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Chapter 1.  Probabilistic Models for Biological Sequences 
 
Ever since the discovery of the genetic code, linguistic metaphors have been used when describing 
biological sequences.  Who has not heard the human genome being referred to as the ‘book of life’? 
This chapter shows that these are not mere metaphors used for their evocative power but that the 
relation really goes deeper. Techniques from the fields of linguistics and formal language theory can 
be applied and adapted for the description and analysis of biological sequences.17  
As a first example, consider the problem of describing a common pattern in an ensemble of biological 
sequences. Here, you can think of signals for splice sites, common regulatory elements, or conserved 
domains in protein families. A simple approach to such a problem would be to build a string-based 
description of a pattern. Formal language theory has come up with very efficient algorithms for 
searching for such patterns. However, when applied to biological sequences these methods often fail. 
This is because biological ‘spelling’ is far sloppier than English spelling; e.g., proteins with the same 
function from two related organisms can have less than 30% identical amino acids.13 Sloppiness is 
caused by the random processes inherent in biological evolution. To deal with this uncertainty typical 
for biological sequences, probabilistic methods are needed. In this chapter, we gradually go from a 
simple deterministic description using a consensus sequence to a complex probabilistic model in terms 
of so-called hidden Markov models. Along the way, you will also learn something about the 
algorithms behind these models and a wide range of applications will be shown. 
As a second example, we will see that hidden Markov models also capture certain grammatical 
features that are essential for successful (eukaryotic) gene finding algorithms. Most of the basic 
concepts of probability theory, information theory, and statistical inference used in the current chapter 
are summarized in the Appendix (section 1.9). 
 
Note: Many of the examples deal with nucleotide sequences and, therefore, an alphabet of four 
symbols. All models can just as well be applied to amino acid sequences or sequences over other 
alphabets. 

1.1. Consensus and Regular Expressions  
 
A site is a short sequence containing some signal, often being recognized by an enzyme. Examples of 
nucleotide sequence sites are intron splice sites, transcription start sites, and transcription factor 
binding sites. Instances of a single site are characterized by slight variations on most sequence 
positions. How could we give a compact description of such a site that retains most information? 
 
A simple description of a site in an ensemble of sequences is given by a 
consensus sequence. Consider the following five related nucleotide 
sequences: 

  

          

A C A A T G
T C A A T C
A C A A G C
A G A A T C
A C C A T C

 

Table 1. Consensus symbols 
for nucleotides (IUPAC). 

The consensus sequence is, in general, found by choosing at each sequence position the most 
prominent nucleotide (or combination of nucleotides, Table 1). In our example, the consensus 
sequence obtained by a majority vote for each sequence position is 

M   A/C 
R   A/G 
W  A/T 
S   C/G 
Y   C/T 
K   G/T 
B   C/G/T 
D   A/G/T 
H   A/C/T  
V  A/C/G 
N   A/C/G/T 
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    A  C  A  A  T  C. 
 
Using the IUPAC code, the consensus sequence could also have been described as 
 
         W  S  M  A  K  S, 
 
although there is no consensus on how to do this: on each sequence position, there clearly  is one 
dominant nucleotide and the other nucleotide might be an exception that one does not want to include 
in the consensus sequence. The main disadvantage of a consensus sequence is that it only gives the 
description of an average site and is rather limited in capturing its true specificities. 
 
Related to consensus sequences are descriptions using regular expressions. A regular expression for 
this set of short sequences is [AT][CG][AC]A[TG][GC]. This succinctly describes that in all 
sequences the first position is either A or T, the second C or G, etc.  
 
A problem with a description of a set of sequences in these terms is that it does not distinguish 
between a highly unlikely sequence such as 
 
    T  G  C  A  G  G  
 
and the consensus sequence obtained by majority vote.  

1.2. Weight Matrices 
 
A more complete description of a site in a set of sequences can be given by counting the number of 
times a particular nucleotide occurs at a certain position and summarizing this in a weight matrix. For 
our example, this leads to  
 

            

       1 2 3 4 5 6

4 0 4 5 0 0
0 4 1 0 0 4

 
0 1 0 0 1 1
1 0 0 0 4 0

A
C
G
T

 
 
 
 
 
 

, 

 
and the more common formulation in  terms of (estimated) probabilities: 
 

           

                  1   2    3    4   5    6

0.8 0.0 0.8 1.0 0.0 0.0
0.0 0.8 0.2 0.0 0.0 0.8

 
0.0 0.2 0.0 0.0 0.2 0.2
0.2 0.0 0.0 0.0 0.8 0.0

A
C

W
G
T

 
 
 =
 
 
 

, 

 
where each entry ijw  gives the (estimated) probability of finding nucleotide i at position j, also written 

as ( )jP i . For a set of sequences of length N consisting of symbols from an alphabet of size M, the 
weight matrix is a  M N×  matrix, the columns of which sum to one. A weight matrix is the correct 
model if we assume that sequence positions are independent (1.17). The probability of sequence 

1 2... Nx x x x=  given weight matrix W is then: 
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           1 2 ,
1 1

( ... | ) ( | )
i

N N

N x i i i
i i

P x x x W w P x W
= =

= =∏ ∏ .        (1.1) 

 
In our example, the probability of the consensus sequence is 
 

1 2 3 4 5 6( ) ( ) 0.8 0.8 0.8 1 0.8 0.8 0.33P W P P P P P P= = × × × × × =ACAATC| A) (C) (A) (A) (T) (C . 
 
It is the largest probability of any sequence of length six, because each position contains the most 
probable residue. The probability of the second sequence described above is 
          

1 2 3 4 5 6( ) ( ) 0.2 0.2 0.2 1 0.2 0.2 0.00032P W P P P P P P= = × × × × × =TGCAGG| T) (G) (C) (A) (G) (G  
 
which is indeed highly unlikely. Let us consider another sequence that closely resembles the 
consensus sequence: 
 

1 2 3 4 5 6( ) ( ) 0 0.8 0.8 1 0.8 0.8 0P W P P P P P P= = × × × × × =CCAATC| C) (C) (A) (A) (T) (C . 
 
This probability equals zero since the cytosine (C) observed on the first position does not occur in our 
tiny set of sequences. The outcome is rather a side effect though of the fact that we do not have enough 
data. A common solution is to add some fake counts (pseudocounts) to the observed counts.  The 
simplest alternative is to add one to each observed number of counts. The weight matrix then 
becomes: 
 

          

5 1 5 6 1 1
1 5 2 1 1 5

 
1 2 1 1 2 2
2 1 1 1 5 1

A
C
G
T

 
 
 
 
 
 

                  

0.56 0.11 0.56 0.67 0.11 0.11
0.11 0.56 0.22 0.11 0.11 0.56

'  
0.11 0.22 0.11 0.11 0.22 0.22
0.22 0.11 0.11 0.11 0.56 0.11

A
C

W
G
T

 
 
 =
 
 
 

. 

 
The estimated probabilities of the three sequences described above can consequently be updated: 
 
          5

1 2 3 4 5 6( ') ( ) 0.56 0.67 0.037P W P P P P P P= = × =ACAATC| A) (C) (A) (A) (T) (C  

          5
1 2 3 4 5 6( ') ( ) 0.22 0.67 0.00034P W P P P P P P= = × =TGCAGG| T) (G) (C) (A) (G) (G  

          4
1 2 3 4 5 6( ') ( ) 0.11 0.56 0.67 0.0072P W P P P P P P= = × × =CCAATC| C) (C) (A) (A) (T) (C . 

 
These outcomes correspond well to what we would expect given our small ensemble of sequences.  
 
Suppose we want to test whether a new sequence x is more likely to be a site corresponding to weight 
matrix W or a nonsite from the background model (also called null model) R. We assume the 
background model to be independent of specific positions, that is, ( | )jP i R  does not depend on j and 
is, therefore, denoted as ( | )P i R . The odds ratio, well-known to those placing bets, compares the two 
models for sequence x: 

          1 2 1

1 2

1

( | )
( ... | )
( ... | ) ( | )

N

i i
N i

N
N

i
i

P x W
P x x x W
P x x x R P x R

=

=

=
∏

∏
. 
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An odds ratio of at least onea means that the sequence is more likely to be a site as described by model 
W, whereas an odds ratio of less than one pleads in favour of the background model. 
 
For numerical reasons and to enforce symmetry between denominator and numerator, it is more 
convenient to calculate the log-odds ratio: 
 

          1 2 1
2 2 2

11 2

1

( | )
( ... | ) ( | )log =log log
( ... | ) ( | )( | )

N

i i N
N i i i

N
iN i

i
i

P x W
P x x x W P x W
P x x x R P x RP x R

=

=

=

 
      =   
    
 
 

∏
∑

∏
,     (1.2) 

 
which is the sum of the individual log-likelihood ratios. When a sequence fits the model W well, the 
log-odds ratio is positive. When it fits the background model better, the score is negative. The higher 
the score for a candidate site, the more likely it is to be real site.  
 
To test for sites it is convenient to transform a weight matrix into a position-specific scoring matrix 
(PSSM), the entries of which are the log-likelihood ratios. This is done by dividing each element of 
the weight matrix by the probability according to the background model and taking the logarithm.  
If we assume that under the background model all nucleotides are equally likely (P(A|R) = P(C|R) = 
P(G|R) = P(T|R) = 0.25), the scoring matrix corresponding to W’ is 
 

          

    1.16   -1.17    1.16    1.42   -1.17   -1.17

   -1.17    1.16   -0.17   -1.17   -1.17    1.16
 

   -1.17   -0.17   -1.17   -1.17   -0.17   -0.17

   -0.17   -1.17   -1.17   -1.17    1.16   -1.17

A
C
G
T









 
 
 
 



, 

 
where, e.g., the first entry equals log2(0.56/0.25)=1.16. The log-odds ratio (1.2) can now be used to 
score the three sequences used above by adding the corresponding entries of the scoring matrix 
 

          

log-odds( ) 1.16 1.16 1.16 1.42 1.16 1.16 7.22

log-odds( ) -0.17 - 0.17 - 0.17 1.42 - 0.17 - 0.17 0.57

log-odds( ) -1.17 1.16 1.16 1.42 1.16 1.16 4.89

= + + + + + =

= + =

= + + + + + =

ACAATC

TGCAGG

CCAATC

. 

 
The log-odds score accentuates the difference between the unlikely second sequence and the other two 
sequences, although also the second sequence has a positive score. This illustrates the importance of 
choosing a suitable threshold for deciding whether a sequence is a site or not. An example of an even 
more unlikely sequence is  
 
          log-odds( ) 6 1.17 7.02= ×− = −CTTGAT  
 
which indeed has a negative score, as one would expect. 

1.2.1. Sequence logos 
 
A visual representation of a weight matrix can be useful for the interpretation of a large set of 
sequences. A sequence logo displays the degree of consensus at each position as the total height of a 

                                                      
a A different cutoff can also be chosen, see the discussion of Bayes’ decision rule in section 1.3.3. 
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stack of nucleotides, along with the frequencies of nucleotides at that position, as the relative heights 
of letters in the stack (Figure 1). The total height of the stack at position j is calculated as follows:b 
 

          2
{ , , , }

1( ) 2 ( ) log
( )j

i A C G T j

H j P i
P i∈

= − ∑ .  (1.3) 

 
This function has a maximum of two if only one symbol occurs at position j (full consensus) and a 
minimum of zero if all four nucleotides are equally likely (no consensus). Formally, this is the relative 
entropy (1.23) of P and the uniform background distribution at position  j. The height of each 
nucleotide symbol in a stack is proportional to the relative entropy and the frequency of the nucleotide 
given by ( ) ( )jH j P i× . Symbols are stacked in order of increasing frequency starting from the 
bottom.  
 
As an example, we compute the relative entropy at the first position in weight matrix W:c 
 

          2 2 2
1 1 1(1) 2 0.8 log 2 0 log 0.2 log 1.28

0.8 0 0.2
H      = − − × − =     

     
. 

 

The first position is indeed relatively well conserved with an A in four sequences and a T in the 
remaining sequence. Figure 1 depicts the sequence logo corresponding to weight matrix W and an 
alternative representation called a Hinton diagram.5  

  

m        

 

Figure 1.  Left: Sequence logod of weight matrix W. One can easily read of the consensus sequence 
ACAATC. Right: Hinton diagram of weight matrix W. The area of each square is proportional to the 
value in the weight matrix.  

 
 

1.3. Dependencies and Markov Chains 
 
When using weight matrices one assumes that a symbol in any position is independent of symbols in 
any other position. In the English language, for example, this is not the case. An “a” followed by an 

                                                      
b You might want to look up the definition of (relative) entropy in Section 1.9.3 before reading on. 
c 20 log (1/ 0) 0× = . 
d Made with http://weblogo.berkeley.edu/ 

A 

C 

G 

T 
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“o” is far less common than would be expected from the frequent occurrence of each of them 
separately. Figure 2 gives a more general picture of this phenomenon. 

 
 
Figure 2. Conditional probability distributions: Hinton diagrams (a) P(y|x): Each row shows the 
conditional distribution of the second letter, y, given the first letter, x. (b) P(x|y): Each column shows 
the conditional distribution of the first letter, x, given the second letter, y. Text for estimating the 
estimating the probabilities was The Frequently Asked Questions Manual for Linux [From Ref. 14].  
If variables x and y were independent, all conditional distributions P(y|x) would be identical functions 
of y, regardless of x. 
 
Genome sequences also contain many such dependencies. An example is the distribution of CG 
dinucleotides along the human genome: CG-pairs are rarer in most parts of the genome than would be 
expected from the probabilities of C and G independently. Dependencies are not limited to 
neighbouring nucleotides but can also be longer-ranging. 

1.3.1. Dinucleotide frequencies 
 
How much dependence is there between dinucleotides (that is, adjacent nucleotides) in a DNA 
sequence? Since there are four nucleotides, there are 16 possible pairs of nucleotides. Let Pij be the 
frequency of the nucleotide i immediately followed by the nucleotide j. To calculate the frequencies of 
each such pair (i,j) in a sequence, one counts the total number of observed occurrences of i  followed 
immediately by j and then divide by the total number of pairs, which is the length of the sequence 
minus one. In addition let Pi be the frequency of nucleotide i in the single nucleotide distribution. The 
value 
 

          ij
ij

i j

P
s

PP
=   (1.4) 

 
gives a score representing the validity of the positional independence assumption. If sij =1, then the 
independence assumption is valid for nucleotide i followed by nucleotide j (1.18). As the deviation 
from one increases, the independence assumption becomes less valid. 
 
Example: This example calculates sij for M. jannaschii, which is a prokaryote that lives in extremely 
high temperature environments such as thermal springs. The ratios of the observed dinucleotide 
frequency to the expected dinucleotide frequency (assuming independence) in M. jannaschii:21 
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1.13 0.73 1.10 0.94
1.03 1.37 0.32 1.11
1.05 1.12 1.39 0.71
0.83 1.05 1.13 1.14

A C G T
A
C
G
T

 
 
 
 
 
 

 

 
with the nucleotide i indexed by row and the nucleotide j  indexed by column, where nucleotide i  

immediately precedes j in the sequence. Upon examination of the matrix, one can see that there are 
sizable deviations from one. For example the pairs (C,C) and (G,G) occur much more often than 
expected if they were independent, and (A,C), (C,G), and (G,T) occur much less often. Also, the 
diagonal entries show that two consecutive occurrences of the same nucleotide occur more often than 
expected.  

1.3.2. Markov Chains 
 
A simple way to incorporate such dependencies is to assume that each symbol depends only on the 
previous few symbols in the sequence; such models are called Markov chains. These were already 
presented in the introductory course.12 Here, we just give a brief reminder of the most important 
ingredients. 
 
Imagine that we want to make a probabilistic model of a set of sequences from a certain alphabet. The 
probability of a sequence 1 2... Nq q q can be written as  
  

1 1 1 1 1 2 1 1 1 1 1
2

( , ,..., ) ( | ,..., ) ( | ,..., )... ( ) ( | ,..., ) ( )
N

N N N N N N t t
t

P q q q P q q q P q q q P q P q q q P q− − − − −
=

= =∏  

 
by successive application of the product rule (1.16). In general, one does not want to model all these 
conditional probabilities. Markov chains correspond to a specific way of restricting this 
decomposition. In a Markov chain, the probability of a symbol only depends on the previous symbol:e 
 

   1 1 1 1
2

( , ,..., ) ( | ) ( )
N

N N t t
t

P q q q P q q P q− −
=

=∏ .         

 
In a Markov chain, the values that a random variable can take are called states. The probability to go 
from one state to another ( 1( | )t tP q j q i−= = ) is called a transition probability,f also written as ija .  
By adding an initial state q0=0 to the model, we can write the whole model in terms of transition 
probabilities:  
 

          1 1 1
1

( , ,..., ) ( | )
N

N N t t
t

P q q q P q q− −
=

=∏ .            (1.5) 

 
Similarly, we can also add an end state qN+1 to ensure that the end of a sequence is modelled, although 
it is often assumed that a sequence can end in any state. 
 
Two standard ways of representing Markov chains are matrices and graphs. Since a Markov chain is 
completely defined by its transition probabilities, it can be summarized by the transition matrix  
                                                      
e Actually, this is called a first-order Markov chain.  In an nth-order Markov chain each symbol depends on the 
previous n symbols (Section 1.6).  
f This is equivalent to the dinucleotide frequency defined above. 
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( )ijA a= .  This can also be depicted as a directed graph where the states are the nodes of the graph 

with directed edges of value ija  pointing from state i to state j.  Here is a simple example of a two-
state Markov chain: 
 
 

                

                      

0.2 0.8
 

0.7 0.3

x y

x
A

y
 

=  
 

 

 
 

 
 

The right-hand Markov chain explicitly includes an initial (I) and an end (E) state. 
  
Given a set of DNA sequences D, a simple Markov chain has five states (nucleotides A, C, G, and T, 
and the initial state). Transition probabilities are estimated by counting the number of times ijc  that 
nucleotide i is followed by nucleotide j in D:  
 

          
'

'

ij
ij

ij
j

c
a

c
=
∑

.  (1.6) 

 
The transition probabilities from the initial state are estimated by counting the number of occurrences 

id  of nucleotide i in D: 
 

          0
i

i
j

j

da
d

=
∑

.            (1.7) 

 
These are the maximum likelihood (Section 1.9.2) estimators for the transition probabilities. 

1.3.3. A different view on log-odds: Bayes’ decision rule 
 
Imagine that we estimated two Markov chains, one from a set of sequences corresponding to class A  
(of sites, for example) and a second one from a set of sequences corresponding to class B (of non-
sites). A collaborator gives us a new sequence 1 2... Nx x x x= and wants to know to which of the two 
classes his sequence is likely to belong. The best way to take such a decision is by selecting the class 
for which the probability of the class given the sequence is largest.1  This strategy which minimizes the 
probability of misclassification is known as Bayes’ decision rule: 
 
           is assigned to class     (class | ) (class | )x A P A x P B x⇔ > . 
 
Using Bayes’ theorem (1.17) this can be rewritten as 
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( | class ) ( ) ( | class ) ( ) is assigned to class     

( ) ( )
P x A P A P x B P Bx A

P x P x
⇔ >  

          
( | class ) ( )                                           
( | class ) ( )

P x A P B
P x B P A

⇔ > . 

 
Priors P(A) and P(B) represent the probability that a sequence belongs to class A or B, respectively, 
when nothing is known about the sequence itself. Priors correspond to the fractions of sequences in 
each class, in the limit of an infinite number of observations. Assuming the prior probabilities to be 
equal:g 
 

          
( | class ) ( | class ) is assigned to class     1    log 0
( | class ) ( | class )

P x A P x Ax A
P x B P x B

 
⇔ > ⇔ > 

 
. 

 
The term on the left-hand side of the last inequality is the familiar log-odds ratio (1.2). If the log-odds 
ratio is larger than zero, we can tell our collaborator that his sequence is likely to belong to class A 
otherwise class B is more likely.  
Unequal prior probabilities would justify a cut-off different from zero for the log-odds ratio. If we 
expect to see far more sequences of class B, say P(B)=0.7, than of class A, P(A)=0.3,  a cut-off of 
log(0.7/0.3)=1.22 should be chosen. This captures the idea that it is more important to make no 
mistakes on sequences from class B since they are more frequent.  
 
Since in our case class A and B were modelled with Markov chains, we can use (1.5) to rewrite the 
log-odds ratio as 
 

          

1

1

1
1 1

1 1
1

1

,

1 ,

( | )
( | )( | class )log log log

( | class ) ( | )( | )

                                log t t

t t

N

A t t N
t A t t
N

t B t t
B t t

t

AN
x x
B

t x x

P x x
P x xP x A

P x B P x xP x x

a
a

−

−

−
= −

= −
−

=

=

 
      = =        
 
 

 
=   

 

∏
∑

∏

∑

,     (1.8) 

 
that is, the log-odds ratio can be written as the sum of the log-likelihood ratios of corresponding 
transition probabilities.  
 
 
 
 

                                                      
g From now on, we will just write log instead of log2. 
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1.4. Hidden Markov Models 
 
Let us now extend the sequence ensemble introduced in section 1.1 with some insertions and gaps: 13 
 
 

You can think of this as being the result of a multiple 
sequence alignment, for example. Since not all sequences 
have the same length such a sequence ensemble cannot be 
summarized by a simple weight matrix. Profiles11 were 
introduced to deal with this problem. All of the profile 
methods are more or less statistical descriptions of the 
consensus of a multiple sequence alignment. They use 
position-specific scores for nucleotides (or amino acids) 

and position-specific penalties for opening and extending a gap. A disadvantage of most early profile 
methods is that the choice of scoring parameters is heuristic and requires careful craftsmanship.  In 
this section, we will see how an extension of Markov chains can be used to lay a sound probabilistic 
basis for profile methods.  
For a start, we could have come up with a regular expression describing the set of sequences 
[AT][CG][AC][ACGT]*A[GT][CG]. The term [ACGT]* means that any of the four symbols 
can occur any number of times; this term corresponds to the insertions and gaps. The regular 
expression can be interpreted as a Markov chain with seven states, one state for each term in the 
regular expression. The big difference is that while a state in a Markov chain corresponds to one 
symbol, here a state corresponds to several symbols. This is best captured by combining weight 
matrices and Markov chains in one model by making the states generate symbols according to a 
certain probability distribution.  
Such a model for the five sequences given above is shown in Figure 3. The first state corresponds to 
the term [AT], which in its turn corresponds to the first position of the multiple sequence alignment. 
The probability distribution in the first state is obtained by counting the number of times a symbol 
occurs at the first position: 4/5 for an A and 1/5 for a T. Similarly for the second position, the 
probability of C is 4/5 and for G is 1/5. The transition probability between state one and state two is of 
course equal to one .The more difficult case is the term [ACGT]* which is represented in Figure 3 
with the state above the other states.  This insert state corresponds to the positions 4-6 in the sequence 
ensemble: 
 
Three out of five sequences contain insertions, thus the transition probability from state three [AC] to 
state four is 3/5 and from state three to state five is 2/5. The probability of each letter on the insert state 
is found by counting all occurrences of the four nucleotides in this region. The total counts are one A, 
two Cs, one G, and one T, giving probabilities 1/5, 2/5, 1/5, and 1/5 respectively. Finally, for the 
transition probabilities going out of the insert state, we note that in total there are five transitions from 
the insert state: two more inserts in sequence two and three transitions to state five. The probability of 
staying in the insert state is 2/5 and the probability of going from the insert state to state five is 3/5. 
Like with weight matrices, we could estimate the probability of the consensus sequence (given the 
state sequence 1-2-3-4-5-6-7) 
 
          ( ) 0.8 1 0.8 1 0.8 0.6 0.4 0.6 1 1 0.8 1 0.8 0.047P = × × × × × × × × × × × × =ACACATC    (1.9) 
 
and also define a log-odds score.  
 
You can think of the model depicted in Figure 3 as a stochastic generator of DNA sequences. Starting 
from state 1, the generation of a sequence consists of drawing a nucleotide according to the probability 
distribution associated with state 1 (p(A)=0.8 &  p(T)=0.2). Then a new state is chosen according to 

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C
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the transition probabilities of state 1 to other states, which in the case of Figure 3 leaves only state 2, 
and so forth.  

 
Figure 3. Hidden Markov model derived from the alignment discussed in the text. A box is called a 
state. The state number and the corresponding terms of the regular expression are given below the 
states. Transitions are shown with arrows the thickness of which indicates their probability. In each 
state the histogram shows the probabilities of the four nucleotides [Adapted from Ref. 13]. 
 
 
In a standard Markov chain, each state uniquely corresponds to an observation (e.g., a nucleotide). In 
Figure 3 each state has an associated probability distribution of observations. This implies that if there 
is a C in a sequence generated by the model, we do not know whether it comes from state 2, 3, 4 or 7. 
The sequence of states is hidden from us and can only be observed indirectly through the probability 
distributions defined for each state. Such models are a well-known extension of Markov chains and are 
known as hidden Markov models (HMM).  
 
Formally a HMM consists of 
 

1. A set of states Q={0,1,2,…,S}, state 0 is the initial state. In general, the sequences we study 
have a finite length 1 2... NX x x x=  and the model is often extended with an end state 
qN+1=S+1. Since the role of initial and end states is to model the start and end of a sequence, 
they do not have an associated emission probability distribution. 

 
2. An alphabet K of symbols (observations), the size of the alphabet is denoted as M. 
 
3. Transition probabilities from state i to state j 
 
           1( | ),     0 , 1ij t ta P q j q i i j S−= = = ≤ ≤ + .  
 

These can be summarized in a S+2 by S+2 matrix ( )ijA a= . No transitions are possible to the 

begin state ( 0 0ia = ) and from the end state ( 1, 0S ia + = ). 
 

4. The emission probability distributions of state i 
 
            ( ) ( | )    ,  1ib x P x i x K i S= ∈ ≤ ≤ . 
 

Let us now have a look at an extreme case. If for each state there is only one possible transition, with 
probability equal to one in that case, the state sequence is fully defined and the model is a weight 
matrix defined by the emission probabilities. Indeed, hidden Markov models are a, hopefully useful, 
extension of the models we have seen in the previous sections. In our example, the set of states 
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Q={1,2,..7}, there are no initial and end states, the alphabet is K={A,C,G,T} of size M=4, and the 
transition probability matrix is the rather sparse matrix (empty entries are equal to zero) 
 

           1  2   3    4    5   6   7

1 1.0
2 1.0
3 0.6 0.4

 4 0.4 0.6
5 1.0
6 1.0
7

A

 
 
 
 
 

=  
 
 
 
 
 

. 

 
The emission probability distributions are given by the histograms inside each state (Figure 3). 
 
The three main problems that one would like to solve for an HMM are 
 
1. Evaluation: Compute the probability of an observed sequence, given the model. Solving the 

evaluation problem enables us, for example, to compare different models by calculating their odds 
ratio. 

2. Decoding: Given an observed sequence find a corresponding state sequence that is optimal in a 
meaningful sense. This can be used to align new sequences to a HMM that models the multiple 
alignment of a set of sequences. Another application is the prediction of genes in a sequence of 
unannotated DNA (section 1.7).  

3. Estimation: How to adjust the parameters (transition and emission probabilities) of the model to a 
given set of sequences?  

1.4.1. Evaluation 
 
Above, we could easily calculate the probability of the consensus sequence (1.9) since we knew its 
state sequence. This holds for any state sequence 0 1 2... NQ q q q q=  and observed sequence of symbols 

1 2... Nx x x x= .h First, using the product rule (1.16) 
 
          ( , ) ( ) ( | )P x Q P Q P x Q=    (1.10) 
 
The probability of a state sequence P(Q)  follows a  Markov chain and using (1.5)  
 

          1
1

( ) ( | )
N

t t
t

P Q P q q −
=

=∏ . 

 
The probability of an observed sequence given the state sequence is 
 

          1 1 1 2 1 1
1

( | ) ( | ,..., , ) ( | ,..., , )... ( | ) ( | )
N

N N N N t t
t

P x Q P x x x Q P x x x Q P x Q P x q− − −
=

= =∏  ,    

 
 

                                                      
h Note that, for ease of notation we do not include an end state here. It is easy to extend what follows with an 
explicit end state. 
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Figure 4.  Trellis for the calculation of the probability of a given observation sequence (CATA) and 
state sequence (0-2-1-3-2), 0 is the non-emitting initial state.   

 
 
since in an HMM, we assume that the observed symbol only depends on the current state. Eq. (1.10) 
can now be written as 
 
 

          
11 ,

1 1 1 1

( , ) ( | ) ( | ) ( )
t t t

N N N N

t t t t q q q t
t t t t

P x Q P q q P x q a b x
−−

= = = =

= =∏ ∏ ∏ ∏ .    (1.11) 

 
Indeed, the probability of the consensus sequence (1.9) is an example of the application of this 
equation. We say that the joint probability of the observed sequence and the state sequence factorizes.  
 
This computation can be visualized on a grid or trellis (Figure 4). Each node corresponds to a state qt  

at step t; hence, the size of the trellis is (N+1)×(S+1). The state sequence specifies a path through the 
trellis indicated by the arrows (or directed edges). The edges are weighted by the product of the 
corresponding transition and emission probability.  Eq. (1.11) now corresponds to following the path 
indicated by the arrows through the trellis and multiplying the associated weights. 
 
However, the state sequence is usually not known and the probability of an observed sequence has to 
be calculated over all possible state sequences (sum rule (1.15)): 
 
          ( ) ( , )

Q
P x P x Q=∑        , where Q has N+1 states.  (1.12) 

 
This means that we would have to consider all possible paths through the trellis. Doing this explicitly 
is computationally infeasible.i  With a clever rewriting we can limit the effort considerably: 
 

         
0 0

( ) ( , ) ( , )
S S

N
i i

P x P x q i N iα
= =

= = =∑ ∑ , 

 
where the forward variable 
  
         1 2( , ) ( ... , )t tt i P x x x q iα = = ,  
 

                                                      
i  Approximately 2 NNS  operations: there are NS  state sequences and for each of them calculating P(x,Q) 
using  Eq.(1.11) requires about 2N multiplications. 
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that is, the probability of having observed 1 2... tx x x  and being in state i at step t.  Forward variables 
can be calculated recursively. Using the sum rule and then the product rule (1 ,0 ,t N i j S≤ ≤ ≤ ≤ ):  
 

         
1.. 1.. 1

1.. 1 1 1.. 1 1

( , ) ( , ) ( , , )

         ( , ) ( , | , )

t t t t t
j

t t t t t t
j

t i P x q i P x q j q i

P x q j P x q i x q j

α −

− − − −

= = = = =

= = = =

∑

∑
. 

 
where 1.. 1 2...t tx x x x= . 
 
Since the observed symbol and the state at step t only depend on the previous state: 
 

         

1.. 1 1 1

1

          ( , ) ( , | )

          ( 1, ) ( | ) ( | )

         ( 1, ) ( )

t t t t t
j

t t t t
j

ji i t
j

P x q j P x q i q j

t j P q i q j P x q i

t j a b x

α

α

− − −

−

= = = =

= − = = =

= −

∑

∑

∑

. 

 
This is where the recursion comes in: calculating the forward variables at step t only requires the 
forward variables at step t-1.  
All sequences have to start in the initial state q0=0, so (0,0) 1α = . The resulting algorithm, called the 
forward algorithm is 
 
 
      
 
 
 
 
 
 
 
 
The forward algorithm is far more efficient than a naïve calculation. Computational complexity of the 
forward algorithm is on the order of 2NS  operations.j  The forward algorithm can also be visualized 
as a calculation on a trellis (Figure 5). 

1.4.2. Decoding 
 
The goal of decoding is to find a state sequence which best explains the observed sequence. The most 
widely used criterion is to find the most probable state sequence for sequence x: 
 

          
( , )( ) max ( | ) max max ( , )

( )Q Q Q
P x QV x P Q x P x Q

P x
= = = , 

                                                      
j There are about NS different alphas to calculate and each of them requires approximately S operations (see Ref. 
15 for more details). 

Forward Algorithm 
 
initialization:  (0,0) 1 ,  (0, ) 0 jα α= =  for 1 j≤  
recursion     :  ( , )  ( 1, ) ( )ji i t

j
t i t j a b xα α= −∑          (1 ,0 ,t N i j S≤ ≤ ≤ ≤ ) 

end               :  
0

( ) ( , )
S

i
P x N iα

=

=∑  
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Figure 5.   Forward algorithm on a trellis. The calculation of a forward variable only depends on the 

forward variables in the preceding layer: 
3

2 2 2
0

(2, 2) (1, ) ( )j
j

j a b xα α
=

=∑ . 

 
 
using the product rule (1.16). As with the forward algorithm, we want to find a way to do this 
recursively in order to find an efficient algorithm.  
 
          [ ]

0.. 1 0.. 1( ) max ( , ) max max ( , , ) max ( , )
NQ i Q N N iV x P x Q P x Q q i v N i
− − = = = =  , 

 
where, the Viterbi variable 
 
 
          [ ]

0.. 1 1.. 0.. 1( , ) max ( , , )
tQ t t tv t i P x Q q i
− −= = ,  (1.13) 

 
that is, the probability of having observed 1 2... tx x x  along the most probable path ending in state i at 
step t.  
The Viterbi variable can be calculated recursively using the product rule (1 ,0 ,t N i j S≤ ≤ ≤ ≤ ): 
 

          
[ ] [ ]{ }

[ ]{ }
0.. 1 1.. 2

0.. 2

1.. 0.. 1 1.. 0.. 2 1

1.. 1 0.. 2 1 1.. 1 0.. 2 1

( , ) max ( , , ) max max ( , , , )

          = max max ( , , ) ( , | , , )

t t

t

Q t t t j Q t t t t

j Q t t t t t t t t

v t i P x Q q i P x Q q j q i

P x Q q j P x q i x Q q j

− −

−

− − −

− − − − − −

= = = = =

= = =
. 

 
Using the definition of the Viterbi variable and the fact that the observed symbol and the state at step t 
only depend on the previous state: 
 
          [ ]1          = max ( 1, ) ( , | )j t t tv t j P x q i q j−− = = . 
 
Applying once more the product rule:  
 

          
[ ]1          = max ( 1, ) ( | ) ( | )

          = max ( 1, ) ( )

j t t t t

j ji i t

v t j P q i q j P x q i

v t j a b x

−− = = =

 − 
. 
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All sequences have to start in the initial state q0=0, so (0,0) 1v = .  This gives a recursive algorithm 
very similar to the forward algorithm, the main difference being that sums are replaced by a max 
operator. The Viterbi algorithm can again be visualized as a calculation on a trellis. As we fill in the 
trellis we also keep track of the node p(t,i) in the preceding layer from which the maximum v(t,i) 
originated. This enables us to find the optimal state sequence by backtracking. This is very similar to 
what you might already know from algorithms for pairwise sequence alignment. Both Viterbi and 
alignment algorithms are indeed examples of dynamic programming algorithms. 
 
The resulting algorithm, called the Viterbi algorithm for finding the optimal state sequence 

* * * * *
0 1 2... NQ q q q q=  is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The general principle behind the Viterbi algorithm is that the optimal path to node B at step t always 
consists of the optimal path from the begin state to a node at an intermediary step and the optimal path 
from there to node B. 
 
Let us have a look at a simple example (adapted from Ref. 9). In a casino a fair die is used most of the 
time but now and then they switch to a loaded die with a bias for sixes. This can be seen as an HMM 
with states F (fair), L (loaded) and 0 (begin state) with transition probabilities: 
 

          
0 0 0.5 0.5

0 0.95 0.05
0 0.1 0.9

A F
L

 
 =  
 
 

       and emission probabilities:      

      1    2     3    4    5   6

1 1 1 1 1 1:               
6 6 6 6 6 6
1 1 1 1 1 1:       

10 10 10 10 10 2

F

L

. 

 
We are now going to search the optimal state sequence for the observation sequence 3-1-4-6-6-6. 
The trellis corresponding to this sequence is shown in Figure 6. 
 
The example of Figure 6 also illustrates a typical problem of both the forward and the Viterbi 
algorithm as we have formulated them. The calculation of the forward and Viterbi variables consists of 
products of a large number of values less than one. For sufficiently long sequences, forward and 
Viterbi variables will become too small for floating point arithmetic. The forward algorithm can be 
made more robust by scaling intermediary values; the reader is referred to Ref. 15 for a detailed  
 

Viterbi Algorithm 
 
initialization  :  (0,0) 1 ,  (0, ) 0 v v j= =  for 1 j≤  
 
recursion       :  ( , ) max  [ ( 1, ) ] ( )j ji i tv t i v t j a b x= −          (1 ,0 ,t N i j S≤ ≤ ≤ ≤ ) 

                           ( , ) argmax  [ ( 1, ) ]j jip t i v t j a= −  
 
end                 :  ( ) max  [ ( , )]iV x v N i=  

                           * arg max [ ( , )]N iq v N i=  
 
backtracking:  * *

1( 1, )t tq p t q += +           ( 0 1t N≤ ≤ − ) 
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Figure 6.  Trellis of the Viterbi algorithm for a sequence from an occasionally dishonest casino. 
Upper: calculation of the Viterbi variables v(t,i) on the trellis. For example, v(2,L) = 
max[v(1,F)aFLbL(1) ,  v(1,L)aLLbL(1)]= max[(0.083×0.05×0.1 , 0.05×0.9×0.1] = 0.0045. Lower: arrows 
indicate the pointers for backtracking. The optimal state sequence is found by following the (bold) 
arrows back from the maximal value of 0.000037 till the begin state. This gives 0-L-L-L-L-L-L as 
optimal state sequence for the observation sequence 3-1-4-6-6-6. 

 
description. An elegant solution for the Viterbi algorithm is to do all calculations using logarithms. 

1.4.3. Estimation 
 
How to adjust the parameters (transition and emission probabilities) of a HMM to a given set of 
sequences? There are well-developed methods that find the maximum likelihood (Section 1.9.2) 
estimates of the parameters using the Expectation-Maximization (EM) algorithm (Section 1.9.5), in the 
context of HMMs also known as the Baum-Welch algorithm.15 To avoid overloading this chapter with 
more equations, I will not present the Baum-Welch algorithm in full but only give an outline of the 
basic ingredients. 
 
The problem we have to solve is to estimate values for the parameters θ of the HMM given a set of 
sequences D = {x1, ...,xn}. In Section 1.9.2 it is explained that a general method for doing this is to 
maximize the joint probability density, also called the likelihood. Assuming that the sequences are 
independent the likelihood of the parameters with respect to the data is: 
  

         

1

1

1

( ,..., | ) ( | )

                        ( , | )

n
n i

i
n

i

Qi

P x x P x

P x Q

θ θ

θ

=

=

=

=

∏

∑∏
, 

 
with Q a state sequence. Maximizing this likelihood is a difficult problem because of the sum over all 
state sequences. The Baum-Welch algorithm offers a way out and finds maximum likelihood estimates 
for the parameters of a HMM in reasonable time. Full details of the Baum-Welch algorithm can be 
found in Refs. 9 and 15. A disadvantage of the Baum-Welch algorithm is that it only guarantees 
convergence to a local maximum of the likelihood. Especially, for large HMMs with many states the 
likelihood surface is riddled with local maxima and which one you end up with depends strongly on 
the starting values of the parameters.  
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Figure 7. Structure of a profile 
hidden Markov model. 

 
 
 
 
 
 

 
 
The EM algorithm does give estimates for the parameters of the model but does not help us with 
another major problem: the choice of the structure of an HMM. In a certain sense, the two examples 
you saw above represent two extremes. The HMM for the occasionally dishonest casino is fully 
connected, that is, transitions are possible from each state to any other state (in our example, there are 
only two states). The HMM for a multiple alignment with gaps on the other hand is very sparse. 
However, which structure to choose for a given problem is more of an art than a science. An important 
guideline is that the number of parameters of the model should not be too large to be reliably estimated 
from the data at hand. Moreover, the structure of the model should have an interpretation in terms of 
our knowledge of the problem. This was certainly the case for the multiple alignment HMM as we will 
see in more detail in the next section. 

1.4.4. Profile HMMs 
 
At the beginning of this section, we saw an example of how a multiple alignment with gaps can be 
represented by a HMM. What we actually constructed is a simplified version of a so-called profile 
HMM (Figure 7).9,13 This model contains three different types of states indicated in the figure by 
squares, diamonds, and circles. The square shaped states are called match states, because they model 
the columns of the alignment. In these states the probability distribution is just the frequency of the 
nucleotides at the corresponding position in the multiple alignment, as in our example. States m0 and 
m5 are the begin and end state of the profile HMM. The diamond shaped states are insert states, which 
are used to model highly variable regions in an alignment. These are like state four in our example 
(Figure 3). The circular states are called delete states. Like the begin and end state, these are non-
emitting states. Delete states allow skipping one or more columns in an alignment, that is, to model the 
situation when just a few of the sequences have a ‘-’ in the multiple alignment at a position.   
 
A profile HMM can of course be used to model a “family” of sequences from a given reliable multiple 
alignment and search a set of sequences for other likely members of the family. The other principal 
use of a profile HMM is to align a new sequence to it. This can be done by finding the most probable 
state sequence in the profile HMM using the Viterbi algorithm. PFAM (Protein families database of 
alignments and HMMs) does exactly this to determine protein domains in a query sequence.k A more 
detailed description of these and other issues related to profile HMMs such as model estimation and 
non-global alignment can be found in Ref. 9. 

1.5. Intermezzo on gene structure 
 
The goal of gene finding algorithms is to predict the location and structure of all genes in a genome as 
reliably as possible. Weight matrices, Markov chains, and HMMs form essential ingredients of almost  

                                                      
k  https://www.ebi.ac.uk/interpro/ 
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Figure 8. Structure of a prokaryotic gene. The coding region of a prokaryotic gene consists of a single 
stretch of uninterrupted nucleotide sequence that encodes the amino acid sequence of a protein. 

 

 
Figure 9. Detailed structure of a eukaryotic gene [From Ref. 1]. Exons of most eukaryotic genes are 
interrupted by introns (noncoding sequences). Promoters for transcription are indicated in green. 
 
 
all state-of-the art gene finding algorithms. Before going into more detail, this section gives a short 
reminder of the structure of protein coding genes in prokaryotes and eukaryotes.12 
 
Prokaryotes  In prokaryotic cells, that is cells without a nucleus, most of the DNA sequence is 
coding for protein. A gene starts with the promoter region which is followed by a transcribed but non-
coding region called 5’ untranslated region (5’ UTR). Then follows the coding region delimited by a 
start codon (ATG) and a stop codon (TAA, TAG, TGA). It is followed by another non-coding region 
called the 3’ UTR. 
 
Eukaryotes  Gene structure and the gene expression mechanism in eukaryotes are far more 
complex than in prokaryotes. The protein coding region of the DNA is composed of alternating 
stretches of exons and introns. During transcription, both exons and introns are transcribed onto 
mRNA. Then splicing takes place: introns are excised from the mRNA sequence. Remaining mRNA 
segments, those corresponding to exons, are ligated to form a mature RNA strand. A typical multi-
exon gene has the structure shown in Figure 9. The gene starts with the promoter region, which is 
followed by the non-coding 5’ UTR. Then follows the initial exon which contains the start codon.l 
Following the initial exon, there is an alternating series of introns and internal exons, followed by the 
terminating exon, which contains the stop codon. It is followed by the non-coding 3’ UTR. At the end 
of the gene there is a polyA signal (often ATTAAA or AATAAA), which is followed by a 
polyadenylation site. This site ends the transcription after which a polyA tail is added to the mRNA. 
The problem of gene identification is complicated in the case of eukaryotes by the vast variation found 
in gene structure: number and length of exons, length of the untranslated regions, and length of 
introns. 

                                                      
l Sometimes, the start codon only occurs in the second or third exon. 
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1.6. Gene finding in prokaryotes: extensions of Markov chains 
 
Since the structure of prokaryotic genes is simple, one can hope for rather basic models being able to 
predict their location reliably. Like before, we could build a Markov chain for coding regions and a 
null model for non-coding regions and use the log-odds ratio to decide whether a stretch of sequence is 
coding or non-coding.  
A first problem of this approach is that in order to estimate the parameters of the coding region 
Markov chain, one needs a reliable set of coding regions in the first place. For prokaryotes there is an 
easy way out of this chicken and egg problem: just extract long open reading frames (ORF)m.  Since 
three of the 64 codons are stop codons, one would expect the mean length of an ORF to be around 20. 
Therefore, a sufficiently long (300-500 base pairs) ORF has a high probability of being a gene. A very 
reliable training set for the coding region Markov chain can be constructed by extracting long ORFs 
that do not overlap long ORFs in other reading frames. However, it turns out that a first-order Markov 
model is not very successful in locating genes.9 
 
We might draw inspiration from Markov chains as applied to human language. In his seminal paper 
“A Mathematical Theory of Communication”18 which laid the basis for the field of information theory, 
Claude E. Shannon gives a nice example of how a series of ever more complex Markov chains 
approaches the English language.  Some typical sequences in the approximations to English are given 
below. In all cases a 27-symbol alphabet was assumed, the 26 letters and a space. 
 
1. Zero-order approximation (symbols independent but with frequencies of English text). 
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL. 
 
2. First-order Markov (transition probabilities as in English). 
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT 
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE. 
 
3. Second-order Markov (transition probabilities as in English). 
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF 
THE REPTAGIN IS REGOACTIONA OF CRE. 
 
In a second-order Markov chain, the probability of a symbol depends only on the two symbols 
preceding it. This model does seem to give a better approximation of English than a first-order model. 
However, when applying a second-order model to prokaryotic gene finding results are hardly better 
than with a first-order Markov chain.9 Continuing with Markov chains of even higher order does not 
help much and, moreover, has the disadvantage of requiring a large training set for estimating the 
transition probabilities: a kth-order Markov chain on the nucleotide alphabet has 14k+  transition 
probabilities.  
 
Shannon continued by switching from letters to words as the states of a Markov chain. 
 
4. Zero-order word approximation. Words are chosen independently but with their appropriate 
frequencies. 
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE 
HE THE A IN CAME THE TOOF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE 
HAD BE THESE. 
 
5. First-order Markov (on words). Word transition probabilities are as in English. 
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF 
THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO 
EVER TOLD THE PROBLEM FOR AN UNEXPECTED. 
 

                                                      
m A sequence of codons without stop codon. 
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Figure 10.  An inhomogeneous Markov 
chain consisting of three fifth-order Markov 
chains. Circles represent consecutive 
nucleotides, numbers indicate the codon 
position, and the arrows indicate that the 
probability of a nucleotide depends on the 
five preceding nucleotides [Adapted from 
Ref. 8]. 

 
 

 
 
In the last example, sequences of four or more words can easily be placed in grammatically correct 
sentences. There is even an understandable sequence of ten words: “attack on an English writer that 
the character of this”. The equivalent in the DNA alphabet of Shannon’s first-order Markov model on 
words is a Markov chain on codons, and hence with 64 states. Such a model performs reasonably well 
in locating prokaryotic genes.9 One of the reasons for the good performance is that the codon-based 
model better captures an organism’s preference for a specific codon over other codons that encode for 
the same amino acid.  
 
A related approach also tries to model codon statistics, especially the fact that the three codon 
positions in most organisms have quite different statistics. Therefore, it is natural to construct three 
different Markov chains, one for each of the three possible codon positions (Figure 10). Such a model 
is called an inhomogeneous Markov chain and is used in several state-of-the-art prokaryotic gene-
finding methods such as GeneMark6 and Glimmer.16 Both methods use a fifth-order inhomogeneous 
Markov chain to find coding regions. This choice allows any nucleotide to depend on all the 
nucleotides in its codon and the immediately preceding codon.  
Estimation of the parameters of an inhomogeneous k-th order Markov chain is done separately for 
each of the three component models. For any of the three codon positions, this is done by counting the 
occurrences of all substrings of length k+1 ending in that codon position. As already indicated above, a 
kth-order Markov chain requires estimating 14k+  transition probabilities, that is, 4096 parameters for 
k=5. An inhomogeneous Markov chain consists of three separate such chains and, therefore, has more 
than 12.000 parameters. Each of these 12.000 substrings of length six must occur often enough in the 
training set to support a statistically reliable sample. Some substrings of length five are already too 
infrequent in prokaryotic sequences, yet some substrings of length eight are frequent enough to be 
statistically reliable. Glimmer16 uses a so-called interpolated Markov chain, in which a high-order 
model is used in contexts where enough data is available and a lower-order model for infrequent 
substrings. 

1.7. HMMs in Eukaryotic Gene Finding 
 
The problem of predicting the location and structure of all genes in a eukaryotic genome is far more 
difficult, for two main reasons. Firstly, coding density in eukaryotic genomes is much lower than in 
prokaryotic genomes. In the prokaryote H. influenzae, 85% of the genome is in coding regions, 
whereas in fly and worm only 25% of the genome is in coding regions, and the number falls to just a 
few per cent in humans.20  An additional complication is the presence of splicing (Figure 9). In the 
human genome, a typical exon is 150 base pairs long and a typical intron several kilobases, and there 
is no clear delineation between the intergenic regions that separate adjacent genes and the intragenic 
regions that separate exons. Defining the precise start and stop position of a gene and the splicing 
pattern of its exons among all the non-coding sequence is very difficult. 
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Figure 11.   HMM representation of the regular 
expression P 5U E (I E)* 3U pA 

 
 
 
When trying to predict eukaryotic gene structure, there are many different signals that can be taken 
into account: promoters, acceptor and donor splice sites, codon bias, and polyA site all give some clue 
about gene structure. However, any isolated signal of a gene is hard to predict. Current methods for 
promoter prediction, for example, either predict a large number of false positives or a small proportion 
of true promoters.3 It turns out to be a far better approach to incorporate all these different signals into 
one consistent model. Splice site prediction, for instance, can be greatly improved when not only 
modelling the splice site itself but also the coding exon region next to the splice site. This approach 
can rule out candidate splice sites that are not adjacent to something looking like a coding region.  
 
Therefore, state-of-the art gene finding methods all predict whole gene structures from a combination 
of different modules. The modules are often made up of models we have seen in the previous sections. 
Weight matrices, first- and higher-order Markov chains, inhomogeneous and interpolated Markov 
chains are all used as building blocks of current gene finders. How to combine these modules into one 
consistent model? We start by observing that a combination of modules has to follow certain rules 
since all eukaryotic genes have a particular structure (Figure 9). This structure is defined by what we 
could call the grammar of a gene. If you consider exons and introns as the ‘words’ in language, the 
sentences are of the form exon-intron-exon-intron ... intron-exon. The sentences can never start or end 
with an intron, for example. We could even come up with a regular expression describing the structure 
of a gene in more detail: 
 
  promoter 5’UTR exon (intron exon)* 3’UTR polyA     (1.14) 
 
As we have seen in Section 1.4, such a regular expression can be represented by a hidden Markov 
model. A HMM corresponding to the above regular expression is given in Figure 11. Thus, all theory 
developed for HMMs can also be applied to the problem of gene finding. For example, one can predict 
genes in a sequence of anonymous DNA by finding the optimal path through the HMM with the 
Viterbi algorithm. When this path goes through an “exon” state, an exon is predicted, when it goes 
through a 5’UTR state, a 5’ untranslated region is predicted, and so on. 
 
State-of-the-art gene finders do not have as simple a structure as the one shown in Figure 11. They 
often include a module that ensures frame consistency throughout a gene. This is necessary because a 
single codon may be split between two exons: the reading frame in one exon has to fit the one in the 
next. This can be handled by creating three different intron states, one for each reading frame.13 A 
good example is the HMM used in GenScan,7 one of the best ab initio gene finding algorithms, shown 
in Figure 12. Though considerably more complex than our simple diagram, basic principles are more 
or less the same. 
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Figure 12. A hidden Markov model explicitly models the probabilities for the transition from one part 
of a genomic region to another. In this model, used by the GENSCAN algorithm, each circle or 
diamond represents a functional unit of a eukaryotic gene. E=exon; I=intron; UTR=untranslated 
region; pro=promoter. For example, Einit is the initial exon (from start codon to donor splice site) and 
Eterm is the last exon (from acceptor splice site to stop codon). The upper half of the figure corresponds 
to states of a gene on the forward strand (indicated with superscript +). States that occur below the 
dashed line correspond to a gene on the opposite strand (indicated with superscript -). Arrows 
represent the probability of a transition from one state to another. [From Ref. 20]. 
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1.9. Appendix 
 

1.9.1. Probabilities 
 
First some notation: 
 

( )iP x a=  denotes the probability that random variable x takes on value ia  from a possible set of 
values 1 2{ , ,..., }Na a a . Often the random variable is clear from the context and we will just write  

( )iP a  or  ip  with 0ip ≥  and 
1

1
N

i
i

p
=

=∑ . 

 
The joint probability of two random variables x and y is denoted as ( , )i jP x a y b= = . The 

conditional probability that y equals ia , given that x equals jb is denoted as ( | )i jP x a y b= = . Often 
the specific value of the random variable will not be specified explicitly and we will just write P(x), 
P(x,y), and P(x|y). 
 
Probabilities obey the following basic (and intuitive) rules: 
 
Sum rule   
                       

          
( ) ( , )

y
P x P x y=∑   (1.15) 

 
This is called the marginal probability. 
   
Product rule 
 

          ( , ) ( | ) ( ) ( | ) ( ) ( , )P x y P x y P y P y x P x P y x= = =      (1.16) 
 
 
Bayes’ theorem  A straightforward consequence of the sum and product rule is Bayes’ rule: 
      

          

'

( | ) ( ) ( | ) ( )( | )
( ) ( | ') ( )

x

P y x P x P y x P xP x y
P y P y x P x

= =
∑

.    (1.17) 

 
Independence  Two random variables x and y are independent if and only if 
 
          ( , ) ( ) ( )P x y P x P y= .        (1.18) 
 
Expectation  The expected value of a function f(x) with x a random variable is 
 
          [ ( )] ( ) ( )

x
E f x P x f x=∑   (1.19) 
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Above, we assumed the random variables to be discrete; what happens of they are continuous? Then, 
the probability that random variable x takes on a specific value is in general zero. It makes more sense 
to look at the probability that x takes on a value in a certain interval: 
 

          ( ) ( )
b

a

P a x b p x dx≤ ≤ = ∫  

where p(x)  is the so-called probability density function with properties  ( ) 0p x ≥  and ( ) 1p x dx
∞

−∞

=∫ .  

 
The basic probability rules given above are easily adapted to the case of continuous random variables 
by replacing sums by integrals.  

1.9.2. Maximum likelihood  
 
An example of a discrete probability distribution is the Bernoulli distribution of an experiment having 
two possible outcomes labelled by x = 0 and x = 1 in which x = 1 ("success") occurs with probability p 
and x = 0 ("failure") occurs with probability 1−p. The probability density function of the Bernoulli 
distribution is: 
 
          1( ) (1 )x xP x p p −= −   (1.20) 
 
An example of a continuous probability distribution is the Gaussian or normal distribution, the 
probability density function of which is defined as: 
 

          
2

22

1 ( )( ) exp
22

xp x µ
σπσ

 −
= − 

 
  (1.21) 

 
 
Both distributions have parameters, the probability of success p for the Bernoulli distribution and the 
mean μ and standard deviation σ for the normal distribution. In general, the values of these parameters 
are not known and have to be estimated from data x1, ...,xn. Maximum likelihood gives a general 
method for doing exactly this by maximizing the joint probability density, also called the likelihood. 
For the Bernoulli distribution (1.20) the likelihood of p with respect to x1, ...,xn is (assuming the data to 
be independent (1.18)): 
  

         
1 1

1 1

11
1 1

1

( ,..., | ) ( | ) (1 ) ... (1 )

                                        (1 )                 

n n

n
x xx x

n n i
i

n n n

P X x X x p P x p p p p p

p p

−−

=

−

= = = = − −

= −

∏ , 

           
where n1 is the number of successes. The likelihood is a function of parameter p which can be 
maximized by taking the derivative with respect to p and solving the equation: 
 

         
1 1( (1 ) ) 0

n n nd p p
dp

−−
= . 

 
Some algebra leads to the estimate p = (n1 / n), that is, the probability of success is the number of 
successes among the outcomes divided by the total number of outcomes, which makes sense.  The 
maximum likelihood estimates for the parameters of the normal distribution are the sample mean and 
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the sample variance. In general, the maximum likelihood solution cannot be found by analytical means 
but require iterative procedures such as those discussed in the chapter on local optimization. 

1.9.3. Entropy 
 
Information theory is the discipline analyzing the related concepts of information content, 
compression, communication, and coding. Information theory is based on the following basic 
definitions.14  
 
Information content is a measure of the number of bits needed to encode the outcome of ix a=  from 
possible values 1 2{ , ,..., }Na a a : 
 

          2
1( ) logi

i

h x a
p

= = . 

 
Intuitively this makes sense, which can be seen by looking at an extreme case. If one outcome ia  
occurs with a probability of one and all others with probability zero, the most compact encoding 
would be to code outcome ia  with zero bits and all other outcomes with infinitely many bits. This can 
also be interpreted as outcome ia  giving no extra information at all, since we already knew the 
outcome in advance.   
 
Entropy measures the average information content, that is, the expected number of bits needed for 
encoding a set of possible values 1 2{ , ,..., }Na a a : 
 

          2
1

1( )  log
N

N i
i i

H x p
p=

=∑   (1.22)  

 
In the case of just two outcomes, this boils down to the 
binary entropy function 
 

          2 2 2
1 1( )  log (1 ) log

(1 )
H x p p

p p
= + −

−
 

 
shown in Figure 13.n Indeed, as you would expect, the 
maximum of the entropy function occurs if both 
outcomes are equally probable and the minimum if one of the outcomes has a probability of one. 
 
 
 
Jensen’s inequality  A function is convex over an interval (a,b) if for all 1 2, ( , )x x a b∈  and 
0 1λ≤ ≤ , 
 
          1 2 1 2( (1 ) ) ( ) (1 ) ( )f x x f x f xλ λ λ λ+ − ≤ + − . 
 
This is the formal definition of convexity but you mainly need to remember that a convex function is 
∪-shaped. Examples of such functions are 2 , ,  and log(1/ )xx e x .o 

                                                      
n 20 log (1/ 0) 0× =  and 20 log (0) 0× = . 
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Figure 13. Binary entropy function. 
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For a convex function  f , Jensen’s inequality is often useful: 
 

           
1 1

( )
N N

i i i i
i i

p f x f p x
= =

 
≥  

 
∑ ∑ , 

 
with equality only if P is uniform, that is, 1/ip N= . 
 
Relative entropy   Until now we only defined the entropy of one probability distribution, but often we 
would like to compare two distributions over the same alphabet. This concept is captured by the 
relative entropy or Kullback-Leibler divergence: 
 

          
1

( || )  log
N

i
KL i

i i

p
D P Q p

q=

= ∑ .  (1.23) 

 
The relative entropy satisfies Gibbs’ inequality 
           
          ( || ) 0KLD P Q ≥           (1.24) 
 
with equality only if  P=Q. The relative entropy measures how different the distributions P and Q are. 
 
Proof Gibbs’ inequality can be proven using Jensen’s inequality. Choose ( ) log(1/ )f y y=  as 
convex function and /i iy p q= . Then 
 

          

1 1

1

( || )  log

1                 log log(1) 0

N N
i i

KL i i
i ii i

N
i

i
i i i

i

p qD P Q p p f
q p

qf p
p q

= =

=

 
= =  

 

 
   ≥ = = =      

 

∑ ∑

∑ ∑

 

 
with equality only if P/Q is uniform, that is, if P=Q.              □ 
 

1.9.4. Lagrange multipliers  
 
Consider the problem of finding extremes of a function 1 2( , )f x x  subject to a particular constraint of 
the form 1 2( , ) 0g x x = . A general technique for dealing with such problems is the introduction of 
Lagrange multipliers.  
From a geometric perspective, the constraint 1 2( , ) 0g x x =  is a curve (Figure 14). From the previous 
chapter on math review, we know that g∇  is perpendicular to the constraint curve. It so happens that 
at an extremum of  f,  f∇  points in the same direction as g∇ : 
 
        f gλ∇ = ∇ ,  (1.25) 
 
where λ  is called a Lagrange multiplier.  
                                                                                                                                                                      
o From now on, we will just write log instead of log2. 
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A simple example illustrates that this is all we need to find extremes of a function subject to a 
constraint. Define 1 2 1 2( , )f x x x x=  and the constraint 1 2 1 2( , ) 1 0g x x x x= + − = , then Eq. (1.25) 
gives the following linear system: 
 

          2
1 1

f g x
x x

λ λ∂ ∂
= ≡ =

∂ ∂
  

 

           1
2 2

f g x
x x

λ λ∂ ∂
= ≡ =

∂ ∂
. 

 
Together with constraint 1 2 1 0x x+ − = , we have three equations and three unknowns and solving 

these three equations gives the maximum ( )1 1,1 1 2 2( , )x x = . 

 
Figure 14. Geometrical picture of the main ingredients of Lagrange multipliers [From Ref. 1]. 

   

1.9.5. Expectation-Maximization Algorithm 
 
The Expectation-Maximization (EM) algorithm is a general approach for dealing with maximum 
likelihood estimation in the presence of hidden variables. We start out with the log-likelihood with 
respect to the data D={x1, ...,xn} and introduce an arbitrary distribution q over the hidden variables z 
through the sum rule (Eq. (1.15)): 
 
           log ( ) log ( ) ( ) log ( )

x x z
p D p x q z p x= =∑ ∑∑ . 

 
Now using the product rule (Eq. (1.16)): 

g∇  

1x  

2x  

f∇  

1 2( , ) 0g x x =  



  ©2022 Perry D Moerland 

 30 

           

joint post

( , ) ( , ) ( )( ) log ( ) log 
( | ) ( | ) ( )

( , ) ( )( ) log ( ) log 
( ) ( | )

( , ) ( || )

z z

z z

KL

p x z p x z q zq z q z
p z x p z x q z

p x z q zq z q z
q z p z x

F p q D q p

 
= = × 

 

   
= +   

   

= +

∑ ∑

∑ ∑                    (1.26) 

 
where in the last step we used the definition of relative entropy (1.23) and defined pjoint and ppost. As all 
of you who studied statistical physics already guessed, the first term is known as the free energy, 
which is why it has been denoted as F.  
What is all this formula juggling good for? It provides us with a simple two-step iterative procedure to 
maximize the likelihood (θ denotes the parameters of the model). 
 
EM Algorithm:p 
 
loop 

joint post{log( ( | )) ( , ) ( || )}KLp x F p q D q pθ = +  

E-step:    new
post( | ) ( | )q z x p p z x= =  

new new
joint post{log( ( | )) ( , ) since ( || ) 0}KLp x F p q D q pθ = =  

M-step:   maximize F(pjoint,qnew) with respect to the parameters θ of the model 
new new

joint{log( ( | )) ( , ) log( ( | ))}p x F p q p xθ θ≥ ≥  
end 
 
Each iteration is guaranteed to increase the likelihood unless it is already at a local maximum. The 
algorithm is illustrated in Figure 15.  

 
Figure 15. Expectation-Maximization algorithm for maximum likelihood estimation.  

 

                                                      
p Text between curly brackets {} in the pseudo-code denotes comments/annotation. 

KLD  

E-step M-step 

( , )F p q  

KLD  

( , )F p q  

( , )F p q  log(P(x | θ)) 

log(P(x | θ)) 
log(P(x | θ)) 
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The M-step is often reformulated; maximizing F(pjoint,qnew) with respect to the parameters θ of the 
model can be written as 
 

          

new new
joint

,

,

: arg max ( , | )

( , | )       arg max ( | ) log 
( | )

       arg max ( | ) log ( , | )

x z

x z

F p q

p x zp z x
p z x

p z x p x z

θ

θ

θ

θ θ

θ

θ

=

 
=  

 

=

∑

∑

. 

 
 
Using this rewrite the EM algorithm consists of iterating: 
 
E-step: post ( | , )p p z x θ= , that is, calculate the distribution of the hidden variables given the data 
 and the model parameters. 
 
M-step: 

,
arg max ( | ) log ( , | )

x z
p z x p x z

θ
θ∑ , that is, maximize the expected (with respect to hidden 

 variables) log-likelihood of the complete data. 
 
  
Example  A very simple model with one hidden variable is a 2-component mixture model which 
is the weighted sum of two probability density functions: 
 
          1 1 2 2( ) ( | ) ( | )p x m p x m p xθ θ= + . 
 
The mixing coefficients m1 and m2 sum to one and describe the probability that data is generated from 
mixture component p1 and p2 , respectively. Estimating values for parameters θ, m1, and m2  given data 
D would be easy if for each data point, we also had a label indicating to which of the two mixture 
components it belongs. Maximum likelihood estimation can then be done for each component 
separately for “its” part of the data. However, we do not have such a label, this is the hidden variable 
z∈{1,2} of the mixture model. These labels being hidden make it a suitable problem for the EM 
algorithm. The E-step for component  j∈{1,2}  and data point x can then be written using Bayes’ rule 
as: 
 

          
( | )( | ) ( | , )( | , )

( | ) ( )
j jm p xp z j p x z jp z j x

p x p x
θθ θθ

θ
= =

= = = . 

 
This can be interpreted as a sort of “responsibility” that each component takes for a data point. Using 
these responsibilities the M-step tries to find new estimates for the parameters θ by maximizing: 
 
          

, {1,2}
( | ) log ( , | )

x z
p z x p x z θ

∈
∑ . 

 
For many probability density functions this is relatively straightforward since in this expression the 
label z is not hidden anymore. See, for example, Ref. 5 for a detailed derivation of the parameter 
estimates for a mixture model of Gaussian component densities. 
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