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Pattern recognition

3. Feature selection and extraction 



Overview

• Feature extraction

• Feature selection

• Regularized classifiers
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• Feature extraction
• Linear:
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• Fisher

• Non-linear
• MDS (Multi-dimensional scaling)



Overview

• Feature selection
• Criteria
• search algorithms 

• Forward selection
• Backward selection
• Branch & Bound search



Overview

• Regularized classifiers
• PAM (Prediction Analysis of Micro-arrays = shrunken centroids)
• Ridge regression
• LASSO (Least Absolute Shrinkage and Selection Operator)
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Dimensionality reduction 

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?
1. Fewer parameters: faster, easier to estimate – possibly better

performance

2. Explain which measurements (features) are useful and which are not
(reduce redundancy)

3. Visualisation
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• for fixed sample size 
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• (There are fewer samples per parameter, i.e. worse estimates)
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Molecular data (e.g. RNAseq data)

• Curse of dimensionality (# features / # samples): 
• for fixed sample size 

• and increasing number of features (number of parameters)

• performance decreases 

• (There are fewer samples per parameter, i.e. worse estimates)

• Traditional assumption in pattern recognition: 
• need 5-10 times as many samples as there are parameters

• with regularization we can do with fewer

• But genomic data (e.g. RNAseq) is extreme: 
• 100-1000 times fewer samples than parameters!

• For example: nearest mean classifier on Golub data
• p = 3051, k = 2 → number of parameters = 6102
• Number of samples, n = 38

* measurements



Feature selection vs. extraction

• Feature selection:
select d out of p features
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Feature selection vs. extraction

• Feature selection:
select d out of p features

• Feature extraction:
map p features
to d features
(e.g. PCA)
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Feature selection v extraction (2)

Advantage Disadvantage

Selection cut in features  expensive

easy interpretation often approximate



Feature selection v extraction (2)

Advantage Disadvantage

Selection cut in features  expensive

easy interpretation often approximate

Extraction cheap need all features
can be nonlinear criterion sub-optimal

not axis aligned



Feature extraction (2)

• Linear, unsupervised (= no class labels):
• Principal Component Analysis (PCA)

• Linear, supervised (= use class labels):
• Linear Discriminant Analysis (LDA)



Principal component analysis
(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):
Goal: find directions in data...



Principal component analysis
(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):
Goal: find directions in data...
• which retain as much variation as possible



Principal component analysis
(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):
Goal: find directions in data...
• which retain as much variation as possible

• which minimise squared reconstruction error



Principal component analysis
(Unsupervised feature extraction)
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Principal component analysis
(Unsupervised feature extraction)
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Reducing dimensions:
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Choosing reduced dimensionality

• To choose d inspect the retained variance,  

• or the ratio of retained variance,

• Rule of thumb: Select d for which 80-90% variance is retained

• Reduced dimensionality data set
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Principal component analysis
(Unsuperrvised feature extraction)
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2. Compute covariance, C
3. Perform PCA on C

Output:
1. Eigenvectors: e1, e2
2. Eigenvalues: λ1, λ2

Reducing dimensions:
1. Choosing d = 1
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PCA example

• e.g. NIST digits: 2000 samples, p = 256 (16 X 16)
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PCA tips

• Ensure data is centered (mean of each feature is zero):
x’ ← (x - µ)
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PCA tips

• Ensure data is centered (mean of each feature is zero):
x’ ← (x - µ)

• PCA is sensitive to scaling
• length in cm has a much larger variance than length in m
• best to standardise: x’ ← (x - µ) / σ
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PCA conclusions

• PCA:
• Is global and linear

• Is unsupervised (but we can do PCA on each class)

• Needs a lot of data to estimate Σ well.



PCA conclusions

• PCA:
• Is global and linear

• Is unsupervised (but we can do PCA on each class)

• Needs a lot of data to estimate Σ well.

• Danger: 
• Criterion is not necessarily

related to the goal; 

• Might discard important directions



Supervised, linear feature extraction

• If class label ω (or y) is given, supervised extraction

• Examples: Fisher mapping; Linear Discriminant Analysis (Day 2)



Supervised feature extraction (2)
(supervised = we know the class labels)
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Supervised feature extraction (2)

Within-class and between-class scatter matrices: 

• Within-class:
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Supervised feature extraction (2)

Within-class and between-class scatter matrices: 

• Within-class:

• Between-class:
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Supervised, linear feature extraction

• Example: Fisher mapping

• Supervised: we know the class labels

• Extraction: mapping of features to new (sub)space

• This (sub)space gives the best class separation



Fisher mapping: finding the direction (subspace) to 
project onto for the best class separation



Fisher mapping: defining the Fisher criterion
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Fisher mapping (Fisher criterion)
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Fisher mapping: defining the Fisher criterion
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Fisher mapping: defining the Fisher criterion
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Fisher mapping

• Find basis vector a1 for {x} such that in the projections, the classes 
are maximally separated

• Choose a1 to maximise Fisher criterion:

• Maximize between class variance

Minimize within class variance

• Solution: 
• eigen-analysis on SW

-1SB

• select c-1 (# classes – 1) dimensions for final classifier 



Fisher mapping (3) 

• Map down to a 
maximum of c - 1
dimensions

• Example: NIST digits

1 2 3

4 5 6

7 8 9



Fisher mapping (4) 

• To avoid fitting noise, can do PCA first

• If system is underdetermined (n ≤ p), first doing PCA is required, 
otherwise matrix inversion results in singularity 

• But then… ?



Fisher mapping (4) 

• To avoid fitting noise, can do PCA first

• If system is underdetermined (n ≤ p), first doing PCA is required, 
otherwise matrix inversion results in singularity 

• But then we might be destroying the class separation as PCA is 
unsupervised



Summary

• Discussed:
• Linear feature extraction

• Unsupervised: Principal Component Analysis (PCA)

• Supervised: Fisher mapping
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Nonlinear, unsupervised feature extraction

• Multidimensional scaling (MDS):
• Nonlinear: 

• Sammon mapping

• t-SNE / UMAP
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Nonlinear feature extraction (3)

Example: embedding

• Find new representation 
such that distances 
between samples are 
preserved 
as well as possible



Multidimensional scaling (MDS)

• Criterion: preserve all inter-sample distances

• Needed: n x n distance matrix between all samples

• Map samples to a new (lower dimensional) space
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Multidimensional scaling (MDS)

• Criterion: preserve all inter-sample distances

• Needed: n x n distance matrix between all points

• Map samples to a new (lower dimensional) space
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MDS (2)

• Advantages of using distances:
• do not necessarily need original data
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MDS (2)

• Advantages of using distances:
• do not necessarily need original data
• allows inclusion of knowledge on objects (e.g. characteristics of amino 

acids when comparing proteins)
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measure (e.g. Pearson correlation being shift and scale invariant when 
comparing expression profiles)
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• easy to introduce nonlinearity
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MDS (2)

• Advantages of using distances:
• do not necessarily need original data
• allows inclusion of knowledge on objects (e.g. characteristics of amino 

acids when comparing proteins)
• allows inclusion of knowledge of relations (e.g. invariances) in distance 

measure (e.g. Pearson correlation being shift and scale invariant when 
comparing expression profiles)

• easy to introduce nonlinearity

• Algorithms should find:
• new, low-dimensional coordinates for each object
• the number of dimensions to embed the data in
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MDS: Non-linear mappings (5) 

• dij : distance || xi - xj || in original space (? - dimensional)
• δij : distance || yi - yj || in new space      (d - dimensional)
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MDS: Non-linear mappings (5) 

• dij : distance || xi - xj || in original space (? - dimensional)
• δij : distance || yi - yj || in new space      (d - dimensional)

• weight factor q = ..., -2, -1, 0, 1, 2,...
q > 0 : emphasise large distances

q < 0 : de-emphasise large distances (smaller more important)

Sammon mapping: q = -1
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MDS: Non-linear mappings (6) 

• Procedure:
• Initialize positions of samples in lower dimensional space (yi)
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MDS: Non-linear mappings (6) 

• Procedure:
• Initialize positions of samples in lower dimensional space (yi)
• Compute stress
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MDS: Non-linear mappings (6) 

• Procedure:
• Initialize positions of samples in lower dimensional space (yi)
• Compute stress

• Compute derivative of the stress with respect to positions of samples in 
new space
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MDS: Non-linear mappings (6) 

• Procedure:
• Initialize positions of samples in lower dimensional space (yi)
• Compute stress

• Compute derivative of the stress with respect to positions of samples in 
new space

• Adapt the positions of samples in lower dimensional space
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MDS: Non-linear mappings (6) 

• Procedure:
• Initialize positions of samples in lower dimensional space (yi)
• Compute stress

• Compute derivative of the stress with respect to positions of samples in 
new space

• Adapt the positions of samples in lower dimensional space

• Repeat till convergence (positions of samples do not change)
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Embedding new points

• Problematic: re-run entire algorithm...
• Sub-optimal solution: triangulation

• Embed new point D
• D has A and B as neighbors 

in original space
• Preserve distance 

to two embedded
neigbours A’, B’
exactly

• Use C’ to decide
which of the two
candidates D1’, D2’
to use



MDS example

Neuroblastoma (NB)
Rhabdomyosarcoma (RMS)
Burkitt lymphoma (BL) 
Ewing family of tumors (EWS),

Khan et al, Nature Medicine, 2001



t-SNE (t-distributed stochastic neighbor embedding) 
(van der Maaten et al, 2008)

• In the input (high-D) space, X: compute dissimilarities between all 
pairs of points using a gaussian dissimilarity measure, pij

• In the output (low-D) space, Y: compute dissimilarities between all 
pairs of points using a t-distribution (with 1 d.o.f. (Cauchy)) 
dissimilarity measure, qij

• Minimize the Kullback-Leibler distance between these two 
distributions



t-SNE: Cauchy and Gaussian distribution

Points that are close 
have the same dissimilarity
In both low-D and high-D spaces



t-SNE: Cauchy and Gaussian distribution

Points further away in low-D space can 
Be placed even further away in low-D space



t-SNE (t-distributed stochastic neighbor embedding) 
(van der Maaten et al, 2008)

• In the input (high-D) space, X: compute dissimilarities between all 
pairs of points using a gaussian dissimilarity measure, pij

• In the output (low-D) space, Y: compute dissimilarities between all 
pairs of points using a t-distribution (with 1 d.o.f. (Cauchy)) 
dissimilarity measure, qij

• Minimize the Kullback-Leibler distance between these two 
distributions (P and Q)

• t-SNE faithfully retains small distances



t-SNE: Sammon map of digit data

Distance from oriin



t-SNE: t-SNE map of digit data

Distance from origin
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MDS conclusions

• Experts or measurements give distances

• Optimise a stress-function (MDS) or KL distance (t-SNE)

• Important:
• the distance measure used: is it representative?

• the weighting of distances (q): can influence outcome heavily.

• t-SNE run with defaults is quite reliable 

• Largest risk: seeing structure in the data that is not really there

• Remaining problem: embedding new data points

• t-SNE (and now UMAP) are modern techniques to perform 
representation of data in high-D space in 2D



Feature selection 

• For feature selection, we need:

• A criterion function
e.g. error, class overlap, information loss

• A search algorithm
e.g. pick the best single feature at each time



Criteria

1. Wrapper: exact performance measure
• base performance estimate on classifier;
• estimate performance using cross-validation: 
• very expensive!
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Criteria

1. Wrapper: direct performance measure
• base performance estimate on classifier;
• estimate performance using cross-validation: 
• very expensive!

2. Filter: approximate performance predictors:
• calculate the performance of an easy-to-use/’cheap’ model
• indication of how well a more powerful model may perform
• is much faster to compute.

Note: 
we should never use the training set to calculate

performance; this will give a biased estimate!



Criteria (2)

• Example
• Simple measure of the ‘separability’ of classes given a feature

• 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:
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Criteria (3)

• Example
• Simple measure of the ‘separability’ of classes given a feature

• 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

• If JF is large: good separability

• If JF is small: poor separability
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Criteria (4)

• The multi-variate equivalent of the Fisher criterion is the

• Mahalanobis distance: 
• assumes 

• Gaussian distributions with 

• equal covariance matrix Σ:
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Search algorithms

• Feature selection: select a subset of d out of p features which
optimises the criterion

• Simplest solution: look at all possible subsets

• Problem: there are                                  subsets

• e.g. p = 50 features, d = 2  : 1225 subsets
d = 5  : 2.1 x 106 subsets
d = 25: 1.3 x 1014 subsets
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Search algorithms (2)

• Sub-optimal algorithms: select or deselect 
one feature (or a few features) at a time

• Simplest: best individual d
but these are not necessarily the best d !

• Demonstration: two Gaussians; 
select 2 features out of 3 for classification



Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (3)
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Search algorithms (4)

• Other sub-optimal algorithms:
• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time 
so that the entire subset so far performs best
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Search algorithms (4)

• Other sub-optimal algorithms:
• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time 
so that the entire subset so far performs best

• Backward selection (for when d is high)
• start with entire set

• keep removing one feature at a time
so that the entire subset so far performs best

• Plus-l-takeaway-r (may be slightly better)
• start with empty set (if l > r) or entire set (if l < r)

• keep adding best l and removing worst r



• Select d = 2 
out of p = 5
features

• Sub-optimality
illustrated:
• forward

• backward

Feature
subset

Criterion
value

Search algorithms (5)

1818

(Low is good)



Search algorithms (8)

• When should we stop?
• Due to estimation problems (e.g. covariance matrix), 

we may be overtraining on training set
• This is revealed by increasing error on the test set

• Otherwise (with very large sample sizes), we will have to specify a 
desired number of measurements

d

Er
ro

r

Training error

Test error



Example: Recursive feature elimination (RFE)

Train
Classifier

(SVM)

Eliminate
Genes
with

smallest 
weights

Gene weights

Stop if
perf.
peaks

Wrapper, Backward search



What can go wrong?

Selection bias...

• Guyon et al. (2002). Machine Learning 46, 389 – 422. 

• Ambroise and McLachlan (2002). PNAS 99, 6562-6566. 



Repeat for different 

splits, (xi,yi)

Biased selection

Data
Set
X

Select
best N

predictor
genes Build

Classifier:
C(xi

N)

Test on 
Left-out 

set:
P(C(xi

N),yi
N)

Train
Set:
xi

Test
Set:
yi

Sa
m

pl
es



Repeat for different 

splits, (xi,yi)

Unbiased selection

Data
Set
X Select

best N
predictor

genes

Build
Classifier:

C(xi
N)

Test on 
Left-out 

set:
P(C(xi

N),yi
N)

Train
Set:
xi

Test
Set:
yi



Ambroise & McLachlan experiments

Data
set

50%

50%

Train final
classifier

CV1IE

CV10E

AEEstimate
Errors

Test TE



Ambroise & McLachlan experiments

Colon vs. normal data



Ambroise & McLachlan experiments

Random data

Random data



Cross-validation

• Remember: 

• for small sample size: use cross-validation 

• Cross-validation should be applied to 
every choice made, including:
• the number of features to use
• the features to use
• the type of classifier to use
• …

Note: 
we should never use the training set to calculate

performance; this will give a biased estimate!



Feature selection: summary

• Feature selection can improve performance 
and help interpretation

• Requirements: a criterion and a search algorithm

• Methodology (cross-validation) is very important,
especially for RNAseq data (‘p >> n’)

• There seems to be some evidence that the simplest methods 
(individual selection) work best



Shrinkage

• Feature selection: selects a subset of features (1/0)

• Feature extraction: combinations of features are constructed based 
on variance and accuracy arguments

• Regularization 1: control contribution of genes to classifier based on 
individual quality and control degree of contribution with cross-
validated classification error

• Regularization 2: combines accuracy (error) and penalty on large 
weights (= simple models) in one criterion.



Shrunken centroids  

• Same principle as forward filtering

• Genes are evaluated individually

• BUT, do not start with the best and keep adding;

• RATHER, start removing worst genes from the back

• In PAM* genes can participate ‘partially’, in forward filtering a gene 
is either 100% in or out.

* PAM: Prediction analysis of micro-arrays; R. Tibshirani, T. Hastie, B. Narasimhan
and G. Chu. Diagnosis of multiple cancer types by shrunken centroids of gene 
expression. PNAS 99(10):6567 6572, 2002.



Shrunken centroids (1)
Step 1: Compute class centroids per gene

gene expression

CancerNormal



Shrunken centroids (2)
Step 1: Compute class centroids per gene

gene expression

CancerNormal

Mean 
expression of 

normal samples: 
µN

Mean 
expression of 

cancer samples: 
µC



Shrunken centroids (3)
Step 2: Compute overall centroids per gene

gene expression

CancerNormal

Mean 
expression of 

normal samples: 
µN

Mean 
expression of 

cancer samples: 
µC

Mean of all 
samples: µ



Shrunken centroids (4)
Step 3: Compute d per gene

gene expression

CancerNormal dC=(µC-µ)
Distance between 

the class mean and 
the overall mean

Mean 
expression of 

normal samples: 
µN

Mean 
expression of 

cancer samples: 
µC

Mean of all 
samples: µ

dC



Shrunken centroids (4)
Step 3: Compute d per gene

gene expression

CancerNormal dC=(µC-µ)
Distance between 

the class mean and 
the overall mean

Mean 
expression of 

normal samples: 
µN

Mean 
expression of 

cancer samples: 
µC

Mean of all 
samples: µ

dC



Shrunken centroids (5)
Step 3: Compute d per gene

gene expression

CancerNormal dC=(µC-µ)
Distance between 

the class mean and 
the overall mean

Mean 
expression of 

normal samples: 
µN

Mean 
expression of 

cancer samples: 
µC

Mean of all 
samples: µ

dC

Note: for poor 
reporters, SNR is 

small AND 
D is small



Shrunken centroids (6)
Step 4: Shrink the centroids

gene expression

CancerNormal

Mean 
expression of 

normal samples: 
µN

Mean 
expression of 

cancer samples: 
µC

Mean of all 
samples: µ

dCdCd’C

d’C = sign(dC)(|dC| - )
Distance between the 
class mean and the 

overall mean



Shrunken centroids (7)
Step 5: Classify with shrunken centroids / perf.

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all 
genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all 
genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all 
genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)
Repeat shrinking and evaluation of classifier till all 
genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids: selecting the genes

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8

Cancer Normal

dC

Genes sorted based on D-measure: best to worse



Shrunken centroids: selecting the genes

Cancer Normal
CV Performance

# genes

Train classifier on all 8 genes; estimate CV performance

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8



Shrink all d by ∆=1: reduce length by 1

Cancer Normal
CV Performance∆=1

# genes

Train classifier on 7 genes (d>0); estimate CV performance

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8



Shrink all d by ∆=2: reduce length by 2

Cancer Normal
CV Performance∆=2

# genes

Train classifier on 5 genes (d>0); estimate CV performance

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8



Shrink all d by ∆=3: reduce length by 3

Cancer Normal
CV Performance∆=3

# genes

Train classifier on 4 genes (d>0); estimate CV performance

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8



Shrink all d by ∆=7: reduce length by 7

Cancer Normal
CV Performance∆=7

# genes

Train classifier on 1 gene (d>0); estimate CV performance

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8



Determining the optimal ∆

p

p e

∆

∆∆

1. Split the data (X) in 10 equal parts (x1,…x10) 

2. For each of the 10 folds (i=1,2,…,10)

3. On the training set (X\xi) 
1. Compute the class and overall centroids

2. For a range of ∆ (∆ = [0,0.5,…,7]) 

i. Shrink d for all genes

ii. Compute ‘shrunken centroids’ on training set

iii. Test the resulting classifier on the test set (xi)

3. Result: 10 Curves of performance vs. ∆

4. Average all 10 curves and compute std. dev. at each ∆

5. Pick the ∆ where the performance is maximal (error min.)



PAM

• For the Khan datatset; 4 classes: BL, EWS, NB, RMS

• At optimal ∆ : 43 genes not shrunk away

R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

Neuroblastoma (NB)
Rhabdomyosarcoma (RMS)
Burkitt lymphoma (BL) 
Ewing family of tumors (EWS),



PAM (2)

shrunk

unshrunk



PAM (3)

At optimal ∆ : 43 genes not shrunk away

R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

Neuroblastoma (NB)
Rhabdomyosarcoma (RMS)
Burkitt lymphoma (BL) 
Ewing family of tumors (EWS),



Scoring samples by posterior prob’s

k = {BL,EWS,NB,RMS}



Shrinkage

• PAM: controls contribution of genes to classifier based on 
individual quality (d-measure) and controls degree of 
contribution with cross-validated classification error

• Other approach: regularisation, combine error and penalty for 
number of genes explicitly 



Shrinkage (2)

• Model:

• Penalised (aka regularised) least squares:
• Ridge regression: 

• LASSO: minimise

0
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   
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0 ,
1 1 1
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= = =

  
= − − +  
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LASSO

• Difference seems small, but effect of LASSO 
is that genes are no longer used (like in PAM!)
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Final summary

• Feature extraction: 
• Linear:

• PCA, 
• Fisher

• Non-linear
• MDS

• Feature selection: 
• Criteria
• search algorithms 

• forward, 
• backward, 
• branch & bound.

• Sparse classifiers: 
• Ridge, 
• LASSO
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