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Clustering

• Supervised vs. unsupervised learning

• Hierarchical clustering
• Sum-of-squares clustering (k-means)
• Cluster validation
• Mixtures-of-Gaussians clustering (EM algorithm)



Supervised learning

Virginica

Setosa

Versilcolor

Objects

Train
classifier

with
data
and 

class
labels

































































Virginica-Iris

Versicolor-Iris

Setosa-Iris

2.5 6.0, 3.3, 6.3,

1.4 4.7, 3.2, 7.0,

0.2 1.4, 3.5, 5.1,

Se
pa

l l
en

gt
h

Se
pa

l w
id

th
Pe

ta
l l

en
gt

h
Pe

ta
l w

id
th

Data collection

C
la

ss
 la

be
ls



Supervised learning (2)
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Unsupervised learning
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Unsupervised learning (2)

Virginica

Setosa

Versilcolor?

Clustering



Shape: compact, convex
Separation: large

Shape: ?
Separation: large?

Shape: strings
Separation: large? 

Shape: loose, convex
Separation: small

Shape: loose, convex
Separation: small

Shape: convex and circular
Separation: large?

What is a cluster?



What is a cluster? (2)

• Clustering: finding natural groups in data...
• which themselves are far apart
• in which objects are close together

• Define what is “far apart” and “close together”: 
• Need a distance measure or dissimilarity measure
• This measure should capture what we think is important for the 

grouping
• The choice for a certain distance measure is often

the most important choice in clustering!

• There is no such thing as the objective clustering



What is a cluster in bioinformatics?

• Clustering gene expression data:
• Genes: similar ~ co-expression ~ co-regulation ~

same pathway / same function

• Samples: similar ~ same type of tissue
• Used for discovery of new subclasses (subtypes) in tumors

Protein/protein complex

Genes

DNA regulatory elements






Van ‘t Veer et al, Nature 415: 530-536 (2002)
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Example: genes (and samples)

ER gene (ESR1) and 
genes co-regulated with 
ER, some of which are 
known ER target genes



Example: samples

Identified 16 groups of patients with acute 
myeloid leukemia

Valk et al, N Engl J Med. 2004 Apr 15;350(16):1617-28. 



Dissimilarity measures
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Dissimilarity measures (2)

• Let                be the dissimilarity between objects r and s
• Formally, dissimilarity measures should satisfy

• If in addition, the triangle inequality holds, the
measure is a metric

• Most often used: Euclidean distance (metric)
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• Example: time series data

Dissimilarity measures (3)

(squared) Euclidean distance
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• Example:
time series data

Dissimilarity measures (3)

Euclidean distance
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• Example: time series data

Dissimilarity measures (3)

Euclidean distance
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Dissimilarity measures (3)

• Example: time series data

Euclidean distance Pearson correlation
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Dissimilarity measures (3)

• Example: time series data

Euclidean distance Pearson correlation
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Clustering techniques

Cluster problem

Hierarchical 
Techniques

Partitional 
Techniques

Graph 
Techniques

Single  
linkage

Complete 
linkage

Average 
linkageK-means Mixture of 

Gaussians
Minimum 

spanning tree

Within 
scatter Density Inter-object(cluster) dissimilarity Object 

dissimilarity



Clustering techniques (2)

Cluster problem

Hierarchical 
Techniques

Partitional 
Techniques

Graph 
Techniques

1 cluster

2 clusters

3 clusters

4 clusters

x x



x5x4x1x3x2

x2

x3
x4

x5
x1

Input: 
• dataset, X: [n x p], or directly:
• dissimilarity matrix, D: [n x n]                         
• linkage type

Output: 
• dendrogram

Hierarchical clustering



Hierarchical clustering (2)

• Algorithm (agglomerative clustering)

• Start: all objects of X in a separate cluster

• Clustering: combine the 2 clusters with 

the shortest distance in dissimilarity matrix, D

• Distance between clusters is based on linkage type:

• single, complete, average, …  

• Repeat until only 1 cluster is left



Hierarchical clustering (3)

 x1 x2 x3 x4 x5 

x1 0.00 1.58 1.76 5.22 4.53 

x2  0.00 0.74 5.50 5.10 

x3   0.00 4.81 4.48 

x4    0.00 1.12 

x5     0.00 

 

Dataset                   Euclidean distance matrix, D
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x1
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x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (4)

• Step 1:
Find the most similar pair of objects: min(i,j){d(i,j)} = d(2,3)

x2 x3
x4

x5
x1
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		0.00

		1.58
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		0.74

		5.50

		5.10



		x3

		

		

		0.00

		4.81

		4.48



		x4

		

		

		

		0.00

		1.12



		x5

		

		

		

		

		0.00







Hierarchical clustering (5)

• Step 2: 
Merge x2 and x3 into a single object, [x2, x3];

0.74

x5x4x3x2x1



Hierarchical clustering (6)

• Step 3: 
Recompute D –
what is the distance between [x2, x3] and the rest?

[x2, x3]
x4

x5
x1



Hierarchical clustering (7)

• Step 3: 
Recompute D –
single linkage: d([x2,x3],x1) = min(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2
x3



Hierarchical clustering (8)

• Step 3: 
Recompute D –
complete linkage: d([x2,x3],x1) = max(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2
x3



Hierarchical clustering (9)

• Step 3: 
Recompute D –
average linkage: d([x2,x3],x1) = mean(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2
x3



x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (10a)

• Step 3:
Recompute D – single linkage:

x2 x3
x4

x5
x1
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		4.53



		x2

		

		0.00
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		5.10



		x3

		

		

		0.00

		4.81

		4.48



		x4

		

		

		

		0.00

		1.12



		x5

		

		

		

		

		0.00







Hierarchical clustering (10b)

• Step 3: 
Recompute D – single linkage:

 x1 [x2,x3] x4 x5 

x1 0.00 1.58 5.22 4.53 

[x2,x3]  0.00 4.81 4.48 

x4   0.00 1.12 

x5    0.00 
 


		

		x1

		[x2,x3]

		x4

		x5



		x1

		0.00

		1.58

		5.22

		4.53



		[x2,x3]

		

		0.00

		4.81

		4.48



		x4

		

		

		0.00

		1.12



		x5

		

		

		

		0.00







Hierarchical clustering (11)

• Repeat, step 1:
Find the most similar pair of objects: min(i,j){d(i,j)} = d(4,5)

 x1 [x2,x3] x4 x5 

x1 0.00 1.58 5.22 4.53 

[x2,x3] 1.58 0.00 4.81 4.48 

x4 5.22 4.81 0.00 1.12 

x5 4.53 4.48 1.12 0.00 
 

x2 x3
x4

x5
x1


		

		x1

		[x2,x3]

		x4

		x5



		x1

		0.00

		1.58

		5.22

		4.53



		[x2,x3]

		1.58

		0.00

		4.81

		4.48



		x4

		5.22

		4.81

		0.00

		1.12



		x5

		4.53

		4.48

		1.12

		0.00







Hierarchical clustering (12)

• Repeat, step 2:
Merge x4 and x5 into a single object, [x4,x5];

1.12

x5x4x3x2x1



Hierarchical clustering (13)

• Repeat, step 3:
Recompute D (single linkage):

 x1 [x2,x3] [x4,x5] 

x1 0.00 1.58 4.53 

[x2,x3]  0.00 4.48 

[x4,x5]   0.00 
 


		

		x1

		[x2,x3]

		[x4,x5]



		x1

		0.00

		1.58

		4.53



		[x2,x3]

		

		0.00

		4.48



		[x4,x5]

		

		

		0.00







Hierarchical clustering (14) 

• Repeat steps 1-3 until a single cluster remains

x5x4x3x2x1

x2 x3
x4

x5

x1



Hierarchical clustering (15) 

x5x4x3x2x1

CLUSTERDissimilarity
matrix

Dendrogram

x2 x
3

x4

x
5

x1

CUT Clustering

CUT

x2 x3
x4

x5

x1
CUT

CUT



Hierarchical clustering (16)

• Hierarchical clustering: repeatedly group closest clusters 

• Important choices:
• Distance measure

between objects:
Euclidean, correlation, 
Hamming, Minkowski, ...

• Linkage
between clusters: 
single, average (centroid), complete

Single
linkage

Centroid
linkage

Complete
linkage

Distance



Linkage and cluster shape

Complete linkage
Single linkage 



Linkage and cluster shape (2)

Complete linkage
Single linkage 



Linkage and cluster shape (3)

Complete linkage 
Single linkage 



Single
linkage

Complete
linkage

Linkage and outliers



Hierarchical clustering examples
Euclidean, complete linkage



Hierarchical clustering examples (2)
Euclidean, complete linkage



Hierarchical clustering examples (3)
Euclidean, single linkage



Hierarchical clustering (17)

• Advantages:
• dendrogram gives overview of all possible clusterings
• linkage type allows to find clusters of varying shapes (convex and 

non-convex)
• different dissimilarity measures can be used

• Disadvantages:
• computationally intensive: 

O(n2) in complexity and memory
• clusterings limited to “hierarchical nestings”



Hierarchical clustering: warning

• Cluster 500 genes, 5 arrays: 

6 clusters

Data were random …

Validation is needed

CUT



10min break
Exercise 4.1-4.7



Sum-of-squares clustering

• Hierarchical:

• Sum-of-squares:

CLUSTERDissimilarity 
matrix Dendrogram ClusteringCUT

CLUSTER
1. Data
2. Criterion
3. # of clusters

Clustering

CUT



Sum-of-squares clustering (2)
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K-means

• Minimize: 

Tr(SW)

Number of clusters (g)1 n
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K-means (2)

• Iterative procedure to search for min(Tr(SW)):
1. choose number of clusters (g)
2. position prototypes (mj, j=1,…,g) randomly
3. assign samples to closest prototype

4. compute mean of samples assigned to
same prototype: new prototype position

Repeat steps 3 and 4 as long as prototypes move



K-means (3)

• Step 1: Choose number of clusters/prototypes
• Step 2: Position prototypes randomly

m1

m3

m2

x2

x3
x4

x5

x1



K-means (4)

• Step 3: Assign samples to closest prototype

x2

x3
x4

x5

x1
m1

m3

m2



K-means (5)

• Step 4: Compute mean of samples assigned to same 
prototype: new prototype positions

m1

m3

m2

m1

m3

m2

x2

x3
x4

x5

x1



K-means (6)

• Repeat as long as prototype positions change: 
• Step 3: Assign samples
• Step 4: Recompute prototype positions

x2
x3

x4

x5

x1

m1
m3

m2



K-means problems

• Clustering depends on initialization

x2 x3 x4

x5

x1

x2 x3 x4

x5
x1

m1

m2

m3

m1

m3

m2

x2 x3
x4

x5

x1

x2 x3 x4

x5

x1



K-means problems (2)

• Algorithm can get 
stuck in local minima

• Solution:
• start from I different

random initialisations
• keep the best clustering

(lowest Tr(SW))
• For high-dimensional data, many restarts can be

necessary (e.g. I = 100)



K-means problems (3)

• Clusters can loose all samples

• Possible solution: 
• remove cluster and continue with g – 1 means 
• alternatively, split largest cluster into two 

or add a random cluster to continue with g means

m1

m3

m2

x2 x3
x4

x5
x1



K-means example 

Iris dataset
(all 4 features)



Advantages/disadvantages: K-means

• Disadvantages:
• Finds only convex clusters (“round shapes”)
• Sensitive to initialization
• Can get stuck in local minima

• Advantages:
• Very simple
• Fast



Recapitulation

• Clustering is way to detect natural groups in data
• What is natural is partly subjective
• We looked at: 

• Hierarchical clustering
• Sum of squares (k-means) clustering

• Hierarchical clustering: 
• dendrogram shows a complete hierarchy of possible clusterings
• computionally intensive

• K-means
• fast
• sensitive to initialization and local minima



Cluster validation

• Cluster validation:
• Checking whether grouping is really present
• Choosing the optimal number of clusters

• A difficult problem – the ground truth is not known
(since we do not know the object labels)!

• Methods:
• Distortion measures:

• Does clustering approximate structure in data?

• Validity measures:
• Davies-Bouldin index

• Fusion graph
• Gap statistic



Distortion measures

• How well does a dendrogram capture structure in data?

 x1 x2 x3 x4 x5 

x1 0 d3 d3 d4 d4 

x2  0 d1 d4 d4 

x3   0 d4 d4 

x4    0 d2 

x5     0 

 

d4

d3
d2
d1

d*

x5x4x3x2x1
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		x4
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Distortion measures (2)

• Measure of distortion: Pearson correlation of d and d*

d*
 x1 x2 x3 x4 x5 

x1 0.00 1.58 1.76 5.22 4.53 

x2  0.00 0.74 5.50 5.10 

x3   0.00 4.81 4.48 

x4    0.00 1.12 

x5     0.00 

 

d

*
*

*

cov( , )( , ) [ 1,1]
var( )var( )

ρ = ∈ −
d dd d

d d

x1 x2 x3 x4 x5

x1 0 d3 d3 d4 d4

x2 0 d1 d4 d4

x3 0 d4 d4

x4 0 d2

x5 0
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		0.00

		4.81

		4.48



		x4

		

		

		

		0.00
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		x5

		

		

		

		

		0.00
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		d4

		d4



		x3
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		d4

		d4



		x4
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		d2



		x5
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Validity measures

• Many are based on within and between group scatter
• The larger the between group scatter and the smaller the within 

group scatter, the better
• Example: Davies-Bouldin
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Davies-Bouldin index

• Assumption: clusters are spherical
• For a good clustering, it should hold that:

• objects are compactly organized within a cluster
• clusters are far apart

• D.L. Davies and D.W. Bouldin, IEEE Transactions 
on Pattern Analysis and Machine Intelligence 1,
pp. 224-227, 1979



Davies-Bouldin index (2)

2
1

1

j
i j

j
i j

j i jn
C

j in
C

σ
∈

∈

= −

=

∑

∑
x

x

x μ

μ x

+ +
+

+ ++

++
++

+

+

+
+ ++

+
++

+ +
+

+
+

+

+ +
++

+

+ +
+

+
+

+

++

+
+

+

+
+

+
+

+
+

+

3σ

1 1( , )σμ
+
++

+

++

+

2 2( , )σμ 3 3( , )σμ

4 4( , )σμ



Davies-Bouldin index (3)
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Davies-Bouldin index (4)
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Davies-Bouldin index (5)

Paired cluster criterion

Worst-case value per cluster

Average worst-case
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Davies-Bouldin index (5)

Dataset

Davies-Bouldin:
3 or 14 clusters

Complete link



Davies-Bouldin index (7)

Davies-Bouldin:

Single link



Fusion graph

• Heuristic approach: fusion level

x5x4x3x2x1

Large jumpCut here: 
2 clusters



Fusion graph (2)
(Euclidean; complete linkage)



Fusion graph (3)
(Euclidean; complete linkage)



Fusion graph (4)
(Euclidean; single linkage)



Fusion graph (5)
(Euclidean; single linkage)
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What is a large jump?

• Compare the fusion graph of the dataset with a
null hypothesis, i.e. a dataset where the clustering
structure has been destroyed

• Different approaches:
• Generate random data 

within bounding box or
convex hull of data;

• Preferable to shuffle data, i.e. 
not generate new data, but 
perturb relationships between measurements                              

• For example, randomly match feature values, i.e.
permute values within columns                                                                                                



The gap statistic

1. Generate dendrogram and extract fusion graph, 
2. Repeat r times

1. Perturb columns
2. Generate dendrogram and fusion graph, 

3. Compute average      and 
standard deviation      of these perturbed graphs

4. Compute the difference between the data fusion graph 
and the average perturbed fusion graph (gap statistic):

5. Look for large values of gap statistic 𝑔𝑔𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑓𝑓𝑗𝑗

*
,j rf

*
jσ

*
jµ

jf

{ }*max ,0 , 1,2,...,gap
j j jg f j gµ= − =



Gap fusion graph (single linkage)
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Gap fusion graph (single linkage) (2)
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DBI vs. fusion graphs
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Recapitulation

• Cluster validation is used for:
• Assessing clustering
• Deciding on the number of clusters

• Methods:
• Distortion measures (dendrogram)
• Davies-Bouldin index
• Fusion graph and gap statistic

• When applying cluster validation, one also needs to define 
what a good cluster is – like in clustering itself.
There’s no free lunch...



Lunch break
Exercise 4.8-4.16



Clustering overview

CLUSTERDissimilarity 
matrix Dendrogram ClusteringCUT

CLUSTER
1. Data
2. Criterion
3. # of clusters

Clustering

CUT
ESTIMATE

1. Data
2. Model,
3. # of clusters

Estimate             
Clustering

1. Hierarchical:

2. K-means:

3. Density-based:

Ψ Ψ*



Density 1 Density 2

Density-based clustering

• Each cluster is described by a probability density function
• Total dataset described by a mixture of density functions
• Clustering = maximizing the mixture fit
• Clusters are based on a posteriori probabilities



Density-based clustering (2)

• Given:

• n independent objects: {x1,...,xn}
• probability density function model:

• Estimate parameters θ = {µ, Σ}
such that model fits data

• Use likelihood as criterion: probability of 
observing the data set, given the model 
(as on Day 1, for kernel width h in Parzen density estimation)

( | ) ~ ( , ) p θ Nx μ Σ



Estimation: maximum likelihood

• General method to estimate parameters θ of probability 
distribution from data D = {x1, ...,xn}. How?

• Maximize joint probability of the data

1

1

( ,..., | ) ( | )n i

n

i

L p x x p xθ θ
=

= =∏

independence
likelihood:

1
log ( , | )i

n

i Q
LL p x Q θ

=

=∑ ∑
log-likelihood:

θθ* 2θ1θ

x( )LL X

same solution since log is 
monotonic



Estimation: maximum likelihood (2)

1( ) (1 )x xP x p p −= −

1 1

1 1

11
1 1( ,..., | ) (1 ) ... (1 )

                                        (1 )

n nx xx x
n n

n n n

P X x X x p p p p p

p p

−−

−

= = = − −

= −

1 1( (1 ) ) 0
n n nd p p

dp

−−
=

Two possible outcomes: x = 0 or x = 1. 
Success (x = 1) occurs with probability p

Bernoulli distribution:

Likelihood:

Maximum at p = n1/n

# of successes



Mixture-of-Gaussians

• Choose Gaussian as component density p(x;θj):                                                                         

• Describe complete data set as a mixture of p(x;θ)’s:

T 11 1( ; ) exp ( ) ( )
22 det( )

j j j jp
j

p θ
π

− = − − − 
 

Σ
Σ

x x μ x μ

1

( ; ) ( ; )
g

j j
j

p π p θ
=

Ψ = ∑x x j 
1

 1
g

j
π

=

=∑with

θj={µj, Σj}



Mixture-of-Gaussians (2)

• Parameters:
• Set number of clusters, g
• Estimate other parameters by maximum-likelihood:

1

( ; ) ( ; )
g

j j
j

p π p θ
=

Ψ = ∑x x j 
1

 1
g

j
π

=

=∑

1...( , ={ , } )j j j gθ =Ψ = Σπ μ

with

mixture coefficients component density parameters

1 1
( ; ) log ( ; )

gn

j i j
i j

LL π p θ
= =

Ψ =∑ ∑X xlog-likelihood:



EM algorithm

• Problem: need to simultaneously estimate two interdependent 
things...
• Cluster membership of each object
• Density parameters of each cluster: 

• Expectation-Maximization algorithm:
• General class of algorithms for this type of problem
• Repeatedly:

• Recalculate cluster membership of each object (E)
• Recalculate density parameters of each cluster (M)

• Introduce a hidden variable z to explicitly indicate mixture components 

, ,j j jπ Σμ

( )j p z jπ = =



Intermezzo: probabilities

:   ( ) ( , )
y

P x P x y=∑sum rule

:   ( , ) ( | ) ( ) ( | ) ( )P x y P x y P y P y x P x= =product rule

1/ 5 (3) (3,  die 1) (3,  die 2) 3 / 20 1/ 20P P P= = + = +

3/ 20 (3,  die 1) (3 | die 1) (die 1) (3 /11)(11/ 20) 3 / 20
                              ( die 1| 3) (3) (3 / 4)(4 / 20) 3 / 20

P P P
P P

= = = =
= = =

die 1
die 2

1     2       3      4        5      6

n = 20



Intermezzo: Bayes’ theorem

( | ) ( ) ( | ) ( )

( | ) ( ) ( | ) ( )( | )   
( ) ( | ) ( )

x

P x y P y P y x P x

P y x P x P y x P xP x y
P y P y x P x

=

= =
∑

Bayes :  

From product rule

(3 | die 1) (die 1) (3/11)(11/20)(die 1|  3) = =3/4 
(3) 4/20

P PP
P

=



EM algorithm (2)

, ,

, ,

joint post

log ( ) log ( ) ( ) log ( )

( , ) ( , ) ( )( ) log ( ) log 
( | ) ( | ) ( )

( , ) ( )( ) log ( ) log 
( ) ( | )

( , ) ( || )

x x z

x z x z

x z x z

KL

p D p x q z p x

p x z p x z q zq z q z
p z x p z x q z

p x z q zq z q z
q z p z x

F p q D q p

= =

 
= = × 

 

   
= +   

   

= +

∑ ∑∑

∑ ∑

∑ ∑

arbitrary distribution     hidden variable

free energy    relative entropy (≥ 0)



EM algorithm: E-step

KLD

( , )F p q
log(P(D | θ))

log(P(D | θ))

( , )F p q

, ,

( , ) ( )log ( ) ( ) log ( ) log 
( ) ( | )x z x z

p x z q zp D q z q z
q z p z x

   
= +   

   
∑ ∑

E-step

E-step: new
post( | ) ( | )q z x p p z x= =

=0 (Gibb’s inequality)



EM algorithm: M-step

KLD

( , )F p q
log(P(D | θ))

log(P(D | θ))

( , )F p q

KLD

( , )F p q

log(P(D | θ))

E-step M-step

,

( , )log ( ) ( | ) log 
( | )x z

p x zp D p z x
p z x

 
=  

 
∑

M-step: maximize log[p(D)] with respect to the parameters 



EM algorithm (3)

E-step: post ( | , )p p z x θ=

Calculate the distribution of the hidden variables given
the data and the model parameters

M-step:
,

arg max ( | ) log ( , | )new

x z
p z x p x z

θ
θ θ= ∑
Maximize the expected (with respect to hidden variables) 
log-likelihood of the complete data.

Iterate to maximize likelihood:

1 1
log ( ; )

gn

j i j
i j

π p θ
= =
∑ ∑ xCompare M-step with MoG log-likelihood:

M-step is easier: log within sum



EM: mixture model

Very simple example of a model with hidden variables: 

2-component mixture model
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1 1 2 2( ) ( | ) ( | )p x p x p xπ θ π θ= +

hidden variable z = 1,2   - component label

( | )( | ) ( | , )( | , )
( | ) ( )

j jp xp z j p x z jp z j x
p x p x

π θθ θθ
θ

= =
= = =E-step:

responsibility

, {1,2}
( | ) log ( , | )

x z
p z x p x z θ

∈
∑M-step: maximize



EM: mixture model (2)
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EM: mixture model (3)
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EM: mixture model (4)

• M-step: Maximization
Maximize the expected complete LL by updating  
• mixture coefficients πj

• cluster means and covariances θj={µj, Σj}, j=1,...,g:

1

1

ˆ
n

ij ii
j n

iji

w
μ

w
=

=

= ∑
∑

x

∑
∑

=

=
−−

= n

i ij

n

i
T

jijiij
j

w

μμw

1

1
))((

Σ
ˆxˆxˆ

1 1

1 1ˆ ( | )n n
j i iji i
π p z j x w

n n= =
= = =∑ ∑ “total membership”

weighted sums



EM: mixture model (5)
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EM: mixture model (6)

M-step: 3
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EM: mixture model (7)

M-step: 3 M-step: 5    
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EM: mixture model (8)

M-step: 3 M-step: 5                M-step: 9
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• ‘Gauss’:

• ‘Aligned’:

• ‘Circular’:
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Mixture-of-Gaussians (3)



EM: mixture model (9)

• If...
• all clusters are spherical
• the variance of each cluster is infinitely small

then the EM algorithm simplifies to the K-means algorithm
(samples are always assigned to the closest cluster!)

2

2

2

0 0
0 0 , 0
0 0

ε
ε ε

ε

 
  → 
  

Σ =



EM algorithm (4)

• Disadvantages:
• can get stuck in local minima
• depends on initial conditions
• convergence can be slow
• problems with covariance estimates:

if too few samples are members of a cluster,
there will not be enough data to base estimate on

• Advantages:
• simple to implement



Cluster validation: log-likelihood

• For probabilistic models (e.g. mixture-of-Gaussians):
• Log-likelihood will probably not increase anymore 

when too many clusters are used
• Look for “plateau” in log-likelihood graph 

LL

g
-2 0 2 4 6 8

-2
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8

0 5 10
2
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8

10

1 2 3 4 6 7 8 9

• Problem: when g = n, the log-likelihood is infinite;
Solution: information criteria (Day 5)



Recapitulation

• Density based clustering:
• Assume a probability density function per cluster
• Train using the EM algorithm

• Example:
• Mixture of Gaussians
• But many probability densities fit in the same framework

principal component analysis, factor analysis, …

• EM algorithm:
• problem decomposition: simple to implement
• sensitive to local minima



15min break
Exercise 4.17



Hidden Markov models

• Regular expressions & weight matrices

• Dependencies & Markov chains

• Hidden Markov models

• HMMs & EM

• Profile HMMs

• Genefinding



Application: genefinding

generalized HMM



Application: transmembrane proteins

HMM



Application: protein domains

Profile HMM



Outline

• Regular expressions & weight matrices

• Dependencies & Markov chains

• Hidden Markov models

• HMMs & EM

• Profile HMMs

• Genefinding



Sites

A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

Site: short sequence containing

some signal

Examples: intron splice sites, transcription start site, 
transcription factor binding sites 

Goals:  - give a mathematical description (model) of a site

- find possible sites in a long sequence



Consensus sequence

A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

 M   A/C 
R   A/G 
W  A/T 
S   C/G 
Y   C/T 
K   G/T 
B   C/G/T 
D   A/G/T 
H   A/C/T  
V  A/C/G 
N   A/C/G/T 

A C A A T C

W  S  M  A  K  S 

majority vote:

from IUPAC code:


		M 


		A/C



		R 


		A/G



		W


		A/T



		S 


		C/G



		Y 


		C/T



		K 


		G/T



		B 


		C/G/T



		D 


		A/G/T



		H 


		A/C/T




		V


		A/C/G



		N 


		A/C/G/T







Regular expressions

A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

[ab] : union {a,b}
ab   : concatenation {ab}
ε : empty string
a*   : Kleene star {ε,a,aa,aaa, …}

[AT][CG][AC]A[TG][GC] 

A C A A T C  , but also  T G C A G G  

See also  http://prosite.expasy.org



Weight matrices
A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

       1 2 3 4 5 6

4 0 4 5 0 0
0 4 1 0 0 4

 
0 1 0 0 1 1
1 0 0 0 4 0

A
C
G
T

 
 
 
 
 
 

                  1   2    3    4   5    6

0.8 0.0 0.8 1.0 0.0 0.0
0.0 0.8 0.2 0.0 0.0 0.8

 
0.0 0.2 0.0 0.0 0.2 0.2
0.2 0.0 0.0 0.0 0.8 0.0

A
C

W
G
T

 
 
 =
 
 
 

A

C

G

T

counts

probabilities

aka position specific score matrix



Weight matrices (2)

         1   2    3    4   5    6

0.8 0.0 0.8 1.0 0.0 0.0
0.0 0.8 0.2 0.0 0.0 0.8

 
0.0 0.2 0.0 0.0 0.2 0.2
0.2 0.0 0.0 0.0 0.8 0.0

A
C
G
T

 
 
 
 
 
 

1 2 ,
1 1

( ... | ) ( | )
i

N N

N x i i i
i i

P x x x W w P x W
= =

= =∏ ∏

1 2 3 4 5 6( ) ( )

                         0.8 0.8 0.8 1 0.8 0.8 0.33

P W P P P P P P=

= × × × × × =

ACAATC| A) (C) (A) (A) (T) (C

1 2... Nx x x x=Sequence: 
independence



Weight matrices (3)

1 2 ,
1 1

( ... | ) ( | )
i

N N

N x i i i
i i

P x x x W w P x W
= =

= =∏ ∏

1 2... Nx x x x=Sequence: 
independence

1 2 3 4 5 6( ) ( )

                         0 0.8 0.8 1 0.8 0.8 0

P W P P P P P P=

= × × × × × =

CCAATC| C) (C) (A) (A) (T) (C

         1   2    3    4   5    6

0.8 0.0 0.8 1.0 0.0 0.0
0.0 0.8 0.2 0.0 0.0 0.8

 
0.0 0.2 0.0 0.0 0.2 0.2
0.2 0.0 0.0 0.0 0.8 0.0

A
C
G
T

 
 
 
 
 
 



Weight matrices: pseudocounts

A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

5 1 5 6 1 1
1 5 2 1 1 5

 
1 2 1 1 2 2
2 1 1 1 5 1

A
C
G
T

 
 
 
 
 
 

0.56 0.11 0.56 0.67 0.11 0.11
0.11 0.56 0.22 0.11 0.11 0.56

'  
0.11 0.22 0.11 0.11 0.22 0.22
0.22 0.11 0.11 0.11 0.56 0.11

A
C

W
G
T

 
 
 =
 
 
 

4
1 2 3 4 5 6( ') ( ) 0.11 0.56 0.67 0.0072P W P P P P P P= = × × =CCAATC| C) (C) (A) (A) (T) (C

5
1 2 3 4 5 6( ') ( ) 0.56 0.67 0.037P W P P P P P P= = × =ACAATC| A) (C) (A) (A) (T) (C

# 1( )
(# 1)

i

xP x
i
+

=
+∑

pseudocount (Laplace)



Bayes’ rule: odds

( | class ) ( | class ) 1    log 0
( | class ) ( | class )

P x A P x A
P x B P x B

 
> ⇔ > 

 

class A: sites        class B: non-sites

( | class ) ( ) ( | class ) ( ) is assigned to class     
( ) ( )

P x A P A P x B P Bx A
P x P x

⇔ >

( | class ) ( )                                           
( | class ) ( )

P x A P B
P x B P A

⇔ > priors

equal priors:

odds log-odds

unequal priors, e.g.: ( ) 0.7log log 1.22
( ) 0.3

P B
P A

= =



Weight matrices: odds

1 2 1

1 2

1

( | )
( ... | )
( ... | ) ( | )

N

i i
N i

N
N

i
i

P x W
P x x x W
P x x x R P x R

=

=

=
∏

∏

1 2 1
2 2 2

11 2

1

( | )
( ... | ) ( | )log =log log
( ... | ) ( | )( | )

N

i i N
N i i i

N
iN i

i
i

P x W
P x x x W P x W
P x x x R P x RP x R

=

=

=

 
      =   
    
 
 

∏
∑

∏

W: weight matrix, R: background model (independent of position)

log-odds



Weight matrices: log-odds

    1.16   -1.17    1.16    1.42   -1.17   -1.17

   -1.17    1.16   -0.17   -1.17   -1.17    1.16
 

   -1.17   -0.17   -1.17   -1.17   -0.17   -0.17

   -0.17   -1.17   -1.17   -1.17    1.16   -1.17

A
C
G
T









 
 
 
 



R  uniform:   P(A|R) = P(C|R) = P(G|R) = P(T|R) = 0.25

log-odds( ) 1.16 1.16 1.16 1.42 1.16 1.16 7.22

log-odds( ) -0.17 - 0.17 - 0.17 1.42 - 0.17 - 0.17 0.57

log-odds( ) 6 1.17 7.02

= + + + + + =

= + =

= ×− = −

ACAATC

TGCAGG

CTTGAT

log(0.56 / 0.25)



Outline

• Regular expressions & weight matrices

• Dependencies & Markov chains

• Hidden Markov models

• HMMs & EM

• Profile HMMs

• Genefinding



Dependencies: language

Probability (in English) of “o” given that previous letter is  “a”  



Dependencies: biology

M. jannaschii

:  probability of nucleotide 
: probability of dinucleotide 

independent  1

i

ij

ij
ij

i j

ij

P i
P ij

P
s

PP
s

=

⇔ =
                                     

1.13 0.73 1.10 0.94
1.03 1.37 0.32 1.11
1.05 1.12 1.39 0.71
0.83 1.05 1.13 1.14

A C G T
A
C

S
G
T

 
 
 =
 
 
 



Markov chains

1 1 1 1 1 2 1 1 1 1 1
2

( , ,..., ) ( | ,..., ) ( | ,..., )... ( ) ( | ,..., ) ( )
N

N N N N N N t t
t

P q q q P q q q P q q q P q P q q q P q− − − − −
=

= =∏

1 2... Nq q q q=Sequence: 

Only dependent on previous symbol:

1 1 1 1
2

( , ,..., ) ( | ) ( )
N

N N t t
t

P q q q P q q P q− −
=

=∏ First-order Markov chain

state: value of qj

transition probability: 1( | )t tP q j q i−= =



Markov chains: language

Zero-order approximation (symbols independent but with
frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL.

First-order Markov (transition probabilities as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE.

Second-order Markov (transition probabilities as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE.

C.E. Shannon (1948)



Markov chains: language

Zero-order word approximation. Words are chosen independently but 
with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN 
DIFFERENT NATURAL HERE HE THE A IN CAME THE TOOF TO 
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE 
THESE.

First-order Markov (on words). Word transition probabilities are as in 
English.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER 
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER 
METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD 
THE PROBLEM FOR AN UNEXPECTED.

C.E. Shannon (1948)



Markov chain: graphical representation

                      

0.2 0.8
 

0.7 0.3

x y

x
A

y
 

=  
 

:ija

Two states: x and y

Matrix Graph: arrows for transition probability

transition probability from i  to j

Generative model (example):   xyyxyxyyxxyxyxx...   

( ) ( ) ( | ) ( | ) ( | ) ( | ) ( ) 0.8 0.3 0.7 0.8P xyyxy P x P y x P y y P x y P y x P x= = × × × ×



Markov chain: graphical representation (2)

Two states: x and y

Graph

Add begin state q0

and end state qN +1 to model end 

of sequence

1 1 1
1

( , ,..., ) ( | )
N

N N t t
t

P q q q P q q− −
=

=∏



Markov chain: estimation

:ija transition probability from i  to j

Estimation: simply by counting 

Begin state:

1

1

#  of  such that ,
#  of  such that 

t t
ij

t

t q i q ja
t q i

−

−

= =
=

=

0
#  of  such that t

i
t q ia

N
=

=



Markov chains: log-odds

1

1

1
1 1

1 1
1

1

,

1 ,

( | )
( | )( | class )log log log

( | class ) ( | )( | )

                                log t t

t t

N

A t t N
t A t t
N

t B t t
B t t

t

AN
x x
B

t x x

P x x
P x xP x A

P x B P x xP x x

a
a

−

−

−
= −

= −
−

=

=

 
      = =        
 
 

 
=   

 

∏
∑

∏

∑

1 2... Nx x x x=Sequence:

A,B : Markov chains for class A and B, respectively



- Mononucleotide repeats (due to polymerase slippage) are 
more frequent than predicted by Markov chain 

Reason: probability of d consecutive i ’s is                     
(geometric distribution)    

- Codon (position) biases are not taken into account

Markov chains: limitations

For biological sequences:

1( ) (1 )d
ii iia a− −



Outline

• Regular expressions & weight matrices

• Dependencies & Markov chains

• Hidden Markov models

• HMMs & EM

• Profile HMMs

• Genefinding



Multiple alignment

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

regular expression:  [AT][CG][AC][ACGT]*A[GT][CG] 

Sequence ensemble as before but now with some insertions 

and gaps

insertions and gaps



A different representation

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

mix of weight matrices and Markov chains

boxes: states

4: insert state

1,2,3,5,6,7: match state



Probability of consensus sequence

( ) 0.8 1 0.8 1 0.8 0.6 0.4 0.6 1 1 0.8 1 0.8 0.047P = × × × × × × × × × × × × =ACACATC

Markov chain: one state = one symbol

Here: C can be generated by states 2,3,4 or 7 – states are hidden



Hidden Markov models

Alphabet K of (observed) symbols

States: Q = {0,1,2, …, S}       0: begin state (non-emitting)

transition probability:

emission probability:

probability of emitting symbol x in state i 

1( | )            0 ,ij t ta P q j q i i j S−= = = ≤ ≤

( ) ( | )    ,  1ib x P x i x K i S= ∈ ≤ ≤



Hidden Markov models (2)

Alphabet of 4 symbols {A,C,G,T}

Q = {1,2, …, 7}    

2 ( )b C

23a

           1  2    3   4    5    6  7

1 1.0
2 1.0
3 0.6 0.4

 4 0.4 0.6
5 1.0
6 1.0
7

A

 
 
 
 
 

=  
 
 
 
 
 

all transition probabilities = 1: weight matrix



HMM: three problems

Evaluation: probability of an observed sequence, given the 

model, e.g., to calculate odds.

Decoding: optimal state sequence for an observed sequence 

Estimation:  of transition and emission probabilities from

a given set of sequences



State sequence: 

HMM evaluation: known state sequence

0 1 2... NQ q q q q=

1 2... Nx x x x=Observed sequence: 

( , ) ( | ) ( )P x Q P x Q P Q=
1

1

( ) ( | )
N

t t
t

P Q P q q −
=

=∏

1 1 1 2 1 1
1

( | ) ( | ,..., , ) ( | ,..., , )... ( | ) ( | )
N

N N N N t t
t

P x Q P x x x Q P x x x Q P x Q P x q− − −
=

= =∏

Markov

11 ,
1 1 1 1

( , ) ( | ) ( | ) ( )
t t t

N N N N

t t t t q q q t
t t t t

P x Q P q q P x q a b x
−−

= = = =

= =∏ ∏ ∏ ∏

( ) 0.8 1 0.8 1 0.8 0.6 0.4 0.6 1 1 0.8 1 0.8 0.047P = × × × × × × × × × × × × =ACACATC



HMM evaluation: graphical representation on a 
trellis

11 ,
1 1 1 1

( , ) ( | ) ( | ) ( )
t t t

N N N N

t t t t q q q t
t t t t

P x Q P q q P x q a b x
−−

= = = =

= =∏ ∏ ∏ ∏

state sequence = path 

weights:

(CATA,0 2 1 3 2)P − − − −



HMM evaluation: forward algorithm

( ) ( , )
Q

P x P x Q=∑State sequence unknown:

Sum over all paths through trellis: ~ S N state sequences!

Smarter: 
0 0

( ) ( , ) ( , )
S S

N
i i

P x P x q i N iα
= =

= = =∑ ∑

1 2( , ) ( ... , )t tt i P x x x q iα = = , that is, probability of having

observed               and being in state i at step t

forward variable

1 2... tx x x



HMM evaluation: forward algorithm (2) 

initialization: (0,0) 1 ,  (0, ) 0 jα α= = 1 j≤

recursion      : ( , )  ( 1, ) ( )ji i t
j

t i t j a b xα α= −∑ 1 ,0 ,t N i j S≤ ≤ ≤ ≤

0
( ) ( , )

S

i
P x N iα

=

=∑

3

2 2 2
0

(2, 2) (1, ) ( )j
j

j a b xα α
=

=∑ observation

st
at

e

1 2( , ) ( ... , )t tt i P x x x q iα = =

Complexity: S×N



Forward algorithm: proof

1.. 1.. 1

1.. 1 1 1.. 1 1

( , ) ( , ) ( , , )

         ( , ) ( , | , )

t t t t t
j

t t t t t t
j

t i P x q i P x q j q i

P x q j P x q i x q j

α −

− − − −

= = = = =

= = = =

∑

∑

1.. 1 2...t tx x x x=

.

Observed symbol and the state depend only on previous state:

1.. 1 1 1

1

          ( , ) ( , | )

          ( 1, ) ( | ) ( | )

         ( 1, ) ( )

t t t t t
j

t t t t
j

ji i t
j

P x q j P x q i q j

t j P q i q j P x q i

t j a b x

α

α

− − −

−

= = = =

= − = = =

= −

∑

∑

∑

1 ,0 ,t N i j S≤ ≤ ≤ ≤

recursion



HMM: three problems

Evaluation: probability of an observed sequence, given the 

model, e.g., to calculate odds.

Decoding: optimal state sequence for an observed sequence 

Estimation:  of transition and emission probabilities from

a given set of sequences



probability of having observed              along most probable 
path ending in state i at step t

HMM decoding: Viterbi algorithm

Decoding: find state sequence which best explains observed 

sequence. 

Viterbi:   best = most probable

( , )( ) max ( | ) max max ( , )
( )Q Q Q

P x QV x P Q x P x Q
P x

= = =

[ ]
0.. 1 0.. 1( ) max ( , ) max max ( , , ) max ( , )
NQ i Q N N iV x P x Q P x Q q i v N i
− − = = = = 

Viterbi variable

[ ]
0.. 1 1.. 0.. 1( , ) max ( , , )

tQ t t tv t i P x Q q i
− −= =

1 2... tx x x



HMM decoding: Viterbi algorithm (2)

initialization  : (0,0) 1 ,  (0, ) 0 v v j= = 1 j≤

recursion       : ( , ) max  [ ( 1, ) ] ( )j ji i tv t i v t j a b x= − 1 ,0 ,t N i j S≤ ≤ ≤ ≤

( , ) argmax  [ ( 1, ) ]j jip t i v t j a= −

end                : ( ) max  [ ( , )]iV x v N i=

* arg max [ ( , )]N iq v N i=

backtracking : 
* *

1( 1, )t tq p t q += + 0 1t N≤ ≤ −

[ ]
0.. 1 1.. 0.. 1( , ) max ( , , )

tQ t t tv t i P x Q q i
− −= =



Dishonest casino: Viterbi

Casino switches between a fair (F) die and a loaded (L) die
      1    2     3    4    5   6

1 1 1 1 1 1:               
6 6 6 6 6 6
1 1 1 1 1 1:       

10 10 10 10 10 2

F

L

0 0 0.5 0.5
0 0.95 0.05
0 0.1 0.9

A F
L

 
 =  
 
 

transition probabilities

emission probabilities

Viterbi

v(2,L) = max[v(1,F)aFLbL(1) , v(1,L)aLLbL(1)]
= max[(0.083×0.05×0.1 , 0.05×0.9×0.1] = 0.0045

observations: 3-1-4-6-6-6



Dishonest casino: Viterbi (2)

Casino switches between a fair (F) die and a loaded (L) die
      1    2     3    4    5   6

1 1 1 1 1 1:               
6 6 6 6 6 6
1 1 1 1 1 1:       

10 10 10 10 10 2

F

L

0 0 0.5 0.5
0 0.95 0.05
0 0.1 0.9

A F
L

 
 =  
 
 

transition probabilities

emission probabilities

Backtracking

Optimal state sequence: 0-L-L-L-L-L-L
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HMM: three problems

Evaluation: probability of an observed sequence, given the 

model, e.g., to calculate odds

Decoding: optimal state sequence for an observed sequence 

Estimation:  of transition and emission probabilities from

a given set of sequences



HMM: estimation

1

1

1

( ,..., | ) ( | )

                       ( , | )

n
n i

i
n

i

Qi

P x x P x

P x Q

θ θ

θ

=

=

=

=

∏

∑∏

Sequences: {x1, ...,xn}

Likelihood:

Log-likelihood:

state sequence

1
log ( , | )

n
i

i Q
P x Q θ

=
∑ ∑

same solution since log is 
monotonic

Maximization of this log-likelihood is difficult because of sum 
over hidden (state) variables



HMM estimation: EM

1. If we know the state sequence, parameter estimation is 
easy: just counting as in Markov chains

2. Can estimate state path using the forward-backward 
algorithm (not shown)

3. EM: estimate (probability of) states, then estimate 
parameters, re-estimate the states etc. 

This maximizes the likelihood (see MoG)



HMM estimation: remarks

See references in lecture notes for EM for HMM (aka 
Baum-Welch algorithm) in full detail

EM converges only to a local maximum of the likelihood. 
Good initial values are important!

How to choose the structure of an HMM? Black magic …
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Profile HMMs

We saw that a weight matrix can be represented as  a very

simple HMM

transition probabilities = 1

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C



Profile HMMs: insertions A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

Model insertion(s) between position j and j+1

insert state



Profile HMMs: deletions A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

Many transitions = many parameters, but limited data

Solution: introduce silent (=non-emitting) delete states

delete states



Profile HMMs (2) A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T CPut everything together:

Applications:

- searching for remote homologs (Forward)

- align a protein to a protein family (Viterbi)

http://pfam.xfam.org/
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Genefinding

Input: DNA string S∈{A,C,G,T}*

Output: annotation of string S showing for each nucleotide 
whether it is coding or non-coding

AAAGCATGCATTTAACGAGTGCATCAGGACTCCATACGTAATGCCG

genefinder

AAAGC ATG CAT TTA ACG A GT GCATC AG GA CTC CAT ACG TAA TGCCG



Genefinding: eukaryotes

splice sites:  donor        acceptor

More complex than for prokaryotes: lower coding density 
(<25% instead of >80%), splicing



Genefinding: many signals

Possible signals: splice sites, promoter, codon bias, polyA 
site, dinucleotide usage ...

Possible models: everything you’ve seen before ...

How to integrate all these models in one consistent model 
that can be used for genefinding?

Solution: HMMs again!

Building blocks (=states): weight matrices, (inhomogeneous, 
higher-order, interpolated) Markov chains, ...



Genefinding: HMM

Genes have a certain structure/grammar

…  exon – intron – exon – intron – exon …

Regular expression of gene structure:

promoter 5’UTR exon (intron exon)* 3’UTR polyA 

HMM

Genefinding = annotation with states: Viterbi



Length distributions

Standard HMM: length ~ geometric  distribution     

Generalized HMM: states emit sequences + length



Genefinding: GenScan

frame-aware

both strands

GenScan: generalized HMM

Exons: separate states for initial,

terminal, single and internal exons



Recapitulation

• Hidden Markov models: 
flexible models for modeling sequences
• Evaluation: forward algorithm
• Decoding: Viterbi
• Estimation: EM

• Applications:
• Genefinding
• Modeling protein families
• Segmentation of array CGH data
• SNP imputation in GWAS
• Error correction in nanopore sequencing data



10min break
Exercise 4.18-4.20
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