
 ©2022 Perry D Moerland

 1

Chapter 1. Probabilistic Models for Biological Sequences

Ever since the discovery of the genetic code, linguistic metaphors have been used when describing
biological sequences. Who has not heard the human genome being referred to as the ‘book of life’?
This chapter shows that these are not mere metaphors used for their evocative power but that the
relation really goes deeper. Techniques from the fields of linguistics and formal language theory can
be applied and adapted for the description and analysis of biological sequences.17
As a first example, consider the problem of describing a common pattern in an ensemble of biological
sequences. Here, you can think of signals for splice sites, common regulatory elements, or conserved
domains in protein families. A simple approach to such a problem would be to build a string-based
description of a pattern. Formal language theory has come up with very efficient algorithms for
searching for such patterns. However, when applied to biological sequences these methods often fail.
This is because biological ‘spelling’ is far sloppier than English spelling; e.g., proteins with the same
function from two related organisms can have less than 30% identical amino acids.13 Sloppiness is
caused by the random processes inherent in biological evolution. To deal with this uncertainty typical
for biological sequences, probabilistic methods are needed. In this chapter, we gradually go from a
simple deterministic description using a consensus sequence to a complex probabilistic model in terms
of so-called hidden Markov models. Along the way, you will also learn something about the
algorithms behind these models and a wide range of applications will be shown.
As a second example, we will see that hidden Markov models also capture certain grammatical
features that are essential for successful (eukaryotic) gene finding algorithms. Most of the basic
concepts of probability theory, information theory, and statistical inference used in the current chapter
are summarized in the Appendix (section 1.9).

Note: Many of the examples deal with nucleotide sequences and, therefore, an alphabet of four
symbols. All models can just as well be applied to amino acid sequences or sequences over other
alphabets.

1.1. Consensus and Regular Expressions

A site is a short sequence containing some signal, often being recognized by an enzyme. Examples of
nucleotide sequence sites are intron splice sites, transcription start sites, and transcription factor
binding sites. Instances of a single site are characterized by slight variations on most sequence
positions. How could we give a compact description of such a site that retains most information?

A simple description of a site in an ensemble of sequences is given by a
consensus sequence. Consider the following five related nucleotide
sequences:

A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

Table 1. Consensus symbols
for nucleotides (IUPAC).

The consensus sequence is, in general, found by choosing at each sequence position the most
prominent nucleotide (or combination of nucleotides, Table 1). In our example, the consensus
sequence obtained by a majority vote for each sequence position is

M A/C
R A/G
W A/T
S C/G
Y C/T
K G/T
B C/G/T
D A/G/T
H A/C/T
V A/C/G
N A/C/G/T

 ©2022 Perry D Moerland

 2

 A C A A T C.

Using the IUPAC code, the consensus sequence could also have been described as

 W S M A K S,

although there is no consensus on how to do this: on each sequence position, there clearly is one
dominant nucleotide and the other nucleotide might be an exception that one does not want to include
in the consensus sequence. The main disadvantage of a consensus sequence is that it only gives the
description of an average site and is rather limited in capturing its true specificities.

Related to consensus sequences are descriptions using regular expressions. A regular expression for
this set of short sequences is [AT][CG][AC]A[TG][GC]. This succinctly describes that in all
sequences the first position is either A or T, the second C or G, etc.

A problem with a description of a set of sequences in these terms is that it does not distinguish
between a highly unlikely sequence such as

 T G C A G G

and the consensus sequence obtained by majority vote.

1.2. Weight Matrices

A more complete description of a site in a set of sequences can be given by counting the number of
times a particular nucleotide occurs at a certain position and summarizing this in a weight matrix. For
our example, this leads to

 1 2 3 4 5 6

4 0 4 5 0 0
0 4 1 0 0 4

0 1 0 0 1 1
1 0 0 0 4 0

A
C
G
T

 
 
 
 
 
 

,

and the more common formulation in terms of (estimated) probabilities:

 1 2 3 4 5 6

0.8 0.0 0.8 1.0 0.0 0.0
0.0 0.8 0.2 0.0 0.0 0.8

0.0 0.2 0.0 0.0 0.2 0.2
0.2 0.0 0.0 0.0 0.8 0.0

A
C

W
G
T

 
 
 =
 
 
 

,

where each entry ijw gives the (estimated) probability of finding nucleotide i at position j, also written

as ()jP i . For a set of sequences of length N consisting of symbols from an alphabet of size M, the
weight matrix is a M N× matrix, the columns of which sum to one. A weight matrix is the correct
model if we assume that sequence positions are independent (1.17). The probability of sequence

1 2... Nx x x x= given weight matrix W is then:

 ©2022 Perry D Moerland

 3

 1 2 ,
1 1

(... |) (|)
i

N N

N x i i i
i i

P x x x W w P x W
= =

= =∏ ∏ . (1.1)

In our example, the probability of the consensus sequence is

1 2 3 4 5 6() () 0.8 0.8 0.8 1 0.8 0.8 0.33P W P P P P P P= = × × × × × =ACAATC| A) (C) (A) (A) (T) (C .

It is the largest probability of any sequence of length six, because each position contains the most
probable residue. The probability of the second sequence described above is

1 2 3 4 5 6() () 0.2 0.2 0.2 1 0.2 0.2 0.00032P W P P P P P P= = × × × × × =TGCAGG| T) (G) (C) (A) (G) (G

which is indeed highly unlikely. Let us consider another sequence that closely resembles the
consensus sequence:

1 2 3 4 5 6() () 0 0.8 0.8 1 0.8 0.8 0P W P P P P P P= = × × × × × =CCAATC| C) (C) (A) (A) (T) (C .

This probability equals zero since the cytosine (C) observed on the first position does not occur in our
tiny set of sequences. The outcome is rather a side effect though of the fact that we do not have enough
data. A common solution is to add some fake counts (pseudocounts) to the observed counts. The
simplest alternative is to add one to each observed number of counts. The weight matrix then
becomes:

5 1 5 6 1 1
1 5 2 1 1 5

1 2 1 1 2 2
2 1 1 1 5 1

A
C
G
T

 
 
 
 
 
 

0.56 0.11 0.56 0.67 0.11 0.11
0.11 0.56 0.22 0.11 0.11 0.56

'
0.11 0.22 0.11 0.11 0.22 0.22
0.22 0.11 0.11 0.11 0.56 0.11

A
C

W
G
T

 
 
 =
 
 
 

.

The estimated probabilities of the three sequences described above can consequently be updated:

 5

1 2 3 4 5 6(') () 0.56 0.67 0.037P W P P P P P P= = × =ACAATC| A) (C) (A) (A) (T) (C

 5
1 2 3 4 5 6(') () 0.22 0.67 0.00034P W P P P P P P= = × =TGCAGG| T) (G) (C) (A) (G) (G

 4
1 2 3 4 5 6(') () 0.11 0.56 0.67 0.0072P W P P P P P P= = × × =CCAATC| C) (C) (A) (A) (T) (C .

These outcomes correspond well to what we would expect given our small ensemble of sequences.

Suppose we want to test whether a new sequence x is more likely to be a site corresponding to weight
matrix W or a nonsite from the background model (also called null model) R. We assume the
background model to be independent of specific positions, that is, (|)jP i R does not depend on j and
is, therefore, denoted as (|)P i R . The odds ratio, well-known to those placing bets, compares the two
models for sequence x:

 1 2 1

1 2

1

(|)
(... |)
(... |) (|)

N

i i
N i

N
N

i
i

P x W
P x x x W
P x x x R P x R

=

=

=
∏

∏
.

 ©2022 Perry D Moerland

 4

An odds ratio of at least onea means that the sequence is more likely to be a site as described by model
W, whereas an odds ratio of less than one pleads in favour of the background model.

For numerical reasons and to enforce symmetry between denominator and numerator, it is more
convenient to calculate the log-odds ratio:

 1 2 1
2 2 2

11 2

1

(|)
(... |) (|)log =log log
(... |) (|)(|)

N

i i N
N i i i

N
iN i

i
i

P x W
P x x x W P x W
P x x x R P x RP x R

=

=

=

 
      =   
    
 
 

∏
∑

∏
, (1.2)

which is the sum of the individual log-likelihood ratios. When a sequence fits the model W well, the
log-odds ratio is positive. When it fits the background model better, the score is negative. The higher
the score for a candidate site, the more likely it is to be real site.

To test for sites it is convenient to transform a weight matrix into a position-specific scoring matrix
(PSSM), the entries of which are the log-likelihood ratios. This is done by dividing each element of
the weight matrix by the probability according to the background model and taking the logarithm.
If we assume that under the background model all nucleotides are equally likely (P(A|R) = P(C|R) =
P(G|R) = P(T|R) = 0.25), the scoring matrix corresponding to W’ is

 1.16 -1.17 1.16 1.42 -1.17 -1.17

 -1.17 1.16 -0.17 -1.17 -1.17 1.16

 -1.17 -0.17 -1.17 -1.17 -0.17 -0.17

 -0.17 -1.17 -1.17 -1.17 1.16 -1.17

A
C
G
T









 
 
 
 



,

where, e.g., the first entry equals log2(0.56/0.25)=1.16. The log-odds ratio (1.2) can now be used to
score the three sequences used above by adding the corresponding entries of the scoring matrix

log-odds() 1.16 1.16 1.16 1.42 1.16 1.16 7.22

log-odds() -0.17 - 0.17 - 0.17 1.42 - 0.17 - 0.17 0.57

log-odds() -1.17 1.16 1.16 1.42 1.16 1.16 4.89

= + + + + + =

= + =

= + + + + + =

ACAATC

TGCAGG

CCAATC

.

The log-odds score accentuates the difference between the unlikely second sequence and the other two
sequences, although also the second sequence has a positive score. This illustrates the importance of
choosing a suitable threshold for deciding whether a sequence is a site or not. An example of an even
more unlikely sequence is

 log-odds() 6 1.17 7.02= ×− = −CTTGAT

which indeed has a negative score, as one would expect.

1.2.1. Sequence logos

A visual representation of a weight matrix can be useful for the interpretation of a large set of
sequences. A sequence logo displays the degree of consensus at each position as the total height of a

a A different cutoff can also be chosen, see the discussion of Bayes’ decision rule in section 1.3.3.

 ©2022 Perry D Moerland

 5

stack of nucleotides, along with the frequencies of nucleotides at that position, as the relative heights
of letters in the stack (Figure 1). The total height of the stack at position j is calculated as follows:b

 2
{ , , , }

1() 2 () log
()j

i A C G T j

H j P i
P i∈

= − ∑ . (1.3)

This function has a maximum of two if only one symbol occurs at position j (full consensus) and a
minimum of zero if all four nucleotides are equally likely (no consensus). Formally, this is the relative
entropy (1.23) of P and the uniform background distribution at position j. The height of each
nucleotide symbol in a stack is proportional to the relative entropy and the frequency of the nucleotide
given by () ()jH j P i× . Symbols are stacked in order of increasing frequency starting from the
bottom.

As an example, we compute the relative entropy at the first position in weight matrix W:c

 2 2 2
1 1 1(1) 2 0.8 log 2 0 log 0.2 log 1.28

0.8 0 0.2
H      = − − × − =     

     
.

The first position is indeed relatively well conserved with an A in four sequences and a T in the
remaining sequence. Figure 1 depicts the sequence logo corresponding to weight matrix W and an
alternative representation called a Hinton diagram.5

m

Figure 1. Left: Sequence logod of weight matrix W. One can easily read of the consensus sequence
ACAATC. Right: Hinton diagram of weight matrix W. The area of each square is proportional to the
value in the weight matrix.

1.3. Dependencies and Markov Chains

When using weight matrices one assumes that a symbol in any position is independent of symbols in
any other position. In the English language, for example, this is not the case. An “a” followed by an

b You might want to look up the definition of (relative) entropy in Section 1.9.3 before reading on.
c 20 log (1/ 0) 0× = .
d Made with http://weblogo.berkeley.edu/

A

C

G

T

 ©2022 Perry D Moerland

 6

“o” is far less common than would be expected from the frequent occurrence of each of them
separately. Figure 2 gives a more general picture of this phenomenon.

Figure 2. Conditional probability distributions: Hinton diagrams (a) P(y|x): Each row shows the
conditional distribution of the second letter, y, given the first letter, x. (b) P(x|y): Each column shows
the conditional distribution of the first letter, x, given the second letter, y. Text for estimating the
estimating the probabilities was The Frequently Asked Questions Manual for Linux [From Ref. 14].
If variables x and y were independent, all conditional distributions P(y|x) would be identical functions
of y, regardless of x.

Genome sequences also contain many such dependencies. An example is the distribution of CG
dinucleotides along the human genome: CG-pairs are rarer in most parts of the genome than would be
expected from the probabilities of C and G independently. Dependencies are not limited to
neighbouring nucleotides but can also be longer-ranging.

1.3.1. Dinucleotide frequencies

How much dependence is there between dinucleotides (that is, adjacent nucleotides) in a DNA
sequence? Since there are four nucleotides, there are 16 possible pairs of nucleotides. Let Pij be the
frequency of the nucleotide i immediately followed by the nucleotide j. To calculate the frequencies of
each such pair (i,j) in a sequence, one counts the total number of observed occurrences of i followed
immediately by j and then divide by the total number of pairs, which is the length of the sequence
minus one. In addition let Pi be the frequency of nucleotide i in the single nucleotide distribution. The
value

 ij
ij

i j

P
s

PP
= (1.4)

gives a score representing the validity of the positional independence assumption. If sij =1, then the
independence assumption is valid for nucleotide i followed by nucleotide j (1.18). As the deviation
from one increases, the independence assumption becomes less valid.

Example: This example calculates sij for M. jannaschii, which is a prokaryote that lives in extremely
high temperature environments such as thermal springs. The ratios of the observed dinucleotide
frequency to the expected dinucleotide frequency (assuming independence) in M. jannaschii:21

 ©2022 Perry D Moerland

 7

1.13 0.73 1.10 0.94
1.03 1.37 0.32 1.11
1.05 1.12 1.39 0.71
0.83 1.05 1.13 1.14

A C G T
A
C
G
T

 
 
 
 
 
 

with the nucleotide i indexed by row and the nucleotide j indexed by column, where nucleotide i

immediately precedes j in the sequence. Upon examination of the matrix, one can see that there are
sizable deviations from one. For example the pairs (C,C) and (G,G) occur much more often than
expected if they were independent, and (A,C), (C,G), and (G,T) occur much less often. Also, the
diagonal entries show that two consecutive occurrences of the same nucleotide occur more often than
expected.

1.3.2. Markov Chains

A simple way to incorporate such dependencies is to assume that each symbol depends only on the
previous few symbols in the sequence; such models are called Markov chains. These were already
presented in the introductory course.12 Here, we just give a brief reminder of the most important
ingredients.

Imagine that we want to make a probabilistic model of a set of sequences from a certain alphabet. The
probability of a sequence 1 2... Nq q q can be written as

1 1 1 1 1 2 1 1 1 1 1
2

(, ,...,) (| ,...,) (| ,...,)... () (| ,...,) ()
N

N N N N N N t t
t

P q q q P q q q P q q q P q P q q q P q− − − − −
=

= =∏

by successive application of the product rule (1.16). In general, one does not want to model all these
conditional probabilities. Markov chains correspond to a specific way of restricting this
decomposition. In a Markov chain, the probability of a symbol only depends on the previous symbol:e

 1 1 1 1
2

(, ,...,) (|) ()
N

N N t t
t

P q q q P q q P q− −
=

=∏ .

In a Markov chain, the values that a random variable can take are called states. The probability to go
from one state to another (1(|)t tP q j q i−= =) is called a transition probability,f also written as ija .
By adding an initial state q0=0 to the model, we can write the whole model in terms of transition
probabilities:

 1 1 1
1

(, ,...,) (|)
N

N N t t
t

P q q q P q q− −
=

=∏ . (1.5)

Similarly, we can also add an end state qN+1 to ensure that the end of a sequence is modelled, although
it is often assumed that a sequence can end in any state.

Two standard ways of representing Markov chains are matrices and graphs. Since a Markov chain is
completely defined by its transition probabilities, it can be summarized by the transition matrix

e Actually, this is called a first-order Markov chain. In an nth-order Markov chain each symbol depends on the
previous n symbols (Section 1.6).
f This is equivalent to the dinucleotide frequency defined above.

 ©2022 Perry D Moerland

 8

()ijA a= . This can also be depicted as a directed graph where the states are the nodes of the graph

with directed edges of value ija pointing from state i to state j. Here is a simple example of a two-
state Markov chain:

0.2 0.8

0.7 0.3

x y

x
A

y
 

=  
 

The right-hand Markov chain explicitly includes an initial (I) and an end (E) state.

Given a set of DNA sequences D, a simple Markov chain has five states (nucleotides A, C, G, and T,
and the initial state). Transition probabilities are estimated by counting the number of times ijc that
nucleotide i is followed by nucleotide j in D:

'

'

ij
ij

ij
j

c
a

c
=
∑

. (1.6)

The transition probabilities from the initial state are estimated by counting the number of occurrences

id of nucleotide i in D:

 0
i

i
j

j

da
d

=
∑

. (1.7)

These are the maximum likelihood (Section 1.9.2) estimators for the transition probabilities.

1.3.3. A different view on log-odds: Bayes’ decision rule

Imagine that we estimated two Markov chains, one from a set of sequences corresponding to class A
(of sites, for example) and a second one from a set of sequences corresponding to class B (of non-
sites). A collaborator gives us a new sequence 1 2... Nx x x x= and wants to know to which of the two
classes his sequence is likely to belong. The best way to take such a decision is by selecting the class
for which the probability of the class given the sequence is largest.1 This strategy which minimizes the
probability of misclassification is known as Bayes’ decision rule:

 is assigned to class (class |) (class |)x A P A x P B x⇔ > .

Using Bayes’ theorem (1.17) this can be rewritten as

 ©2022 Perry D Moerland

 9

(| class) () (| class) () is assigned to class

() ()
P x A P A P x B P Bx A

P x P x
⇔ >

(| class) ()
(| class) ()

P x A P B
P x B P A

⇔ > .

Priors P(A) and P(B) represent the probability that a sequence belongs to class A or B, respectively,
when nothing is known about the sequence itself. Priors correspond to the fractions of sequences in
each class, in the limit of an infinite number of observations. Assuming the prior probabilities to be
equal:g

(| class) (| class) is assigned to class 1 log 0
(| class) (| class)

P x A P x Ax A
P x B P x B

 
⇔ > ⇔ > 

 
.

The term on the left-hand side of the last inequality is the familiar log-odds ratio (1.2). If the log-odds
ratio is larger than zero, we can tell our collaborator that his sequence is likely to belong to class A
otherwise class B is more likely.
Unequal prior probabilities would justify a cut-off different from zero for the log-odds ratio. If we
expect to see far more sequences of class B, say P(B)=0.7, than of class A, P(A)=0.3, a cut-off of
log(0.7/0.3)=1.22 should be chosen. This captures the idea that it is more important to make no
mistakes on sequences from class B since they are more frequent.

Since in our case class A and B were modelled with Markov chains, we can use (1.5) to rewrite the
log-odds ratio as

1

1

1
1 1

1 1
1

1

,

1 ,

(|)
(|)(| class)log log log

(| class) (|)(|)

 log t t

t t

N

A t t N
t A t t
N

t B t t
B t t

t

AN
x x
B

t x x

P x x
P x xP x A

P x B P x xP x x

a
a

−

−

−
= −

= −
−

=

=

 
      = =        
 
 

 
=   

 

∏
∑

∏

∑

, (1.8)

that is, the log-odds ratio can be written as the sum of the log-likelihood ratios of corresponding
transition probabilities.

g From now on, we will just write log instead of log2.

 ©2022 Perry D Moerland

 10

1.4. Hidden Markov Models

Let us now extend the sequence ensemble introduced in section 1.1 with some insertions and gaps: 13

You can think of this as being the result of a multiple
sequence alignment, for example. Since not all sequences
have the same length such a sequence ensemble cannot be
summarized by a simple weight matrix. Profiles11 were
introduced to deal with this problem. All of the profile
methods are more or less statistical descriptions of the
consensus of a multiple sequence alignment. They use
position-specific scores for nucleotides (or amino acids)

and position-specific penalties for opening and extending a gap. A disadvantage of most early profile
methods is that the choice of scoring parameters is heuristic and requires careful craftsmanship. In
this section, we will see how an extension of Markov chains can be used to lay a sound probabilistic
basis for profile methods.
For a start, we could have come up with a regular expression describing the set of sequences
[AT][CG][AC][ACGT]*A[GT][CG]. The term [ACGT]* means that any of the four symbols
can occur any number of times; this term corresponds to the insertions and gaps. The regular
expression can be interpreted as a Markov chain with seven states, one state for each term in the
regular expression. The big difference is that while a state in a Markov chain corresponds to one
symbol, here a state corresponds to several symbols. This is best captured by combining weight
matrices and Markov chains in one model by making the states generate symbols according to a
certain probability distribution.
Such a model for the five sequences given above is shown in Figure 3. The first state corresponds to
the term [AT], which in its turn corresponds to the first position of the multiple sequence alignment.
The probability distribution in the first state is obtained by counting the number of times a symbol
occurs at the first position: 4/5 for an A and 1/5 for a T. Similarly for the second position, the
probability of C is 4/5 and for G is 1/5. The transition probability between state one and state two is of
course equal to one .The more difficult case is the term [ACGT]* which is represented in Figure 3
with the state above the other states. This insert state corresponds to the positions 4-6 in the sequence
ensemble:

Three out of five sequences contain insertions, thus the transition probability from state three [AC] to
state four is 3/5 and from state three to state five is 2/5. The probability of each letter on the insert state
is found by counting all occurrences of the four nucleotides in this region. The total counts are one A,
two Cs, one G, and one T, giving probabilities 1/5, 2/5, 1/5, and 1/5 respectively. Finally, for the
transition probabilities going out of the insert state, we note that in total there are five transitions from
the insert state: two more inserts in sequence two and three transitions to state five. The probability of
staying in the insert state is 2/5 and the probability of going from the insert state to state five is 3/5.
Like with weight matrices, we could estimate the probability of the consensus sequence (given the
state sequence 1-2-3-4-5-6-7)

 () 0.8 1 0.8 1 0.8 0.6 0.4 0.6 1 1 0.8 1 0.8 0.047P = × × × × × × × × × × × × =ACACATC (1.9)

and also define a log-odds score.

You can think of the model depicted in Figure 3 as a stochastic generator of DNA sequences. Starting
from state 1, the generation of a sequence consists of drawing a nucleotide according to the probability
distribution associated with state 1 (p(A)=0.8 & p(T)=0.2). Then a new state is chosen according to

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

 ©2022 Perry D Moerland

 11

the transition probabilities of state 1 to other states, which in the case of Figure 3 leaves only state 2,
and so forth.

Figure 3. Hidden Markov model derived from the alignment discussed in the text. A box is called a
state. The state number and the corresponding terms of the regular expression are given below the
states. Transitions are shown with arrows the thickness of which indicates their probability. In each
state the histogram shows the probabilities of the four nucleotides [Adapted from Ref. 13].

In a standard Markov chain, each state uniquely corresponds to an observation (e.g., a nucleotide). In
Figure 3 each state has an associated probability distribution of observations. This implies that if there
is a C in a sequence generated by the model, we do not know whether it comes from state 2, 3, 4 or 7.
The sequence of states is hidden from us and can only be observed indirectly through the probability
distributions defined for each state. Such models are a well-known extension of Markov chains and are
known as hidden Markov models (HMM).

Formally a HMM consists of

1. A set of states Q={0,1,2,…,S}, state 0 is the initial state. In general, the sequences we study
have a finite length 1 2... NX x x x= and the model is often extended with an end state
qN+1=S+1. Since the role of initial and end states is to model the start and end of a sequence,
they do not have an associated emission probability distribution.

2. An alphabet K of symbols (observations), the size of the alphabet is denoted as M.

3. Transition probabilities from state i to state j

 1(|), 0 , 1ij t ta P q j q i i j S−= = = ≤ ≤ + .

These can be summarized in a S+2 by S+2 matrix ()ijA a= . No transitions are possible to the

begin state (0 0ia =) and from the end state (1, 0S ia + =).

4. The emission probability distributions of state i

 () (|) , 1ib x P x i x K i S= ∈ ≤ ≤ .

Let us now have a look at an extreme case. If for each state there is only one possible transition, with
probability equal to one in that case, the state sequence is fully defined and the model is a weight
matrix defined by the emission probabilities. Indeed, hidden Markov models are a, hopefully useful,
extension of the models we have seen in the previous sections. In our example, the set of states

 ©2022 Perry D Moerland

 12

Q={1,2,..7}, there are no initial and end states, the alphabet is K={A,C,G,T} of size M=4, and the
transition probability matrix is the rather sparse matrix (empty entries are equal to zero)

 1 2 3 4 5 6 7

1 1.0
2 1.0
3 0.6 0.4

 4 0.4 0.6
5 1.0
6 1.0
7

A

 
 
 
 
 

=  
 
 
 
 
 

.

The emission probability distributions are given by the histograms inside each state (Figure 3).

The three main problems that one would like to solve for an HMM are

1. Evaluation: Compute the probability of an observed sequence, given the model. Solving the

evaluation problem enables us, for example, to compare different models by calculating their odds
ratio.

2. Decoding: Given an observed sequence find a corresponding state sequence that is optimal in a
meaningful sense. This can be used to align new sequences to a HMM that models the multiple
alignment of a set of sequences. Another application is the prediction of genes in a sequence of
unannotated DNA (section 1.7).

3. Estimation: How to adjust the parameters (transition and emission probabilities) of the model to a
given set of sequences?

1.4.1. Evaluation

Above, we could easily calculate the probability of the consensus sequence (1.9) since we knew its
state sequence. This holds for any state sequence 0 1 2... NQ q q q q= and observed sequence of symbols

1 2... Nx x x x= .h First, using the product rule (1.16)

 (,) () (|)P x Q P Q P x Q= (1.10)

The probability of a state sequence P(Q) follows a Markov chain and using (1.5)

 1
1

() (|)
N

t t
t

P Q P q q −
=

=∏ .

The probability of an observed sequence given the state sequence is

 1 1 1 2 1 1
1

(|) (| ,..., ,) (| ,..., ,)... (|) (|)
N

N N N N t t
t

P x Q P x x x Q P x x x Q P x Q P x q− − −
=

= =∏ ,

h Note that, for ease of notation we do not include an end state here. It is easy to extend what follows with an
explicit end state.

 ©2022 Perry D Moerland

 13

Figure 4. Trellis for the calculation of the probability of a given observation sequence (CATA) and
state sequence (0-2-1-3-2), 0 is the non-emitting initial state.

since in an HMM, we assume that the observed symbol only depends on the current state. Eq. (1.10)
can now be written as

11 ,

1 1 1 1

(,) (|) (|) ()
t t t

N N N N

t t t t q q q t
t t t t

P x Q P q q P x q a b x
−−

= = = =

= =∏ ∏ ∏ ∏ . (1.11)

Indeed, the probability of the consensus sequence (1.9) is an example of the application of this
equation. We say that the joint probability of the observed sequence and the state sequence factorizes.

This computation can be visualized on a grid or trellis (Figure 4). Each node corresponds to a state qt

at step t; hence, the size of the trellis is (N+1)×(S+1). The state sequence specifies a path through the
trellis indicated by the arrows (or directed edges). The edges are weighted by the product of the
corresponding transition and emission probability. Eq. (1.11) now corresponds to following the path
indicated by the arrows through the trellis and multiplying the associated weights.

However, the state sequence is usually not known and the probability of an observed sequence has to
be calculated over all possible state sequences (sum rule (1.15)):

 () (,)

Q
P x P x Q=∑ , where Q has N+1 states. (1.12)

This means that we would have to consider all possible paths through the trellis. Doing this explicitly
is computationally infeasible.i With a clever rewriting we can limit the effort considerably:

0 0

() (,) (,)
S S

N
i i

P x P x q i N iα
= =

= = =∑ ∑ ,

where the forward variable

 1 2(,) (... ,)t tt i P x x x q iα = = ,

i Approximately 2 NNS operations: there are NS state sequences and for each of them calculating P(x,Q)
using Eq.(1.11) requires about 2N multiplications.

 ©2022 Perry D Moerland

 14

that is, the probability of having observed 1 2... tx x x and being in state i at step t. Forward variables
can be calculated recursively. Using the sum rule and then the product rule (1 ,0 ,t N i j S≤ ≤ ≤ ≤):

1.. 1.. 1

1.. 1 1 1.. 1 1

(,) (,) (, ,)

 (,) (, | ,)

t t t t t
j

t t t t t t
j

t i P x q i P x q j q i

P x q j P x q i x q j

α −

− − − −

= = = = =

= = = =

∑

∑
.

where 1.. 1 2...t tx x x x= .

Since the observed symbol and the state at step t only depend on the previous state:

1.. 1 1 1

1

 (,) (, |)

 (1,) (|) (|)

 (1,) ()

t t t t t
j

t t t t
j

ji i t
j

P x q j P x q i q j

t j P q i q j P x q i

t j a b x

α

α

− − −

−

= = = =

= − = = =

= −

∑

∑

∑

.

This is where the recursion comes in: calculating the forward variables at step t only requires the
forward variables at step t-1.
All sequences have to start in the initial state q0=0, so (0,0) 1α = . The resulting algorithm, called the
forward algorithm is

The forward algorithm is far more efficient than a naïve calculation. Computational complexity of the
forward algorithm is on the order of 2NS operations.j The forward algorithm can also be visualized
as a calculation on a trellis (Figure 5).

1.4.2. Decoding

The goal of decoding is to find a state sequence which best explains the observed sequence. The most
widely used criterion is to find the most probable state sequence for sequence x:

(,)() max (|) max max (,)

()Q Q Q
P x QV x P Q x P x Q

P x
= = = ,

j There are about NS different alphas to calculate and each of them requires approximately S operations (see Ref.
15 for more details).

Forward Algorithm

initialization: (0,0) 1 , (0,) 0 jα α= = for 1 j≤
recursion : (,) (1,) ()ji i t

j
t i t j a b xα α= −∑ (1 ,0 ,t N i j S≤ ≤ ≤ ≤)

end :
0

() (,)
S

i
P x N iα

=

=∑

 ©2022 Perry D Moerland

 15

Figure 5. Forward algorithm on a trellis. The calculation of a forward variable only depends on the

forward variables in the preceding layer:
3

2 2 2
0

(2, 2) (1,) ()j
j

j a b xα α
=

=∑ .

using the product rule (1.16). As with the forward algorithm, we want to find a way to do this
recursively in order to find an efficient algorithm.

 []

0.. 1 0.. 1() max (,) max max (, ,) max (,)
NQ i Q N N iV x P x Q P x Q q i v N i
− − = = = =  ,

where, the Viterbi variable

 []

0.. 1 1.. 0.. 1(,) max (, ,)
tQ t t tv t i P x Q q i
− −= = , (1.13)

that is, the probability of having observed 1 2... tx x x along the most probable path ending in state i at
step t.
The Viterbi variable can be calculated recursively using the product rule (1 ,0 ,t N i j S≤ ≤ ≤ ≤):

[] []{ }

[]{ }
0.. 1 1.. 2

0.. 2

1.. 0.. 1 1.. 0.. 2 1

1.. 1 0.. 2 1 1.. 1 0.. 2 1

(,) max (, ,) max max (, , ,)

 = max max (, ,) (, | , ,)

t t

t

Q t t t j Q t t t t

j Q t t t t t t t t

v t i P x Q q i P x Q q j q i

P x Q q j P x q i x Q q j

− −

−

− − −

− − − − − −

= = = = =

= = =
.

Using the definition of the Viterbi variable and the fact that the observed symbol and the state at step t
only depend on the previous state:

 []1 = max (1,) (, |)j t t tv t j P x q i q j−− = = .

Applying once more the product rule:

[]1 = max (1,) (|) (|)

 = max (1,) ()

j t t t t

j ji i t

v t j P q i q j P x q i

v t j a b x

−− = = =

 − 
.

 ©2022 Perry D Moerland

 16

All sequences have to start in the initial state q0=0, so (0,0) 1v = . This gives a recursive algorithm
very similar to the forward algorithm, the main difference being that sums are replaced by a max
operator. The Viterbi algorithm can again be visualized as a calculation on a trellis. As we fill in the
trellis we also keep track of the node p(t,i) in the preceding layer from which the maximum v(t,i)
originated. This enables us to find the optimal state sequence by backtracking. This is very similar to
what you might already know from algorithms for pairwise sequence alignment. Both Viterbi and
alignment algorithms are indeed examples of dynamic programming algorithms.

The resulting algorithm, called the Viterbi algorithm for finding the optimal state sequence

* * * * *
0 1 2... NQ q q q q= is

The general principle behind the Viterbi algorithm is that the optimal path to node B at step t always
consists of the optimal path from the begin state to a node at an intermediary step and the optimal path
from there to node B.

Let us have a look at a simple example (adapted from Ref. 9). In a casino a fair die is used most of the
time but now and then they switch to a loaded die with a bias for sixes. This can be seen as an HMM
with states F (fair), L (loaded) and 0 (begin state) with transition probabilities:

0 0 0.5 0.5

0 0.95 0.05
0 0.1 0.9

A F
L

 
 =  
 
 

 and emission probabilities:

 1 2 3 4 5 6

1 1 1 1 1 1:
6 6 6 6 6 6
1 1 1 1 1 1:

10 10 10 10 10 2

F

L

.

We are now going to search the optimal state sequence for the observation sequence 3-1-4-6-6-6.
The trellis corresponding to this sequence is shown in Figure 6.

The example of Figure 6 also illustrates a typical problem of both the forward and the Viterbi
algorithm as we have formulated them. The calculation of the forward and Viterbi variables consists of
products of a large number of values less than one. For sufficiently long sequences, forward and
Viterbi variables will become too small for floating point arithmetic. The forward algorithm can be
made more robust by scaling intermediary values; the reader is referred to Ref. 15 for a detailed

Viterbi Algorithm

initialization : (0,0) 1 , (0,) 0 v v j= = for 1 j≤

recursion : (,) max [(1,)] ()j ji i tv t i v t j a b x= − (1 ,0 ,t N i j S≤ ≤ ≤ ≤)

 (,) argmax [(1,)]j jip t i v t j a= −

end : () max [(,)]iV x v N i=

 * arg max [(,)]N iq v N i=

backtracking: * *

1(1,)t tq p t q += + (0 1t N≤ ≤ −)

 ©2022 Perry D Moerland

 17

Figure 6. Trellis of the Viterbi algorithm for a sequence from an occasionally dishonest casino.
Upper: calculation of the Viterbi variables v(t,i) on the trellis. For example, v(2,L) =
max[v(1,F)aFLbL(1) , v(1,L)aLLbL(1)]= max[(0.083×0.05×0.1 , 0.05×0.9×0.1] = 0.0045. Lower: arrows
indicate the pointers for backtracking. The optimal state sequence is found by following the (bold)
arrows back from the maximal value of 0.000037 till the begin state. This gives 0-L-L-L-L-L-L as
optimal state sequence for the observation sequence 3-1-4-6-6-6.

description. An elegant solution for the Viterbi algorithm is to do all calculations using logarithms.

1.4.3. Estimation

How to adjust the parameters (transition and emission probabilities) of a HMM to a given set of
sequences? There are well-developed methods that find the maximum likelihood (Section 1.9.2)
estimates of the parameters using the Expectation-Maximization (EM) algorithm (Section 1.9.5), in the
context of HMMs also known as the Baum-Welch algorithm.15 To avoid overloading this chapter with
more equations, I will not present the Baum-Welch algorithm in full but only give an outline of the
basic ingredients.

The problem we have to solve is to estimate values for the parameters θ of the HMM given a set of
sequences D = {x1, ...,xn}. In Section 1.9.2 it is explained that a general method for doing this is to
maximize the joint probability density, also called the likelihood. Assuming that the sequences are
independent the likelihood of the parameters with respect to the data is:

1

1

1

(,..., |) (|)

 (, |)

n
n i

i
n

i

Qi

P x x P x

P x Q

θ θ

θ

=

=

=

=

∏

∑∏
,

with Q a state sequence. Maximizing this likelihood is a difficult problem because of the sum over all
state sequences. The Baum-Welch algorithm offers a way out and finds maximum likelihood estimates
for the parameters of a HMM in reasonable time. Full details of the Baum-Welch algorithm can be
found in Refs. 9 and 15. A disadvantage of the Baum-Welch algorithm is that it only guarantees
convergence to a local maximum of the likelihood. Especially, for large HMMs with many states the
likelihood surface is riddled with local maxima and which one you end up with depends strongly on
the starting values of the parameters.

 ©2022 Perry D Moerland

 18

Figure 7. Structure of a profile
hidden Markov model.

The EM algorithm does give estimates for the parameters of the model but does not help us with
another major problem: the choice of the structure of an HMM. In a certain sense, the two examples
you saw above represent two extremes. The HMM for the occasionally dishonest casino is fully
connected, that is, transitions are possible from each state to any other state (in our example, there are
only two states). The HMM for a multiple alignment with gaps on the other hand is very sparse.
However, which structure to choose for a given problem is more of an art than a science. An important
guideline is that the number of parameters of the model should not be too large to be reliably estimated
from the data at hand. Moreover, the structure of the model should have an interpretation in terms of
our knowledge of the problem. This was certainly the case for the multiple alignment HMM as we will
see in more detail in the next section.

1.4.4. Profile HMMs

At the beginning of this section, we saw an example of how a multiple alignment with gaps can be
represented by a HMM. What we actually constructed is a simplified version of a so-called profile
HMM (Figure 7).9,13 This model contains three different types of states indicated in the figure by
squares, diamonds, and circles. The square shaped states are called match states, because they model
the columns of the alignment. In these states the probability distribution is just the frequency of the
nucleotides at the corresponding position in the multiple alignment, as in our example. States m0 and
m5 are the begin and end state of the profile HMM. The diamond shaped states are insert states, which
are used to model highly variable regions in an alignment. These are like state four in our example
(Figure 3). The circular states are called delete states. Like the begin and end state, these are non-
emitting states. Delete states allow skipping one or more columns in an alignment, that is, to model the
situation when just a few of the sequences have a ‘-’ in the multiple alignment at a position.

A profile HMM can of course be used to model a “family” of sequences from a given reliable multiple
alignment and search a set of sequences for other likely members of the family. The other principal
use of a profile HMM is to align a new sequence to it. This can be done by finding the most probable
state sequence in the profile HMM using the Viterbi algorithm. PFAM (Protein families database of
alignments and HMMs) does exactly this to determine protein domains in a query sequence.k A more
detailed description of these and other issues related to profile HMMs such as model estimation and
non-global alignment can be found in Ref. 9.

1.5. Intermezzo on gene structure

The goal of gene finding algorithms is to predict the location and structure of all genes in a genome as
reliably as possible. Weight matrices, Markov chains, and HMMs form essential ingredients of almost

k https://www.ebi.ac.uk/interpro/

 ©2022 Perry D Moerland

 19

Figure 8. Structure of a prokaryotic gene. The coding region of a prokaryotic gene consists of a single
stretch of uninterrupted nucleotide sequence that encodes the amino acid sequence of a protein.

Figure 9. Detailed structure of a eukaryotic gene [From Ref. 1]. Exons of most eukaryotic genes are
interrupted by introns (noncoding sequences). Promoters for transcription are indicated in green.

all state-of-the art gene finding algorithms. Before going into more detail, this section gives a short
reminder of the structure of protein coding genes in prokaryotes and eukaryotes.12

Prokaryotes In prokaryotic cells, that is cells without a nucleus, most of the DNA sequence is
coding for protein. A gene starts with the promoter region which is followed by a transcribed but non-
coding region called 5’ untranslated region (5’ UTR). Then follows the coding region delimited by a
start codon (ATG) and a stop codon (TAA, TAG, TGA). It is followed by another non-coding region
called the 3’ UTR.

Eukaryotes Gene structure and the gene expression mechanism in eukaryotes are far more
complex than in prokaryotes. The protein coding region of the DNA is composed of alternating
stretches of exons and introns. During transcription, both exons and introns are transcribed onto
mRNA. Then splicing takes place: introns are excised from the mRNA sequence. Remaining mRNA
segments, those corresponding to exons, are ligated to form a mature RNA strand. A typical multi-
exon gene has the structure shown in Figure 9. The gene starts with the promoter region, which is
followed by the non-coding 5’ UTR. Then follows the initial exon which contains the start codon.l
Following the initial exon, there is an alternating series of introns and internal exons, followed by the
terminating exon, which contains the stop codon. It is followed by the non-coding 3’ UTR. At the end
of the gene there is a polyA signal (often ATTAAA or AATAAA), which is followed by a
polyadenylation site. This site ends the transcription after which a polyA tail is added to the mRNA.
The problem of gene identification is complicated in the case of eukaryotes by the vast variation found
in gene structure: number and length of exons, length of the untranslated regions, and length of
introns.

l Sometimes, the start codon only occurs in the second or third exon.

 ©2022 Perry D Moerland

 20

1.6. Gene finding in prokaryotes: extensions of Markov chains

Since the structure of prokaryotic genes is simple, one can hope for rather basic models being able to
predict their location reliably. Like before, we could build a Markov chain for coding regions and a
null model for non-coding regions and use the log-odds ratio to decide whether a stretch of sequence is
coding or non-coding.
A first problem of this approach is that in order to estimate the parameters of the coding region
Markov chain, one needs a reliable set of coding regions in the first place. For prokaryotes there is an
easy way out of this chicken and egg problem: just extract long open reading frames (ORF)m. Since
three of the 64 codons are stop codons, one would expect the mean length of an ORF to be around 20.
Therefore, a sufficiently long (300-500 base pairs) ORF has a high probability of being a gene. A very
reliable training set for the coding region Markov chain can be constructed by extracting long ORFs
that do not overlap long ORFs in other reading frames. However, it turns out that a first-order Markov
model is not very successful in locating genes.9

We might draw inspiration from Markov chains as applied to human language. In his seminal paper
“A Mathematical Theory of Communication”18 which laid the basis for the field of information theory,
Claude E. Shannon gives a nice example of how a series of ever more complex Markov chains
approaches the English language. Some typical sequences in the approximations to English are given
below. In all cases a 27-symbol alphabet was assumed, the 26 letters and a space.

1. Zero-order approximation (symbols independent but with frequencies of English text).
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL.

2. First-order Markov (transition probabilities as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

3. Second-order Markov (transition probabilities as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF
THE REPTAGIN IS REGOACTIONA OF CRE.

In a second-order Markov chain, the probability of a symbol depends only on the two symbols
preceding it. This model does seem to give a better approximation of English than a first-order model.
However, when applying a second-order model to prokaryotic gene finding results are hardly better
than with a first-order Markov chain.9 Continuing with Markov chains of even higher order does not
help much and, moreover, has the disadvantage of requiring a large training set for estimating the
transition probabilities: a kth-order Markov chain on the nucleotide alphabet has 14k+ transition
probabilities.

Shannon continued by switching from letters to words as the states of a Markov chain.

4. Zero-order word approximation. Words are chosen independently but with their appropriate
frequencies.
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE
HE THE A IN CAME THE TOOF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE
HAD BE THESE.

5. First-order Markov (on words). Word transition probabilities are as in English.
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF
THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

m A sequence of codons without stop codon.

 ©2022 Perry D Moerland

 21

Figure 10. An inhomogeneous Markov
chain consisting of three fifth-order Markov
chains. Circles represent consecutive
nucleotides, numbers indicate the codon
position, and the arrows indicate that the
probability of a nucleotide depends on the
five preceding nucleotides [Adapted from
Ref. 8].

In the last example, sequences of four or more words can easily be placed in grammatically correct
sentences. There is even an understandable sequence of ten words: “attack on an English writer that
the character of this”. The equivalent in the DNA alphabet of Shannon’s first-order Markov model on
words is a Markov chain on codons, and hence with 64 states. Such a model performs reasonably well
in locating prokaryotic genes.9 One of the reasons for the good performance is that the codon-based
model better captures an organism’s preference for a specific codon over other codons that encode for
the same amino acid.

A related approach also tries to model codon statistics, especially the fact that the three codon
positions in most organisms have quite different statistics. Therefore, it is natural to construct three
different Markov chains, one for each of the three possible codon positions (Figure 10). Such a model
is called an inhomogeneous Markov chain and is used in several state-of-the-art prokaryotic gene-
finding methods such as GeneMark6 and Glimmer.16 Both methods use a fifth-order inhomogeneous
Markov chain to find coding regions. This choice allows any nucleotide to depend on all the
nucleotides in its codon and the immediately preceding codon.
Estimation of the parameters of an inhomogeneous k-th order Markov chain is done separately for
each of the three component models. For any of the three codon positions, this is done by counting the
occurrences of all substrings of length k+1 ending in that codon position. As already indicated above, a
kth-order Markov chain requires estimating 14k+ transition probabilities, that is, 4096 parameters for
k=5. An inhomogeneous Markov chain consists of three separate such chains and, therefore, has more
than 12.000 parameters. Each of these 12.000 substrings of length six must occur often enough in the
training set to support a statistically reliable sample. Some substrings of length five are already too
infrequent in prokaryotic sequences, yet some substrings of length eight are frequent enough to be
statistically reliable. Glimmer16 uses a so-called interpolated Markov chain, in which a high-order
model is used in contexts where enough data is available and a lower-order model for infrequent
substrings.

1.7. HMMs in Eukaryotic Gene Finding

The problem of predicting the location and structure of all genes in a eukaryotic genome is far more
difficult, for two main reasons. Firstly, coding density in eukaryotic genomes is much lower than in
prokaryotic genomes. In the prokaryote H. influenzae, 85% of the genome is in coding regions,
whereas in fly and worm only 25% of the genome is in coding regions, and the number falls to just a
few per cent in humans.20 An additional complication is the presence of splicing (Figure 9). In the
human genome, a typical exon is 150 base pairs long and a typical intron several kilobases, and there
is no clear delineation between the intergenic regions that separate adjacent genes and the intragenic
regions that separate exons. Defining the precise start and stop position of a gene and the splicing
pattern of its exons among all the non-coding sequence is very difficult.

 ©2022 Perry D Moerland

 22

Figure 11. HMM representation of the regular
expression P 5U E (I E)* 3U pA

When trying to predict eukaryotic gene structure, there are many different signals that can be taken
into account: promoters, acceptor and donor splice sites, codon bias, and polyA site all give some clue
about gene structure. However, any isolated signal of a gene is hard to predict. Current methods for
promoter prediction, for example, either predict a large number of false positives or a small proportion
of true promoters.3 It turns out to be a far better approach to incorporate all these different signals into
one consistent model. Splice site prediction, for instance, can be greatly improved when not only
modelling the splice site itself but also the coding exon region next to the splice site. This approach
can rule out candidate splice sites that are not adjacent to something looking like a coding region.

Therefore, state-of-the art gene finding methods all predict whole gene structures from a combination
of different modules. The modules are often made up of models we have seen in the previous sections.
Weight matrices, first- and higher-order Markov chains, inhomogeneous and interpolated Markov
chains are all used as building blocks of current gene finders. How to combine these modules into one
consistent model? We start by observing that a combination of modules has to follow certain rules
since all eukaryotic genes have a particular structure (Figure 9). This structure is defined by what we
could call the grammar of a gene. If you consider exons and introns as the ‘words’ in language, the
sentences are of the form exon-intron-exon-intron ... intron-exon. The sentences can never start or end
with an intron, for example. We could even come up with a regular expression describing the structure
of a gene in more detail:

 promoter 5’UTR exon (intron exon)* 3’UTR polyA (1.14)

As we have seen in Section 1.4, such a regular expression can be represented by a hidden Markov
model. A HMM corresponding to the above regular expression is given in Figure 11. Thus, all theory
developed for HMMs can also be applied to the problem of gene finding. For example, one can predict
genes in a sequence of anonymous DNA by finding the optimal path through the HMM with the
Viterbi algorithm. When this path goes through an “exon” state, an exon is predicted, when it goes
through a 5’UTR state, a 5’ untranslated region is predicted, and so on.

State-of-the-art gene finders do not have as simple a structure as the one shown in Figure 11. They
often include a module that ensures frame consistency throughout a gene. This is necessary because a
single codon may be split between two exons: the reading frame in one exon has to fit the one in the
next. This can be handled by creating three different intron states, one for each reading frame.13 A
good example is the HMM used in GenScan,7 one of the best ab initio gene finding algorithms, shown
in Figure 12. Though considerably more complex than our simple diagram, basic principles are more
or less the same.

1.8. References

1. B. Alberts et al., Essential Cell Biology: An Introduction to the Molecular Biology of the Cell,

Garland Publishing (New York, 1998).
2. B. Alberts et al., Molecular Biology of the Cell, Garland Publishing (New York, 2002).
3. V.B. Bajic, Promoter prediction analysis on the whole genome. Nat. Biotech. 22: 1467-1473

(2004).
4. W.M. Becker et al., The World of the Cell, Benjamin Cummings (4th edition, 2000).

 ©2022 Perry D Moerland

 23

5. C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press (Oxford, 1995).
6. M. Borodovsky et al, GeneMark: Parallel gene recognition for both DNA strands. Comp.Chem.,

17(2):123–132 (1993).
7. C. Burge et al., Prediction of complete gene structures in human genomic DNA. J. Mol. Biol.,

268:78-94 (1997).
8. C.B. Burge et al., Finding the genes in genomic DNA. Current Opinion in Structural Biology,

8:345-354 (1998).
9. R. Durbin et al., Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids, Cambridge University Press (Cambridge, 1998).
10. W. Ewens et al, Statistical Methods in Bioinformatics: An Introduction, Springer-Verlag (New

York, 2001).
11. M. Gribskov et al., Profile Analysis: Detection of Distantly Related Proteins. Proc. Natl. Acad.

Sci. USA, 84: 4355–4358 (1987).
12. A.H.C. van Kampen et al., Introduction to Genefinding. Chapter 5 in Introduction to

Bioinformatics, lecture notes available on request (Amsterdam, 2004).
13. A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences. In S. Salzberg,

D. Searls, and S. Kasif, eds., Computational Methods in Molecular Biology, pp.45–63, Elsevier
(1998).

14. D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University
Press (Cambridge, 2003).

15. L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE 77: 257-286 (1989).

16. S.L. Salzberg et al., Microbial gene identification using interpolated Markov models. Nucleic
Acids Research, 26(2):544–548 (1998).

17. D.B. Searls, The Language of Genes. Nature, 420: 211–217 (2002).
18. C.E. Shannon, A Mathematical Theory of Communication. The Bell System Technical Journal 27:

379-423, 623-656 (1948).
19. E. Sonnhammer et al., PFAM: A Comprehensive Database of Protein Families Based on Seed

Alignments. Proteins, 28: 405–420 (1997).
20. L. Stein, Genome Annotation from Sequence to Biology, Nature Reviews Genetics 2: 493-503

(2001).
21. M. Tompa. Computational Biology (2000). Lecture notes available from:

https://courses.cs.washington.edu/courses/cse527/00wi/

For those interested in the application of hidden Markov models in automatic speech recognition, the
following two references are recommended:

1. L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice Hall (1993).
2. L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition, Proceedings of the IEEE 77: 257-286 (1989).

David MacKay’s book (Ref. 14) is instructive and fun to read. He even made it downloadable at
http://www.inference.org.uk/mackay/itila/(although I think it is worth its price).

 ©2022 Perry D Moerland

 24

Figure 12. A hidden Markov model explicitly models the probabilities for the transition from one part
of a genomic region to another. In this model, used by the GENSCAN algorithm, each circle or
diamond represents a functional unit of a eukaryotic gene. E=exon; I=intron; UTR=untranslated
region; pro=promoter. For example, Einit is the initial exon (from start codon to donor splice site) and
Eterm is the last exon (from acceptor splice site to stop codon). The upper half of the figure corresponds
to states of a gene on the forward strand (indicated with superscript +). States that occur below the
dashed line correspond to a gene on the opposite strand (indicated with superscript -). Arrows
represent the probability of a transition from one state to another. [From Ref. 20].

 ©2022 Perry D Moerland

 25

1.9. Appendix

1.9.1. Probabilities

First some notation:

()iP x a= denotes the probability that random variable x takes on value ia from a possible set of
values 1 2{ , ,..., }Na a a . Often the random variable is clear from the context and we will just write

()iP a or ip with 0ip ≥ and
1

1
N

i
i

p
=

=∑ .

The joint probability of two random variables x and y is denoted as (,)i jP x a y b= = . The

conditional probability that y equals ia , given that x equals jb is denoted as (|)i jP x a y b= = . Often
the specific value of the random variable will not be specified explicitly and we will just write P(x),
P(x,y), and P(x|y).

Probabilities obey the following basic (and intuitive) rules:

Sum rule

() (,)

y
P x P x y=∑ (1.15)

This is called the marginal probability.

Product rule

 (,) (|) () (|) () (,)P x y P x y P y P y x P x P y x= = = (1.16)

Bayes’ theorem A straightforward consequence of the sum and product rule is Bayes’ rule:

'

(|) () (|) ()(|)
() (| ') ()

x

P y x P x P y x P xP x y
P y P y x P x

= =
∑

. (1.17)

Independence Two random variables x and y are independent if and only if

 (,) () ()P x y P x P y= . (1.18)

Expectation The expected value of a function f(x) with x a random variable is

 [()] () ()

x
E f x P x f x=∑ (1.19)

 ©2022 Perry D Moerland

 26

Above, we assumed the random variables to be discrete; what happens of they are continuous? Then,
the probability that random variable x takes on a specific value is in general zero. It makes more sense
to look at the probability that x takes on a value in a certain interval:

 () ()
b

a

P a x b p x dx≤ ≤ = ∫

where p(x) is the so-called probability density function with properties () 0p x ≥ and () 1p x dx
∞

−∞

=∫ .

The basic probability rules given above are easily adapted to the case of continuous random variables
by replacing sums by integrals.

1.9.2. Maximum likelihood

An example of a discrete probability distribution is the Bernoulli distribution of an experiment having
two possible outcomes labelled by x = 0 and x = 1 in which x = 1 ("success") occurs with probability p
and x = 0 ("failure") occurs with probability 1−p. The probability density function of the Bernoulli
distribution is:

 1() (1)x xP x p p −= − (1.20)

An example of a continuous probability distribution is the Gaussian or normal distribution, the
probability density function of which is defined as:

2

22

1 ()() exp
22

xp x µ
σπσ

 −
= − 

 
 (1.21)

Both distributions have parameters, the probability of success p for the Bernoulli distribution and the
mean μ and standard deviation σ for the normal distribution. In general, the values of these parameters
are not known and have to be estimated from data x1, ...,xn. Maximum likelihood gives a general
method for doing exactly this by maximizing the joint probability density, also called the likelihood.
For the Bernoulli distribution (1.20) the likelihood of p with respect to x1, ...,xn is (assuming the data to
be independent (1.18)):

1 1

1 1

11
1 1

1

(,..., |) (|) (1) ... (1)

 (1)

n n

n
x xx x

n n i
i

n n n

P X x X x p P x p p p p p

p p

−−

=

−

= = = = − −

= −

∏ ,

where n1 is the number of successes. The likelihood is a function of parameter p which can be
maximized by taking the derivative with respect to p and solving the equation:

1 1((1)) 0

n n nd p p
dp

−−
= .

Some algebra leads to the estimate p = (n1 / n), that is, the probability of success is the number of
successes among the outcomes divided by the total number of outcomes, which makes sense. The
maximum likelihood estimates for the parameters of the normal distribution are the sample mean and

 ©2022 Perry D Moerland

 27

the sample variance. In general, the maximum likelihood solution cannot be found by analytical means
but require iterative procedures such as those discussed in the chapter on local optimization.

1.9.3. Entropy

Information theory is the discipline analyzing the related concepts of information content,
compression, communication, and coding. Information theory is based on the following basic
definitions.14

Information content is a measure of the number of bits needed to encode the outcome of ix a= from
possible values 1 2{ , ,..., }Na a a :

 2
1() logi

i

h x a
p

= = .

Intuitively this makes sense, which can be seen by looking at an extreme case. If one outcome ia
occurs with a probability of one and all others with probability zero, the most compact encoding
would be to code outcome ia with zero bits and all other outcomes with infinitely many bits. This can
also be interpreted as outcome ia giving no extra information at all, since we already knew the
outcome in advance.

Entropy measures the average information content, that is, the expected number of bits needed for
encoding a set of possible values 1 2{ , ,..., }Na a a :

 2
1

1() log
N

N i
i i

H x p
p=

=∑ (1.22)

In the case of just two outcomes, this boils down to the
binary entropy function

 2 2 2
1 1() log (1) log

(1)
H x p p

p p
= + −

−

shown in Figure 13.n Indeed, as you would expect, the
maximum of the entropy function occurs if both
outcomes are equally probable and the minimum if one of the outcomes has a probability of one.

Jensen’s inequality A function is convex over an interval (a,b) if for all 1 2, (,)x x a b∈ and
0 1λ≤ ≤ ,

 1 2 1 2((1)) () (1) ()f x x f x f xλ λ λ λ+ − ≤ + − .

This is the formal definition of convexity but you mainly need to remember that a convex function is
∪-shaped. Examples of such functions are 2 , , and log(1/)xx e x .o

n 20 log (1/ 0) 0× = and 20 log (0) 0× = .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 x

 H
2(x

)

Figure 13. Binary entropy function.

 ©2022 Perry D Moerland

 28

For a convex function f , Jensen’s inequality is often useful:

1 1

()
N N

i i i i
i i

p f x f p x
= =

 
≥  

 
∑ ∑ ,

with equality only if P is uniform, that is, 1/ip N= .

Relative entropy Until now we only defined the entropy of one probability distribution, but often we
would like to compare two distributions over the same alphabet. This concept is captured by the
relative entropy or Kullback-Leibler divergence:

1

(||) log
N

i
KL i

i i

p
D P Q p

q=

= ∑ . (1.23)

The relative entropy satisfies Gibbs’ inequality

 (||) 0KLD P Q ≥ (1.24)

with equality only if P=Q. The relative entropy measures how different the distributions P and Q are.

Proof Gibbs’ inequality can be proven using Jensen’s inequality. Choose () log(1/)f y y= as
convex function and /i iy p q= . Then

1 1

1

(||) log

1 log log(1) 0

N N
i i

KL i i
i ii i

N
i

i
i i i

i

p qD P Q p p f
q p

qf p
p q

= =

=

 
= =  

 

 
   ≥ = = =      

 

∑ ∑

∑ ∑

with equality only if P/Q is uniform, that is, if P=Q. □

1.9.4. Lagrange multipliers

Consider the problem of finding extremes of a function 1 2(,)f x x subject to a particular constraint of
the form 1 2(,) 0g x x = . A general technique for dealing with such problems is the introduction of
Lagrange multipliers.
From a geometric perspective, the constraint 1 2(,) 0g x x = is a curve (Figure 14). From the previous
chapter on math review, we know that g∇ is perpendicular to the constraint curve. It so happens that
at an extremum of f, f∇ points in the same direction as g∇ :

 f gλ∇ = ∇ , (1.25)

where λ is called a Lagrange multiplier.

o From now on, we will just write log instead of log2.

 ©2022 Perry D Moerland

 29

A simple example illustrates that this is all we need to find extremes of a function subject to a
constraint. Define 1 2 1 2(,)f x x x x= and the constraint 1 2 1 2(,) 1 0g x x x x= + − = , then Eq. (1.25)
gives the following linear system:

 2
1 1

f g x
x x

λ λ∂ ∂
= ≡ =

∂ ∂

 1
2 2

f g x
x x

λ λ∂ ∂
= ≡ =

∂ ∂
.

Together with constraint 1 2 1 0x x+ − = , we have three equations and three unknowns and solving

these three equations gives the maximum ()1 1,1 1 2 2(,)x x = .

Figure 14. Geometrical picture of the main ingredients of Lagrange multipliers [From Ref. 1].

1.9.5. Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a general approach for dealing with maximum
likelihood estimation in the presence of hidden variables. We start out with the log-likelihood with
respect to the data D={x1, ...,xn} and introduce an arbitrary distribution q over the hidden variables z
through the sum rule (Eq. (1.15)):

 log () log () () log ()

x x z
p D p x q z p x= =∑ ∑∑ .

Now using the product rule (Eq. (1.16)):

g∇

1x

2x

f∇

1 2(,) 0g x x =

 ©2022 Perry D Moerland

 30

joint post

(,) (,) ()() log () log
(|) (|) ()

(,) ()() log () log
() (|)

(,) (||)

z z

z z

KL

p x z p x z q zq z q z
p z x p z x q z

p x z q zq z q z
q z p z x

F p q D q p

 
= = × 

 

   
= +   

   

= +

∑ ∑

∑ ∑ (1.26)

where in the last step we used the definition of relative entropy (1.23) and defined pjoint and ppost. As all
of you who studied statistical physics already guessed, the first term is known as the free energy,
which is why it has been denoted as F.
What is all this formula juggling good for? It provides us with a simple two-step iterative procedure to
maximize the likelihood (θ denotes the parameters of the model).

EM Algorithm:p

loop

joint post{log((|)) (,) (||)}KLp x F p q D q pθ = +

E-step: new
post(|) (|)q z x p p z x= =

new new
joint post{log((|)) (,) since (||) 0}KLp x F p q D q pθ = =

M-step: maximize F(pjoint,qnew) with respect to the parameters θ of the model
new new

joint{log((|)) (,) log((|))}p x F p q p xθ θ≥ ≥
end

Each iteration is guaranteed to increase the likelihood unless it is already at a local maximum. The
algorithm is illustrated in Figure 15.

Figure 15. Expectation-Maximization algorithm for maximum likelihood estimation.

p Text between curly brackets {} in the pseudo-code denotes comments/annotation.

KLD

E-step M-step

(,)F p q

KLD

(,)F p q

(,)F p q log(P(x | θ))

log(P(x | θ))
log(P(x | θ))

 ©2022 Perry D Moerland

 31

The M-step is often reformulated; maximizing F(pjoint,qnew) with respect to the parameters θ of the
model can be written as

new new
joint

,

,

: arg max (, |)

(, |) arg max (|) log
(|)

 arg max (|) log (, |)

x z

x z

F p q

p x zp z x
p z x

p z x p x z

θ

θ

θ

θ θ

θ

θ

=

 
=  

 

=

∑

∑

.

Using this rewrite the EM algorithm consists of iterating:

E-step: post (| ,)p p z x θ= , that is, calculate the distribution of the hidden variables given the data
 and the model parameters.

M-step:

,
arg max (|) log (, |)

x z
p z x p x z

θ
θ∑ , that is, maximize the expected (with respect to hidden

 variables) log-likelihood of the complete data.

Example A very simple model with one hidden variable is a 2-component mixture model which
is the weighted sum of two probability density functions:

 1 1 2 2() (|) (|)p x m p x m p xθ θ= + .

The mixing coefficients m1 and m2 sum to one and describe the probability that data is generated from
mixture component p1 and p2 , respectively. Estimating values for parameters θ, m1, and m2 given data
D would be easy if for each data point, we also had a label indicating to which of the two mixture
components it belongs. Maximum likelihood estimation can then be done for each component
separately for “its” part of the data. However, we do not have such a label, this is the hidden variable
z∈{1,2} of the mixture model. These labels being hidden make it a suitable problem for the EM
algorithm. The E-step for component j∈{1,2} and data point x can then be written using Bayes’ rule
as:

(|)(|) (| ,)(| ,)

(|) ()
j jm p xp z j p x z jp z j x

p x p x
θθ θθ

θ
= =

= = = .

This can be interpreted as a sort of “responsibility” that each component takes for a data point. Using
these responsibilities the M-step tries to find new estimates for the parameters θ by maximizing:

, {1,2}
(|) log (, |)

x z
p z x p x z θ

∈
∑ .

For many probability density functions this is relatively straightforward since in this expression the
label z is not hidden anymore. See, for example, Ref. 5 for a detailed derivation of the parameter
estimates for a mixture model of Gaussian component densities.

	Chapter 1. Probabilistic Models for Biological Sequences
	1.1. Consensus and Regular Expressions
	1.2. Weight Matrices
	1.2.1. Sequence logos

	1.3. Dependencies and Markov Chains
	1.3.1. Dinucleotide frequencies
	1.3.2. Markov Chains
	1.3.3. A different view on log-odds: Bayes’ decision rule

	1.4. Hidden Markov Models
	1.4.1. Evaluation
	1.4.2. Decoding
	1.4.3. Estimation
	1.4.4. Profile HMMs

	1.5. Intermezzo on gene structure
	1.6. Gene finding in prokaryotes: extensions of Markov chains
	1.7. HMMs in Eukaryotic Gene Finding
	1.8. References
	1.9. Appendix
	1.9.1. Probabilities
	1.9.2. Maximum likelihood
	1.9.3. Entropy
	1.9.4. Lagrange multipliers
	1.9.5. Expectation-Maximization Algorithm

