistic classifier

• To optimize the parameters on a training set, maximize the 
likelihood

where           is the i-th object from class j
• Maximization using gradient ascent
• Appears to be easier to maximize  log(L)
• Weights are iteratively updated as:

L=∏
i=1

n1

p x i
1∣1∏

j=1

n2

p x j
2∣2

xi
( j)

wnew=wold
∂ log L
∂w





Optimizing the logistic classifier (2)

• Function to maximize

• Use log(L)

• Use Bayes' theorem

• Therefore
 

L=∏i=1
n1 p x i

1∣1∏ j=1
n2 p x j

2∣2

log L=∑
i=1

n1

log p x i
1∣1∑

j=1

n2

log p x j
2∣2

logL=∑
i=1

n1

log p 1∣x i
1∑

j=1

n2

log p 2∣x j
2C

logp(x i
(1)∣ω1)=logp (ω1∣x i

(1))−logp (ω1)+logp(x i
(1))

constant



Optimizing the logistic classifier (3)

• Filling in that 

gives 

p 2∣x =
1

1expwT xw0

log(L)=∑
i=1

n1

(w0+w
T x i

(1))− ∑
j=1

n1+n2

log(1+exp(w0+w
T x j))



Derivative of the log-likelihood

• The gradient of log(L) is

• Take initial values:
• Keep iterating

till convergence

∂ log L
∂w0

=n1− ∑
i=1

n1n2

p 1∣x i

∂ log L
∂w j

=∑
i=1

n1

x i
1 j− ∑

i=1

n1n2

p 1∣x ix i j , j=1,... ,p

w0=0,w=0
wnew=wold ∂ logL

∂w



Bayes' error

• The error we make can be described as

•

where        is the complement of the region 
in which objects are assigned to class c 

c c



Bayes’ error (2)

•

• At every x, pick class label   s.t. the above integral is maximal:

• Bayes’ error:

d  h 

argmax ( | ) ( )opt cc p x c p c   

1 max ( | ) ( )ce p x c p c dx    

d  h 



Misclassification error

• What is…
• the maximum error for a problem with C classes?
• the error of a rather dumb classifier, labeling all data to class c ?
• the error of this classifier for a 10-class problem, with equal class 

priors?



Reject option

• Reject classification of objects with insufficient certainty 
(too low confidence in any class assignment)

• The reject area R can be written as:

• Rejected objects should be classified by an expert,
or by another classifier

• In Bayesian estimation, the reject option can be modeled 
as an additional class with certain (high) misclassification cost

{ | max ( | ) }cR x p c x t  



Reject option (2)

• Define the threshold t
• Reject all objects in the green area R
• Objects in the yellow area are still errors



Error-reject curve

• By changing the threshold t, 
the error decreases, but the percentage rejected increases



Recapitulation

• For classification we want the posterior               
• We can approximate the posterior directly: logistic classifier
• Assigning an object to the class with maximum posterior  

probability gives the Bayes classifier (but is in general 
impossible to estimate)

• Bayes classifier is the optimal classifier 
• The Bayes' error is the smallest error attainable
• (The Bayes' risk is the smallest risk attainable)

p ∣x



10min break

Exercises 2.1-2.7



Plug-in Bayes classification
• In many cases the posterior is hard to estimate
• Often a functional form of the class distributions can be 

assumed 
• Use Bayes' theorem to rewrite one into the other:

class-conditional distribution:

prior distribution:

data distribution:

p∣x =px∣p
px

px∣

p

px



Plug-in Bayes classification (2)

CUT

Data set Split in classes

Diseased

Healthy
Density

 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

p x∣=d
Classify

Bayes’
rule

p x∣=h



p x∣=dp =dp x∣=hp =h

Plug-in Bayes classification (3)

• For each object we estimate                    using Bayes' rulep (ω=c∣x )

p x∣=hp=hp x∣=dp =d



Bayes decision making

• Estimate the class-conditional 
density (Day 1)

• Parametric 
• Known distribution
• Estimate parameters on training 

set

• Non-parametric
• No knowledge on distribution
• Manage the smoothness

of the distribution

px∣i

px∣i=N x ; ,

px∣i=
1
N∑y

K x ,y 



Example plugin

• Two examples

Normal density estimation Parzen density estimation



Parzen classifier

p x∣m=
1
N ∑i=1

N m

N  x ; xi , h I 

p x∣m p m∣x 



Parzen width parameter

• The width parameter h has a large influence



Optimization of h

• Use the average k-nearest neighbor distance 
(k=10 is suggested...)

•  Use a heuristic

• Optimize the likelihood using cross-validation

• and more...

h= 4
p2 

1
p4 n

−1
p4

2= 1
p∑i=1

p

sii

∏
i=1

n

p xi



Nearest neighbor classification

• For the k-nearest neighbor density we defined:

where V
k
 is the volume of the sphere centered at x, with

radius r the distance to the k-th nearest neighbor

px = k
nV k

k=3
V krk=3
V kx



Nearest neighbor classification (2)

• When more classes are present, count how many objects of
each of the classes are members of the k neighbors

• Class-conditional density:

k=5

V k

k 2=2k 1=3

px∣m=
k m

nm V k



Nearest neighbor classification (3)

• Using Bayes:

• Estimate the prior probability by counting:

• Fill in:

• No density estimation is needed!

p̂(x∣ωm) p̂(ωm)≥ p̂(x∣ωi) p̂(ωi)

p m=
nm

n

k m

nm V k

nm

n
≥

k i

ni V k

ni

n
k m≥k i



The choice of k

• When does the classifier become more smooth? When more 
ragged?

• What happens for  k = 1, and  k = n ?



The choice of k (2)

• When does the classifier become more smooth? When 
more ragged?

k=1
k=3

k=30



Sometimes strange results:

k=5



Sometimes strange results (2):

Rescaling the features has large influence!

k=5



Advantages/disadvantages

• simple and flexible classifier
• often a very good 

classification performance
• it is simple to adapt the 

complexity of the classifier

• you have to store the 
complete training set

• distances to all training 
objects have to be 
computed

• scaling of the features should 
be sensible

• you have to optimize 
k or h



Classifying with densities

CUT

Data set Split in classes

Class 2

Class 1 Density
 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

Classify

Bayes’
rule

px∣1

px∣2



Plug-in Gaussian distribution

• Now take the most obvious choice: the Gaussian distribution

• So-called parametric density estimation
• We have to estimate the parameters via maximum likelihood:

p̂ (x∣ω)= 1
√2πpdet ( Σ̂ω)

exp(−12 (x−μ̂ω)
T Σ̂ω

−1(x−μ̂ω))

=1
n∑i=1

n
x i

=1
n∑i=1

n
x i− x i− T



Example on banana data

• A single Gaussian distribution on each class:



Class-conditional densities

• Combining

we can derive for log(p):

px∣i=
1

2pdet  i
exp−1

2 x− i
T i

−1x−i

log(p̂ (ωi∣x))=−
p
2 log(2π)−

1
2 log(det Σi)

−12 (x−μi)
T Σi

−1(x−μi)+log(p (ωi))−log(p(x ))

p∣x =px∣p
px



Normal density-based classifier

• p(x)  is independent of the classes and can be dropped

• Classifier becomes:

assign x to class       when for all        :

gix=−
1
2
logdet  i−

1
2
x−i

T i
−1x− ilogpi

i gixgj x i≠ j



The two-class case

• Define the discriminant
• We get (computer lab exercise):

• This is a quadratic classifier because 
the decision boundary is a quadratic function of x

f x =p 1∣x −p 2∣x 0

f x =xTWxwT xw0



Quadratic classifier on banana data

f x =0

f x 0 f x 0



Estimating the covariance matrix

• For the quadratic classifier you need to estimate

for each of the classes!
• When you have insufficient data, this covariance matrix cannot 

be inverted
• Average over the covariance matrices of different classes:

k=
1
n∑i=1

n
x i−k x i−k

T

=1
c∑k=1

c k



Average covariance matrix

• When we use the averaged covariance matrix:

• First term and quadratic term are always the same for all 
classes

• We end up with:

• This classifier is linear: 
the linear normal density-based classifier.

gix =−
1
2 log det

−1
2 x−

i
T −1x−ilogp i

gix =−
1
2
 i
T −1  i−

1
2
i
T −1 xlogp i



The two-class case (2)

• Define the discriminant
• We get

with

f x =p 1∣x −p 2∣x 0
f x =wT xw0

w= −1 1−2

w0=
1
2
2
T −1 2−

1
2
1
T −1 1log

p 1
p 2



Linear classifier on banana data



No estimated full covariance matrix
• In some cases even the averaged covariance matrix is too much 

to estimate
• Assume that all features have the same variance, and are 

uncorrelated:  

• Then it becomes even simpler:

=2I

gix =−
1
2 2   i

T i− i
T x logp i



Nearest mean classifier

• Define the discriminant:
• We get

with

• Again a linear classifier, but it only uses the distance to the 
mean of each of the classes: nearest mean classifier

f x =p 1∣x −p 2∣x 0
f x =wT xw0

w= 1−2

w0=
1
2 2

T 2−
1
2 1

T 1 2 log
p 1
p 2



Nearest mean on banana data



Nearest mean on gene expression data

Van ‘t Veer et al, Nature 415, 530 (2002)

Two classes:

             no metastases > 5yr

             metastases < 5yr

good prognosis

bad prognosis

threshold

70 genes (= biomarkers)

78
 tu

m
or

s



ROC curve

• Recall minimum cost classification:

• In the two-class case, cost can be absorbed into prior:

     i.e. changing the costs is like changing the class priors

'
1

'
1

argmin ( ', ) ( | ) ( )

argmin ( ', ) ( | ) ( )

C

opt c
c

C

c
c

c c c p c x p x

c c p x c p c

  

   





    

     





2

'
1

argmin ( | ) ( )opt c
c

c p x c p c 


   



• Error as a function of the threshold gives an overview of all 
possible cost/prior scenarios:  receiver-operator characteristic 
curve

• Classifier: any x left of the threshold belongs to the blue class, 
any x to the right to the red class

ROC curve (2)



ROC curve (3)

• Different classifiers have different ROC curves

error(2)

almost perfect classifier



ROC curve (4)

• Example: prediction of synthetic genetic interactions (SGAs)



ROC for two-class problems: changing threshold

• Changing class costs = changing priors =  moving the decision 
boundary = changing threshold

• Look at the general form of the normal-based classifiers:

• Changing the prior affects only the 'offset' (=threshold)
• It means only the thresholds have to be adapted:

f x =wT xw0

f x =xTWxwT xw0

gix=−
1
2
logdet  i−

1
2
x−i

T i
−1x− ilogpi



Changing threshold in banana data



Recapitulation

• Using the Parzen density and nearest neighbor density we 
can derive the Parzen classifier and nearest neighbor 
classifier

• Using the plug-in Bayes' rule with a normal distribution for 
each of the classes gives different classifiers
• Separate mean and covariance matrix per class gives the 

quadratic classifier
• Separate mean, equal covariance matrix per class gives 

the linear classifier (see Fisher classifier, for two 
classes)

• Separate mean, identity covariance matrix per class gives 
the nearest mean classifier

• By changing the thresholds a ROC curve is obtained, 
showing the error on both classes.



lunch break

Exercises 2.8-2.15



Discriminant analysis

• Different approach to classifiers: avoid estimating the (class 
conditional) probabilities altogether

• Linear discriminant
• Fisher classifier



Avoid density estimation
• From the k-nearest neighbor we saw already that we don't 

need to explicitly estimate a density
• Estimating densities is hard, in particular when we have a 

high number of features (high dimensional feature space, 
curse of dimensionality)

• Now, we start from the other end: 
• Assume we have a function to describe the decision boundary
• Optimize the free parameters of this function directly
• No Bayes' theorem, no density estimates 



Linear discriminant
• Let us assume we can describe the discriminant by:

• There are several ways to optimize w and w
0

• This is generally called linear discriminant analysis

f x =wT xw0



Linear discriminant (2)

• Classifier is a linear function of the features
• The classification depends on whether the weighted sum of 

the features is above or below 0

f x =wT xw0=0

f  x=wT xw00

f  x=wT xw00

w



Fisher classifier

• Linear projection onto 1-D:

• Maximize Fisher criterion:

• Maximizing J implies that after projection:
• Means should be far apart
• Variances should be small

• Find a projection direction w for which J is optimized

J=
∣m1−m2∣

2

(s1
2+s2

2)

y=wT x



Derivation Fisher classifier

• Map the means on w:

• Compute the differences of the means:

• Compute the mapped variance:

m1=wT1, m2=wT 2

∣m1−m2∣
2=wT 1−w

T 2
2

=wT 1−21−2
Tw=wTSBw

si
2=∑ j w

T x j
i−wT  i

2

=∑ j w
T x j

i− ix j
i−i

Tw=wTSiw



Derivation Fisher discriminant

• Combine both results from the previous slide.
• The Fisher criterion

can  be written in terms of the weights 

where                           is the 'within scatter matrix'

and                                        the 'between scatter matrix'.

J (w )=
wTSBw
wT SWw

J=
∣m1−m2∣

2

(s1
2+s2

2)

SW=∑i

ni

n Si

SB=1−21−2
T



Derivation Fisher discriminant (2)

• To optimize J, we set the derivative to 0:

• Because

                           will always be in the direction

• We get:

wTSBw SWw=wTSWw SBw

SB=1−21−2
T

SBw 1−2

wT 1−2SWw=wT SWw 1−2



Derivation Fisher discriminant (3)

• Ignoring scalar factors, we get:

• Strictly speaking, we don't have a classifier yet, only a 
direction on which to project our data

• In practice, take the decision boundary in the middle

wT 1−2SWw=wT SWw 1−2

w~SW
−11−2

SWw=C⋅1−2



The result

w~SW
−11−2



This is familiar...

• The expression for the Fisher discriminant

looks like the linear normal-based classifier:

• For a two-class problem, both classifiers are identical

w~SW
−11−2

f x =wT xw0

w= −1 1− 2

w0=
1
2
2
T −1 2−

1
2
1
T −1 1log

p 1
p 2



Comparison Fisher and Gauss

• The normal-based linear classifier assumes a density per 
class

• Fisher classifier just tries to optimise the Fisher criterion
• For the Fisher classifier the bias term is (in principle) still free 

to optimise

• Both classifiers rely on the inverse of        , so it can 
therefore become undefined when insufficient data is 
available

SW



10min break

Exercises 2.16-2.18



Tree-based models

• Until now: mainly linear and quadratic decision surfaces, often 
real data is more complex

• Classification trees
• Feature selection

• Random forests
• Ensemble of trees
• Randomization
• Bootstrapping

• More on Day 5: neural networks, support vector machines



Classification trees

x

+
+

+

++

x

x

x

Build a tree of (binary) splits parallel to the axes in a 
greedy (=one by one) way.

4y

x + leaf

y=-4
+
1y 

x

y=1

x +

3y

y=-3

x +
1x 1x

root

x=1

split



Classification trees: new data

x +
1x 1x

root

4y

x ?=+ leaf

+
1y

x x +

3y

Can perfectly fit the data: overfitting

y=1

x

+
+

+

++

x

x

x

x=1

y=-4
y=-3

?

Follow path from root to one of the leaves



Classification trees: pruning

x +
1x 1x

x +

3y

x

+
+

+

++

x

x

x

Allow errors on training data in order to reduce overfitting 



Tree ingredients

Main questions:

• How to choose a split

• How to choose a final tree?

• Amount of pruning

Rest: details (but might be important …)

Trees are constructed in a greedy way: 
starting with an empty tree and adding splits one by one 
(and never coming back on a decision taken)



How to choose a split?

x

+
+

+

++

x

x

x

x=1

4 x 
5 +

x

+
+

+

++

x

x

x
3 x
1 +

1 x 
4 +

1x 1x goody=2

2 x
2+

2 x 
3 +

4 x 
5 +

2y 2y bad



How to choose a split? (2)

A

B C

Good split at A:

- few x & many + in B, C

- many x & few + in B, C

Find some measure m  that captures 
goodness

m(P)

0          P                 1
P = fraction of x in a node

m(0)=0

m(1)=0

m(P)=P(1-P)

Gini



How to choose a split? (3)

A

B C

m(P)

0          P                 1

P = fraction of x in a node

maximize m(PA) - P(B)m(PB) - P(C)m(PC)

P(X): determined by number of x and + at node X



How to choose a split? (4)

4 x 
5 +

3 x
1 +

1 x 
4 +

1x 1x good

2 x
2+

2 x 
3 +

4 x 
5 +

2y 2y bad

m(PA) - P(B)m(PB) - P(C)m(PC)

4 5 4 3 1 5 1 4
9 9 9 4 4 9 5 5

  

4 5 4 2 2 5 2 3
9 9 9 4 4 9 5 5
0.0025

  

maximum



Pruning: one step back
er

ro
r

complexity=# of nodes 

C

D

minimize:  D = C + k(# of leaf nodes in the tree)

0 ≤ k                   k: complexity parameter

                           k penalizes big trees



Pruning: one step back (2)

C

D

C

D

C D

small k: big tree

medium k: medium tree

large k: small tree



Pruning: CART 

• Build a complete tree T

• With each subtree of T corresponds a choice of k

Cannot make choice of k on training set: overfitting

Optimal choice of k is made by cross-validation



10-fold cross-validation:  mean +/- std. error

standard error (1-se)

Pruning: model selection

train

cv

er
ro

r

complexity=# of nodes 

minimum
minimum



Decision tree: application

• Prediction of  synthetic lethal genetic interactions
• Integrate multiple types of data:  localization, mRNA expression, 
 physical interaction, protein function, and characteristics of network 
 topology

Wong et al, PNAS 2004



Advantages/disadvantages

• simple and flexible classifier
• combination of discrete and

continuous features
• feature selection (Day 3)
• interpretability

• hard splits
• splits are axis-aligned
• sensitive to small variations

in data  (high variance, Day 5)



Classifier combination

• Idea: combine different classifiers and have them vote 
• Design choices:

• Identical or different?
• Base classifiers, feature spaces, training sets, initialisations, etc.

• Combination by a fixed rule or by another classifier?



Example: random forests
• General overview: Day 5
• Specific example: random forest – an ensemble of decision trees

• Choices to be made:
• Base classifiers: identical – decision trees
• Feature spaces: for each node in each tree sample randomly m 

features
• m  <<  total number of features 

• Training sets: sampling with replacement (bootstrapping)
• About two-third of the cases are used for training each tree

• Combination: majority vote



Characteristics

• Out-of-bag error (oob) estimate:
• Each tree can be tested on about one-third of the cases – the out-

of-bag samples

• Variable importance:
• For each tree: predict the class for oob cases and count the 

number of votes cast for the correct class
• For each tree: randomly permute the values of variable n in the oob 

cases and count  the number of votes cast for the correct class 
• Importance: rank (from high to low) based on average difference of 

these two scores



Some intuition

• Breiman et al., Machine Learning (2001) paper 
• Accuracy depends on two factors:

• Correlation between any two trees in the forest. Decreasing 
correlation increases the forest accuracy: diversity

• Accuracy of each individual tree (strength) in the forest. Increasing 
strength of individual trees increases the forest accuracy

• Trade-off:
• Reducing m reduces correlation and strength 
• Increasing m increases correlation and strength

• Solution: somewhere in between is an optimal range of m - 
usually quite wide. Using the oob error rate a value of m in the 
range can be found



Random forests: example

• Prediction of genome-wide 
DNA methylation

• Features:
• Neighbors
• Genomic position
• DNA sequence properties
• Cis-regulatory elements

• Random forest: feature 
selection

Zhang et al., Genome Biology (2015)



Recapitulation

• Decision trees: simple and flexible classifier
• Incorporates feature selection
• Interpretable
• Hard, axis-aligned splits
• Pruning is essential to avoid overfitting

• Random forest: example of ensemble method
• Ensemble of decision trees
• Variation between members introduced via randomness
• When number of features is large and percentage of truly 

informative features is small (gene expression-based diagnostics): 
performance tends to decline significantly



Exercises 2.19-2.20


