Pattern recognition

3. Feature selection and extraction
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Overview

Feature extraction

Feature selection

Regularized classifiers



Overview

Feature extraction

* Linear:
PCA
Fisher
* Non-linear
MDS (Multi-dimensional scaling)



Overview

Feature selection
* Criteria
* search algorithms
Forward selection

Backward selection
Branch & Bound search



Overview

Regularized classifiers
« PAM (Prediction Analysis of Micro-arrays = shrunken centroids)
* Ridge regression
« LASSO (Least Absolute Shrinkage and Selection Operator)



Dimensionality reduction

Aim of Feature Extraction and Selection: reduce dimensionality
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Why is reducing dimensionality useful?



Dimensionality reduction

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?

1. Fewer parameters: faster, easier to estimate - possibly better
performance

2. Explain which measurements (features) are useful and which are not
(reduce redundancy)

3. Visualisation



Molecular data (e.g. RNAseq data)

Curse of dimensionality (# features / # samples):
« for fixed sample size
- and increasing number of features (number of parameters)
« performance decreases

* (There are fewer samples per parameter, i.e. worse estimates)
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Molecular data (e.g. RNAseq data)

Curse of dimensionality (# features / # samples):

« for fixed sample size

- and increasing number of features (number of parameters)

« performance decreases

* (There are fewer samples per parameter, i.e. worse estimates)
Traditional assumption in pattern recognition:

« need 5-10 times as many samples as there are parameters

« with regularization we can do with fewer
But genomic data (e.g. RNAseq) is extreme:

* 100-1000 times fewer samples than parameters!

For example: nearest mean classifier on Golub data

* p=3051, k=2 — number of parameters = 6102

« Number of samples, n = 38
BioSB

* measurements



Feature selection vs. extraction
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Feature selection vs. extraction

Feature selection:
select d out of p features

Feature extraction:
map p features

to d features

(e.g. PCA)
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Feature selection v extraction (2)

Advantage Disadvantage
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Feature selection v extraction (2)

Advantage Disadvantage
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Feature extraction (2)

Linear, unsupervised (= no class labels):

* Principal Component Analysis (PCA)

Linear, supervised (= use class labels):

¢ Linear Discriminant Analysis (LDA)



Principal component analysis
(Unsupervised feature extraction)

Principal component analysis (PCA, 1901):
Goal: find directions in data...
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Principal component analysis (PCA, 1901):

Goal: find directions in data...

* which retain as much variation as possible
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Principal component analysis
(Unsupervised feature extraction)

Principal component analysis (PCA, 1901):

Goal: find directions in data...
* which retain as much variation as possible

 which minimise squared reconstruction error

"BiosB



Principal component analysis
(Unsupervised feature extraction)

Steps:
5 1. Center data

2. Compute covariance, C
3. Perform PCAon C

Output:

1. Eigenvectors: e,, e,
2. Eigenvalues: A, A,

=

Feature 2 (e.g. Gene 2)

Reducing dimensions:
Choosing ‘d’

1
o

-5 0 5

Feature 1 (e.g. Gene 1)



Principal component analysis
(Unsupervised feature extraction)

Steps:
5 1. Center data

2. Compute covariance, C
3. Perform PCAon C

Output:

1. Eigenvectors: e,, e,
2. Eigenvalues: A, A,

Feature 2 (e.g. Gene 2)
(=]

Reducing dimensions:
1. Choosingd =1
2. Project data on e,

1
o

-5 0 5

Feature 1 (e.g. Gene 1)



Choosing reduced dimensionality

To choose d inspect the retained variance,

d
24
i=1

or the ratio of retained variance,

Rule of thumb: Select d for which 80-90% variance is retained

Reduced dimensionality data set
© [xTx,0 . x," ley ey s s €]



Principal component analysis
(Unsuperrvised feature extraction)

Steps:
5 1. Center data

2. Compute covariance, C
3. Perform PCAon C

Output:

1. Eigenvectors: e,, e,
2. Eigenvalues: A, A,

o

Feature 2 (e.g. Gene 2)

Reducing dimensions:
1. Choosingd =1
2. Project data on e,

1
o

-5 0 5

Feature 1 (e.g. Gene 1)



PCA example

e.g. NIST digits: 2000 samples, p =256 (16 X 16)
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PCA tips

Ensure data is centered (mean of each feature is zero):
X’ < (x-p
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PCA tips

Ensure data is centered (mean of each feature is zero):
X’ < (x-p
PCA is sensitive to scaling

« length in cm has a much larger variance than length in m
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PCA tips

Ensure data is centered (mean of each feature is zero):
X’ < (x-p
PCA is sensitive to scaling

« length in cm has a much larger variance than length in m
best to standardise: x’ <« (x - &) / o

var(x;) retained variance var(x;) retained variance
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PCA conclusions

PCA:
« Is global and linear
* Is unsupervised (but we can do PCA on each class)

« Needs a lot of data to estimate X well.



PCA conclusions

« PCA:
« Is global and linear
- Is unsupervised (but we can do PCA on each class)

« Needs a lot of data to estimate X well.

« Danger:

« Criterion is not necessarily
related to the goal;

 Might discard important directions




Supervised, linear feature extraction

If class label @ (or y) is given, supervised extraction

Examples: Fisher mapping; Linear Discriminant Analysis (Day 2)



Supervised feature extraction (2)
(supervised = we know the class labels)

Class 1 Class 2

JECHE>



Supervised feature extraction (2)

Within-class and between-class scatter matrices:
« Within-class: S = ZC Moy
w i=1 n l

Weighted average =S,

|
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Weighted average = S,
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Supervised feature extraction (2)

Within-class and between-class scatter matrices:
« Within-class: S = ZC Moy
w i=1 n l

* Between-class: ., :Z:_ClE (m, —m)(m,—m)"
T n

Weighted average =S,

|
27 ° @ X; Z
m| (@
) ]

Weighted average = S,

2




Supervised, linear feature extraction

Example: Fisher mapping
Supervised: we know the class labels
Extraction: mapping of features to new (sub)space

This (sub)space gives the best class separation

X1

(111
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Fisher mapping: finding the direction (subspace) to
project onto for the best class separation




Fisher mapping: defining the Fisher criterion
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Fisher mapping: defining the Fisher criterion




Fisher mapping (Fisher criterion)
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Fisher mapping: defining the Fisher criterion
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Fisher mapping: defining the Fisher criterion
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Fisher mapping

Find basis vector a, for {x} such that in the projections, the classes
are maximally separated

Choose a, to maximise Fisher criterion:

T
al SB al

J (@)=
S S,

Maximize between class variance

Minimize within class variance

Solution:
* eigen-analysis on S, 1S,

 select c-1 (# classes - 1) dimensions for final classifier



Fisher mapping (3)

- Map downtoa
maximum of ¢ - 1
dimensions

 Example: NIST digits

IIHFEIHHHHEJ
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Fisher mapping (4)

To avoid fitting noise, can do PCA first

If system is underdetermined (n < p), first doing PCA is required,
otherwise matrix inversion results in singularity

But then... ?



Fisher mapping (4)

To avoid fitting noise, can do PCA first

If system is underdetermined (n < p), first doing PCA is required,
otherwise matrix inversion results in singularity

But then we might be destroying the class separation as PCA is
unsupervised



Summary

Discussed:

* Linear feature extraction
Unsupervised: Principal Component Analysis (PCA)

Supervised: Fisher mapping



Nonlinear, unsupervised feature extraction

Multidimensional scaling (MDS):

e Nonlinear:

Sammon mapping
t-SNE / UMAP



Nonlinear feature extraction (3)

Example: embedding

Find new representation
such that distances
between samples are
preserved

as well as possible




Multidimensional scaling (MDS)

Criterion: preserve all inter-sample distances
Needed: n x n distance matrix between all samples

Map samples to a new (lower dimensional) space



Multidimensional scaling (MDS)

«  Criterion: preserve all inter-sample distances
 Needed: n x n distance matrix between all points

- Map samples to a new (lower dimensional) space




MDS (2)

Advantages of using distances:
* do not necessarily need original data
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measure (e.g. Pearson correlation being shift and scale invariant when
comparing expression profiles)
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acids when comparing proteins)

allows inclusion of knowledge of relations (e.g. invariances) in distance
measure (e.g. Pearson correlation being shift and scale invariant when
comparing expression profiles)

easy to introduce nonlinearity



MDS (2)

Advantages of using distances:
* do not necessarily need original data

« allows inclusion of knowledge on objects (e.g. characteristics of amino
acids when comparing proteins)

« allows inclusion of knowledge of relations (e.g. invariances) in distance
measure (e.g. Pearson correlation being shift and scale invariant when
comparing expression profiles)

* easy to introduce nonlinearity

Algorithms should find:
* new, low-dimensional coordinates for each object
* the number of dimensions to embed the data in



MDS: Non-linear mappings (5)

d; : distance || x; - x; || in original space (? - dimensional)
0; : distance || y; - y; || in new space  (d - dimensional)



MDS: Non-linear mappings (5)

d; : distance || x; - x; || in original space (? - dimensional)
0; : distance || y; - y; || in new space  (d - dimensional)

Stress(y) = Z Zd(q+2) Z Zd dij)2

I J>I

[ J>I
weight factorg=...,-2,-1,0, 1, 2,...
g > 0 : emphasise large distances

g <0 :de-emphasise large distances (smaller more important)
Sammon mapping: g = -1

59..

"BiosB



MDS: Non-linear mappings (6)

Procedure:
« Initialize positions of samples in lower dimensional space (y))



MDS: Non-linear mappings (6)

Procedure:
« Initialize positions of samples in lower dimensional space (y))
¢ Compute stress

1
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MDS: Non-linear mappings (6)

Procedure:
« Initialize positions of samples in lower dimensional space (y))
¢ Compute stress

Stress(y) = sz(qm ZZd dij)z

I J>i

I J>i

« Compute derivative of the stress with respect to positions of samples in
new space



MDS: Non-linear mappings (6)

Procedure:
« Initialize positions of samples in lower dimensional space (y))
¢ Compute stress

1
Stress(y) = szﬁ_q+2) szqu(é‘lj B dij)2
ij

i j>i

i j>i

« Compute derivative of the stress with respect to positions of samples in
new space

* Adapt the positions of samples in lower dimensional space

OStress(y)
oy

y=y-a



MDS: Non-linear mappings (6)

Procedure:

Initialize positions of samples in lower dimensional space (y;)
Compute stress

1
Stress(y) = szﬁ_q+2) szqu(é‘lj B dij)2
ij

i j>i

i j>i

Compute derivative of the stress with respect to positions of samples in
new space

Adapt the positions of samples in lower dimensional space

OStress(y)
oy

Repeat till convergence (positions of samples do not change)

y=y-a



Embedding new points

Problematic: re-run entire algorithm...

Sub-optimal solution: triangulation
« Embed new point D
D has A and B as neighbors
in original space
* Preserve distance

to two embedded
neigbours A’, B’

exactly

« Use C’ to decide
which of the two
candidates D,’, D,’
to use




MDS example |
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t-SNE (t-distributed stochastic neighbor embedding)
(van der Maaten et al, 2008)

In the input (high-D) space, X: compute dissimilarities between all
pairs of points using a gaussian dissimilarity measure, pij

In the output (low-D) space, Y: compute dissimilarities between all
pairs of points using a t-distribution (with 1 d.o.f. (Cauchy))
dissimilarity measure, qij

Minimize the Kullback-Leibler distance between these two
distributions



t-SNE: Cauchy and Gaussian distribution

- (Gaussian distribution
Cauchy distribution

Points that are close
have the same dissimilarity
In both low-D and high-D spaces

0.4

0.2

0.0




t-SNE: Cauchy and Gaussian distribution

1.0

0.8

0.6

0.4

0.2

0.0

- Gaussian distribution
Cauchy distribution

Points further away in low-D space can
Be placed even further away in low-D space




t-SNE (t-distributed stochastic neighbor embedding)
(van der Maaten et al, 2008)

In the input (high-D) space, X: compute dissimilarities between all
pairs of points using a gaussian dissimilarity measure, pij

In the output (low-D) space, Y: compute dissimilarities between all
pairs of points using a t-distribution (with 1 d.o.f. (Cauchy))
dissimilarity measure, qij

Minimize the Kullback-Leibler distance between these two
distributions (P and Q)

t-SNE faithfully retains small distances



Sammon map of digit data

t-SNE

_BioSB



t-SNE: t-SNE map of digit data

®
C o AWM = O




MDS conclusions

Experts or measurements give distances
Optimise a stress-function (MDS) or KL distance (t-SNE)
Important:

* the distance measure used: is it representative?

* the weighting of distances (g): can influence outcome heavily.

* t-SNE run with defaults is quite reliable
Largest risk: seeing structure in the data that is not really there
Remaining problem: embedding new data points

t-SNE (and now UMAP) are modern techniques to perform
representation of data in high-D space in 2D



Feature selection

For feature selection, we need:

A criterion function
e.g. error, class overlap, information loss

A search algorithm
e.g. pick the best single feature at each time



Criteria

1. Wrapper: exact performance measure
» base performance estimate on classifier;
* estimate performance using cross-validation:
* very expensive!



Criteria

1. Wrapper: direct performance measure
* base performance estimate on classifier;
* estimate performance using cross-validation:
* very expensive!
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Criteria

1. Wrapper: direct performance measure
» base performance estimate on classifier;
* estimate performance using cross-validation:
* very expensive!

2. Filter: approximate performance predictors:
« calculate the performance of an easy-to-use/’cheap’ model
* indication of how well a more powerful model may perform
* is much faster to compute.

Traianaey



Criteria (2)

* Example
* Simple measure of the ‘separability’ of classes given a feature

* 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

2
J, =1 —m 9, %
2 2 i
m; m,



Criteria (3)

* Example

* Simple measure of the ‘separability’ of classes given a feature

* 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

2
T _ml—mz‘
Fo 2 L 52

01 T O,

« If J. is large: good separability
* 1f J. is small: poor separability

0, 0
<+—>

+—>

J

m, m,



Criteria (4)

» The multi-variate equivalent of the Fisher criterion is the

+ Mahalanobis distance:

* assumes
Gaussian distributions with

equal covariance matrix X:

D, = (m1 —m, )T > (m1 — mz)



Search algorithms

Feature selection: select a subset of d out of p features which
optimises the criterion

Simplest solution: look at all possible subsets

|
Problem: there are P = —psujesets
d (p—d)ld!

e.g. p = 50 features, d=2 :1225 subsets
d=5 :2.1 x 10°subsets
d=25:1.3 x 10! subsets



Search algorithms (2)

Sub-optimal algorithms: select or deselect
one feature (or a few features) at a time

Simplest: best individual d
but these are not necessarily the best d'!

Demonstration: two Gaussians;
select 2 features out of 3 for classification



Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (4)

Other sub-optimal algorithms:

» Forward selection (for when d is low)
start with empty set

keep adding one feature at a time
so that the entire subset so far performs best
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start with entire set

keep removing one feature at a time
so that the entire subset so far performs best



Search algorithms (4)

Other sub-optimal algorithms:

» Forward selection (for when d is low)
start with empty set

keep adding one feature at a time
so that the entire subset so far performs best

« Backward selection (for when d is high)
start with entire set

keep removing one feature at a time
so that the entire subset so far performs best

e Plus-I-takeaway-r (may be slightly better)
start with empty set (if / > r) or entire set (if / < r)

keep adding best / and removing worst



Search algorithms (5)

(Low is good)

Criterion
value

2
5

Select d
out of p
features
Sub-optimality
illustrated:
forward
e backward
subset



Search algorithms (8)

 When should we stop?

Due to estimation problems (e.g. covariance matrix),
we may be overtraining on training set

This is revealed by increasing error on the test set

Error

Test error

——Training error

d

Otherwise (with very large sample sizes), we will have to specify a
desired number of measurements



Example: Recursive feature elimination (RFE)

Wrapper, Backward search

00000000000000000

Train

» Classifier

(SVM)

»

o

Qo000 000

@)

Eliminate
Genes
» with » ﬂ
smallest
weights Stop if
perf.
peaks

t Gene weights l
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What can go wrong?

Selection bias...
Guyon et al. (2002). Machine Learning 46, 389 - 422.
Ambroise and McLachlan (2002). PNAS 99, 6562-6566.



Samples

Biased selection

Data
Set

}

Select
best N
predictor
genes

Repeat for different
Test o
Set: splits, (x',y")
yi
Test on
Train Build Left-out
Set: ’ Classifier: ’ set:
Xi C (XiN) P (C (XiN) ,YiN )




Unbiased selection

Data
Set

Repeat for different
Test o
Set: SphtS, (leyl)
yi
Test on
Train Select Build Left-out
best N -
Set: B — Classifier: set:
X! C(xiy) P(C(xiy),y'y)

genes




Ambroise & McLachlan experiments

» Test . TE
50%

Data »
set Train final

classifier
50% CV10E

Estimate H AE
Errors

CVI1IE

"BiosB



Ambroise & McLachlan experiments

Colon vs. normal data

0.3y
0.25

0.2f

Error rate

0.1f

0.05¢

0.15}~

0 2 4 6 8 10 12
log2(number of genes)




Ambroise

Random data

0.51

o
D H

Error rate

o
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Cross-validation

+  Remember:

« for small sample size: use cross-validation

« Cross-validation should be applied to
every choice made, including:
* the number of features to use
* the features to use
* the type of classifier to use

s el

DO e T

P ciahlt
He B. SB
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Feature selection: summary

Feature selection can improve performance
and help interpretation

Requirements: a criterion and a search algorithm

Methodology (cross-validation) is very important,
especially for RNAseq data (‘p >>n’)

There seems to be some evidence that the simplest methods
(individual selection) work best

"BiosB



Shrinkage

Feature selection: selects a subset of features (1/0)

Feature extraction: combinations of features are constructed based
on variance and accuracy arguments

Regularization 1: control contribution of genes to classifier based on
individual quality and control degree of contribution with cross-
validated classification error

Regularization 2: combines accuracy (error) and penalty on large
weights (= simple models) in one criterion.



Shrunken centroids

Same principle as forward filtering

Genes are evaluated individually

BUT, do not start with the best and keep adding;
RATHER, start removing worst genes from the back

In PAM™ genes can participate ‘partially’, in forward filtering a gene
is either 100% in or out.

* PAM: Prediction analysis of micro-arrays; R. Tibshirani, T. Hastie, B. Narasimhan
and G. Chu. Diagnosis of multiple cancer types by shrunken centroids of gene
expression. PNAS 99(10):6567 6572, 2002.



Shrunken centroids (1)

Step 1: Compute class centroids per gene

Normal

Cancer

gene expression




Shrunken centroids (2)

Step 1: Compute class centroids per gene

Normal Cancer

LA

Mean Mean

gene expression

expression of expression of
normal samples: || cancer samples:

UN Hc



Shrunken centroids (3)
Step 2: Compute overall centroids per gene

Mean of all
samples: u

Cancer

gene expression

expression of expression of

normal samples: || cancer samples:
HN He



Shrunken centroids (4)
Step 3: Compute d per gene

Mean of all
samples: u

Cancer

Normal

dc=(uc-n)
Distance between
the class mean and

the overall mean

gene expression

Mean Mean
expression of expression of

normal samples: || cancer samples:
MN MC Blos B



Shrunken centroids (4)
Step 3: Compute d per gene

Mean of all
samples: u

Cancer

Xik — X

di =

- mye(s; + so)

Normal

dc=(uc-n)
Distance between
the class mean and

the overall mean

gene expression

Mean Mean
expression of expression of

normal samples: || cancer samples:
MN MC Blos B



Shrunken centroids (5)
Step 3: Compute d per gene

Mean of all
samples: u

Cancer

Normal
dc=(uc-n)
Distance between
the class mean and

the overall mean

gene expression

Note: for poor
reporters, SNR is

Mean
expression of
cancer samples:

Hc

Mean
expression of
normal samples:

UN

small AND :.
D is small oSB




Shrunken centroids (6)
Step 4: Shrink the centroids

Mean of all
samples: u

Normal Cancer

d’'c = sign(dg)(|dc| - A)
Distance between the
class mean and the
overall mean

gene expression

Mean Mean
expression of expression of

normal samples: || cancer samples:
MN MC Blos B



Shrunken centroids (7)
Step 5: Classify with shrunken centroids / perf.

Normal Cancer
:E :: i gene expression




Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all

genes shrunk away

Normal

Cancer

gene expression




Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all

genes shrunk away

Normal

Cancer

gene expression




Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all

genes shrunk away

Normal

Cancer

gene expression




Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all

genes shrunk away

Normal

A

Cancer

gene expression




Shrunken centroids: selecting the genes

Cancer Normal
Gene 1 /\ [P\
Gene 2 -A‘ /\
Gene 3 —ﬂ /\
Gene 4 -A‘ /\
GGene “ /\
Gene 6 ”"

Gene 7 “
Gene 8 /XA

Genes sorted based on D-measure: best to worse




Shrunken centroids: selecting the genes

Gene 1
Gene 2
Gene 3
Gene 4
Gene
Gene
Gene 7

Cancer

Normal
CV Performance —»

Gene 8

<— soUab #

0O
Y

Train classifier on all 8 genes; estimate CV performance|




Shrink all d by A=1: reduce length by 1

Cancer Normal

A=1 CV Performance —»

Gene 1 :
Gene 2

Gene 3F

Gene 4

Gene I

Gene 6 )

<4—— Souab ¢

Gene 7 O
Gene 8 uj

Train classifier on 7 genes (d>0); estimate CV performance




Shrink all d by A=2: reduce length by 2

Cancer Normal

L2 CV Performance —»

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5 | o
Gene 6

Gene 8

<4—— Souab ¢

Gene 7 b

e
Train classifier on 5 genes (d>0); estimate CV performance r




Shrink all d by A=3: reduce length by 3

Cancer Normal
'A=3 CV Performance —»

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5 | %
Gene 6

Gene 7 jj

<4—— Souab ¢

e
Train classifier on 4 genes (d>0); estimate CV performance]




Shrink all d by A=7: reduce length by 7

Cancer _ Normal

& CV Performance —»

Gene 1 R
Gene 2

Gene 3
Gene 4

Gene 5 |
Gene 6

Gene 7
Gene 8

{

<4—— Souab ¢

Train classifier on 1 gene (d>0); estimate CV performance |




Determining the optimal A

[ 1
. . L
Split the data (X) in 10 equal parts (x,,...x,,) ]
1
For each of the 10 folds (i=1,2,...,10) —
o 1
On the training set (X\x) ]
. 1
1. Compute the class and overall centroids ]
2. Forarange of A (A =1[0,0.5,...,7]) E—
Shrink d for all genes 3
Compute ‘shrunken centroids’ on training set P ﬁ
Test the resulting classifier on the test set (x;) )
3. Result: 10 Curves of performance vs. A A

Average all 10 curves and compute std. dev. at each A

Pick the A where the performance is maximal (error min.)

A A

Ny 2




PAM

Error

For the Khan datatset; 4 classes: BL, EWS, NB, RMS

At optimal A : 43 genes not shrunk away

Number of Genes

§E§§ SPEA3INE2 0w,

0.84 :
e Neuroblastoma (NB)
w : [ Rhabdomyosarcoma (RMS)
: wﬁ.f, Bur.kitt lymphoma (BL)
'g Ewing family of tumors (EWS),
0.4 Lérw/
" e, % ﬁ
I..T'e e, I , 'l

ol T e -

0 2 ‘ 5

Amount of Shrinkage A |

R. Tibshirani et a/. (2002) PNAS 99(10):6567-6572, 2002.



BL EWS NB RMS

2000

1500

Gene

1000

B shrunk

. - — unshrunk

—
b S——
R
-
2
e b
e
-
e p—
—
| ———
e

05 00 05 05 00 0S5 05 00 05 05 00 05 Bi.OSB

Average Expression S



PAM (3)

At optimal A : 43 genes not shrunk away

BL EWS NB RMS @ Neuroblastoma (NB)
 Sis E“@;E“’;&gf%:%ﬁ‘;ﬁ;%a.og O Rhapdomyosarcoma (RMS)
SRSl ® Burkitt lymphoma (BL)
796258 sarcoalycan aioha (dystraphin-associated glycoprotein Ewing family of tumors (EWS),

789253 presenilin 2 (Alzheimer disease 4)
298062 troponin T2, cardiac muscle isoforms
461425 myosin MYL4
1409509 troponin T1, slow skeletal muscle isoforms
42558 L-arginine:glycine amidinotransferase
768716 neurafibromin 2 (mutated in neurofibromatosis type 2)
26725 tamesyl-diphosphate farmesyliransferase 1
44563 growth associated protein 43 (GAP43)
325182 E#-cadh&r‘ln {neuronal)
812105 ALL1-fused gene from chromosome 1q
41581 meningloma 1 (disrupted in balanced translocation)
810057 cold shock domain protein A
52076 neurablastoma protein (NOE1)
868702 Fas-associated protein tyrosine phosphatase 1
814280 follicular lymphoma variant translocation protein 1
43733 glycogenin 2
357031 wmer necrosis factor alpha-induced protsin 6
1435862 MIC2 surface antigen (CD98)
770394 19G Fe fragment raceptor transporter, alpha chain
377481 caveolin 1 (caveolas protein)
1473131 transducin-like enhancer of split 2
295985 EST
241412 E74-like factor 1 {ets domain franscription factor)
8010% major histocompatibility complex, ¢lass Il, DQ alpha 1
183337 major histocompatibility mmlsllex, class Il, DM alpha
233721 insulin-lika growth factor bin in?] prolein 2
897788 receptor type protein lyrosine phasphatase F
563672 antiquitin 1
504791 glutathione S-transferase Ad
212542 cDNA DKFZp586J2118
365826 growth arrest-specific protein 1
204545 EST
308163 EST
21652 alpha 1 catenin (cadherin-associated protein)
486110 profilin 2

.I|||||ll

R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.




Scoring samples by posterior prob’s

p(k|x™)

Probability

k = {BL,EWS,NB,RMS}

p(k|z™)

Probability

Training Data

1.09 "s¥em_av wt s

0.84

0.6

0.44

0.2

0.04

BL

NB

]
. & 1, . . TR
!‘:r!!'-!'IrT-lr-r--!.-l-#..I.-=l=--"""' e T LLH

1.0
0.8
0.6

0.4

0.0 :

0

10 20 30 40

Sample

Test Data

80

0z{ °

BL

NB




Shrinkage

PAM: controls contribution of genes to classifier based on
individual quality (d-measure) and controls degree of
contribution with cross-validated classification error

Other approach: regularisation, combine error and penalty for
number of genes explicitly



Shrinkage (2)

P
Model: y =, + Z,[)’l.xi +&

i=1

Penalised (aka regularised) least squares:

* Ridge regression: B

n p

ﬁ = argminp Z(J’j -5, _Zp:ﬂixj,ij +/7“ZIBZ'2

j=I i=1

e LASSO: minimise )

n

ﬁ = argminﬂ Z[y] _ﬁo _iﬂixj»i) +li

j=I i=1

g




Coefficients

LASSO

. Difference seems small, but effect of LASSO
is that genes are no longer used (like in PAM!)

0.8 0.7 , , ‘ ‘
S Ridge @ os LASSO
0.6 05l |
0.41
0.4 .
— e 03—
o
0.2 — o 0.2
RS
D 0.1}
o
0 — 1 O ol
—T1 01l
-0.2
0.2}
_0.4 | . L 1 . . | . | |
1072 109 \ 102 104 1071 100 101 N 102 103



Final summary

Feature extraction:

* Linear:
PCA,
Fisher

* Non-linear
MDS
Feature selection:
* Criteria
* search algorithms

forward,
backward,

branch & bound.

Sparse classifiers:
* Ridge,
 LASSO
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