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Selected topics

Famous classifiers
« Artificial neural networks
« Support vector classifiers
 Classifier combination

The fundamental pattern recognition trade-off
« Complexity

Recent developments



Artificial neural networks



Artificial neural networks (2)

Large, densely interconnected networks
of simple processing units
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Artificial neural networks (3)

Inspired by the brain




Artificial neural networks (4)

Research started in the 1950s

Took off after 1986 — big hype for about 10-15 years . eoog««‘@“\
* brought together psychologists, neurologists, \@w«zc;jj@e"p“(
philosophers, machine learners, statisticians... e(\d\o;‘;fd\“’e
+ helped thinking about, among others, 6&\16»\\;:*%\\@««@%
pattern recognition o Qeo;a;z;ove‘s
. resulted in a lot of grant money &%
From 2005/2009 — renewed interest
« Extension to deep learning (deep nets)
- Advances in hardware (GPUs) made it possible to learn these
networks
» Major steps in performance improvement (10%)
- Development of several toolboxes Keras/Tensorflow/Theano/ .. :::

World attention, also from outside Machine Learning field B‘°SB



History

1943
1958
1960s
1969

1982

1986
1997

2006
2009

McCulloch and Pitts: model of neuron
Rosenblatt: perceptron
Rosenblatt, Nilsson work on perceptrons

Minsky and Papert point out limitations:
perceptrons are linear

Hopfield network (associative memory),
Kohonen’s self-organising map (clustering),
Fukushima’'s Neocognitron (vision)

Rumelhart, Hinton and Williams:
training of nonlinear networks

Hochreiter and Schmidhuber introduce Long Short-
term memory (LSTM), recurrent neural net

Hinton showed effective training one-layer at a time

Nvidia involved in “big bang” of “deep learning”, 100x
time improvement

"BiosB



McCulloch-Pitts model (1943)

schematic of bielogical neuron.




McCulloch-Pitts model (2)

weights inputs

> | output o, = (Zvlvyij - T]

threshold or bias

\VW/4

1 a=0
Pla) = 0 4<0 j transfer function
| «— or
q) = activation function
Pa) 1+exp(—a) /

“Fire” if total input exceeds a threshold B‘°SB




Perceptron

Networks of McCulloch-Pitts models can perform
universal computation, given the right weights w:
it can do anything a binary computer can do

...but how can we find the right weights w ?
Rosenblatt (1958): possible for single layer networks,

perceptrons
o, O—

o O—»



Perceptron (2)

Goal:

X @
o(x)=g(w' x+b) N
>0 xewm X 0@y ’@_’0
4
<0 xeon, / |
) X @ b

Trick #1: add bias as weight with constant input

11 [b]
p— ,v:
¢ X wlr=o0(z)=v'z
da)y=a |
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Perceptron (3)

For classification, set targets ¢ for every input vector z:
tew: qg=1
tew,: qg=-1

Trick #2: use targets
to obtain single criterion

)
;>0 zew
o(z)=v'z54
<0 zeow,
\
=vz-g>0

:>va>0, y=2'q



Perceptron (4)

Goal: zero misclassifications, i.e. val. > () Yi

Gnaptent DESCENT

Criterion to minimize: J(v) = Z (—vai) Sa 4
y;ey ‘. v |
where V is the set of misclassified samples [ & kL
Can use gradient descent: 8J(v)/8v — Z (_.Vi)
y;ey
v+ p Z \Z batch update
k+1 k J(V)
y =y — IO d — < y.€Y
g \vk +P0Y, YV E y single update

Criterion is somewhat arbitrary, could also count misclassifications




Perceptron (7)

Perceptron is a trainable two-class linear discriminant
(extendable to multiple classes)

Training algorithm can be proven to converge
to correct solution for separable classes

When classes are not linearly separable:
* indefinite training, weights will blow up
» solution: decrease p during training, po(k), or early stopping

"BiosB



Perceptron (8)

Minsky & Papert (1969): perceptrons are limited

The XOR problem cannot be
O O solved by a linear discriminant
such as the perceptron

HOr—AOjﬁ
—— O O
> T >

4? ®

When classes are nonlinearly separable:
« nonlinear transfer functions
- multilayer perceptron — but how to find weights...?
* Rumelhart et al. (1986): use the chain rule!

This did in fact take twenty years...

"BiosB



Multilayer perceptron (MLP)

Stacked perceptrons: feedforward networks
Each unit has a nonlinear transfer function,

1
1+ exp(—a)

e.g. the sigmoid or logistic function ¢(a) =

"BiosB



Backpropagation training

Method to distribute weight updates through the network

Criterion: error E, difference between network output and targets
(mean square error between output and target Y.(e; — 0;)?)

Initialize weights w to small random values
While not converged, e.g. while |E°“ — E|/E>E, = 10°,
or while error on validation set decreases:

- select a training sample x;

- for each weight w
calculate OE /ow

, a>>p: keep moving in previous direction
setw=w-p OE / ow p>>a: adapt to new direction

(with p a learning rate, e.g. 0.01)

or use a momentum term,

w =w-pOE/ow—a [8E / Gw]pm
_:"BioSB



Backpropagation training (8)

Example: two weights




Backpropagation training (9)

» Learning rate controls oscillation and speed

p=1:>100 iterations p=0.1: 52 iterations

In practice, not easy
(imagine doing this for thousands of weights)




Backpropagation training (10)

* Momentum uses a bit of the previous step

__ _ _ _10 L L L |
15 10 > 0 5 -15 -10 5 0 5

p=0.1,a=0.5: 29 iterations  p=10.5, a =0.5: >100 iterations

Right: learning rate to large , so oscillations start occurring again ...
Also option to make learning rate dependent on time : p(t)




Other training algorithms

Backpropagation training

IS simple gradient descent,
but implemented in a useful
way: all updates can be
calculated locally (in parallel) — E(w)

Other view: simply optimize MSE FE w.r.t. weight vector w
using any optimization routine, e.qg.

« second order (Newton, pseudo-Newton)

* conjugate gradient descent

« Broyden-Fletcher-Goldfarb-Shanno (BFGS)

« Levenberg-Marquardt (LM, in PRTools)

"BiosB



Multilayer perceptrons (2)

Choices:
- targets (0/1, 0.1/0.9, 0.2/0.8) ¢
- number of hidden layers
- number of units per hidden layer »,
* transfer functions ¢ (a)
- initialisation w(©®
* training algorithm
- parameters (learning rate p etc.)
- convergence decision £, or test set selection

All of these influence results!

“Training ANNSs is more of an ART than a science’

"BiosB



Multilayer perceptrons (3)

o—1
Number of weights = number of parameters = > (n, + 1)n,,,
[=1

e.g. for p =10, C=2, 2 20-unit hidden layers:
(10+1)-20+(20+1)-20+(20+1)-2 = 682 parameters

Per node: #parents+bias node (n, + 1)

Danger of overtraining!

Prevention:
* use small networks
- regularize: minimize E(w) + /IHWH
- small w’s: low complexity, training slowly increases w’s;
so when stopping in time: automatic regularization!

Regularization is a form of complexity control (discussed later)

"BiosB



Multilayer perceptrons (4)

Initialization still important

Examples: 1 hidden layer
of 3 units,
2 initialisations
0.25 s
0.2 .
w 0.15
(7]
=
0.1
0.05

0o 100 200 300 400 500
iterations

2 hidden layers
of 5 units each,
2 initialisations




ANNs for regression

Feedforward ANNSs are universal approximators

- Classification: input x, targets y = 0/1, 0.1/0.9

- Regression: input x, output y

Examples:

Y

A

1 hidden unit ¥
(sigmoid)

2 hidden units X

2x5 hidden units *



Autoregressive ANNs / Autoencoder

Feedforward ANNs that predict their input
Bottleneck layer: feature extraction

If linear (as in this example) : then we are performing PCA !l | .=+




Autoregressive ANNs / Autoencoder (2)

With multiple hidden layers:
nonlinear feature extraction

X, X
X1 @ X1
e O
[ ] [ Y ]
e [ ]
( }
[ )
X @ X -
X1 X,
A 4
—-0—0—0—0—00—00



Deep learning
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Many hidden layers, learn by auto-encoding
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NOW not necessary anymore to learn by autoencoders

With GPUs you can use Backpropagation again (fast enough)




Deep learning
Learning features

Deep neural
networks learn
hierarchical feature
representations




Deep learning

Convolutional Neural Networks (1)
32x36 14x16  5x6 Ixl1 1xl




Deep learning
Convolutional Neural Networks (2)

Cl 9
Input image 10@ 5%5 2%2 3 F5
| 60x60x16 | | 36%56x10 | 2828 10 5@ 3x3 bd 3@ 13x13x5
e 2%2
- ‘ 26%X26%5 | | Ix1x%3 |

-___---‘-'
-
b =

Fully-connected

Convolution

12 120|130 | 0

8 [12 2 | 0 | 2x2Max-Pool |20]30

34 (70 | 37| 4 112 37

- amount of layers ] |

+ use of pre-trained networks (on another problem)



Deep learning
Convolutional Neural Networks (3)

Convolutional Encoder-Decoder

Output

Pooling Indices

Y

RGB Image I conv + Batch Normalisation + ReLU Seg mentation
I Pooling [ Upsampling Softmax

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its
input using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank
to densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

RELU SOFTMAX




Deep learning
Convolutional Neural Networks (4)
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Radial basis function ANNs

Feed-forward ANNs with

2
. L : -1 1
« Squared distance activation functions a; = Hx -w’ ‘

: : o—1 o—1 2 o—1
» Gaussian transfer functions z7~ = N(u=a’ ,0" =w; )

o—1
a, Zl?—l
X @ 2
X, @
x; @ o
Wo-
o—1
Wo

"BiosB



Radial basis function ANNs (3)

Example: classification

& * L * - ¥ 4
+ * . & +

_ | \

2 hidden units 5 hidden units 10 hidden units




Other types of ANN

Large number of feedforward variants
 cascading correlation (self-constructing)
« Neocognitron (for vision)
- time-delay (for speech and image analysis)

Self-organising maps and GTMs:
- feature extraction, clustering

Hopfield networks:
 associative memories, optimisation

Boltzmann machines, Bayesian networks:
 conditional probability models

"BiosB



Recapitulation

Perceptrons are “neuron-inspired” linear discriminants

Multilayer perceptrons and radial basis function
feedforward ANNSs are trainable, nonlinear discriminants

Feed-forward ANNs in general can be used for
classification, regression and feature extraction

There is a large body of alternative ANNs

Key problems in the application of ANNs are
choosing the right architecture and good training parameters
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Support vector classifiers



Vapnik

Performed foundational work in pattern recognition
with Chervonenkis in Russia from the 1960s

Motto:

When you have limited training data,
and you want to solve a classification problem,
avoid solving a more complicated intermediate problem

Translation to classification:
when you want to find a discriminant, avoid estimating densities



Maximum margin classifier

Simple problem: 2 linearly separable classes
 Whatis a good linear classifier?
*  What is the best linear classifier?




Maximum margin classifier (2)

- Canonical hyperplane:
any plane of the form f(x)=w' x + W,

f(xi) =1

for which min,




Maximum margin for 1D data

| &:Q'F')?L
4, 4

N f
'l’:L t C”ﬂ




Maximum margin classifier (3)

The distance between an object x; and the hyperplane is

d(x,,decision boundary) =

The maximum margin classifier is a canonical hyperplane

s.t. the distance between the object closest to the hyperplane

on one side, Top
argmin.(w' x, +w,) |y, =+1

and the object closest on the other side,
argmax, (w' x, +w,) |y, =-1

IS maximal

This distance is called the margin: p = ” ” :
w NG



Support vector classifier

Maximizing the margin p :ﬁ
w

under the constraint that all training samples are classified
correctly, leads to the optimization problem:

1
mlnE”w”2 such that
w x +w,<-1|y =-1
wix +w, >+1|y, =+1

The constraints can be written as y,(w'x, +w,) > 1

This is called the support vector classifier,
or support vector machine (SVM) 1




Support vector classifier (2)

It is possible to incorporate the constraints into
the optimization itself, using Lagrange multipliers (basic calculus):

.1 L
max it Sl - 2 (300" ) -1)

with o, >0 Vi
« Each constraint corresponds to a single object x;
« Each constraint has a Lagrange multiplier ¢,
« So each object corresponds to a Lagrange multiplier

min 1 ||w||2 such that
2 ' BioSB

yi(w'x; +wy) > 1



Support vector classifier (3)

To solve the optimization, take the derivative and set to 0
- Differentiate with respect to w,w, :

i a,y; =0 (WO)
i=1
W= Zn: Y X; (W)
i=1

« Re-substituting gives:

maxZa ——ZZO( a,yy,X; X,

11]1

with o, >0 Vi and Zaiyl:O

Max over a, derivatives wrt a

max min _HwH Za (y (w' X, +W )— l) a,>0 BlOSB

o W,W;9



Support vectors

The classifier is a linear combination of objects:
W= Zaiyixi
i=l1

Many Lagrange multipliers become equal to 0, so in fact
the classifier is a sparse linear combination of objects

Objects for which the Lagrange multiplier > 0
are called support vectors




Support vectors (2)

support vectors




Support vectors (3)

If non-support vectors are left out and training is repeated,
the resulting classifier is identical

The number of support vectors
gives a bound on the

leave-one-out error estimate: ®
o i
. # support vectors e @
e, < .
l n 1.
@ @ 1'1
e '* v
. 1




Class overlap

When there is overlap between the classes,
the canonical hyperplane is not defined

To be able to still find a solution,
apply a trick:

soften the constraints

that each object is on

the correct side of the

decision boundary

For the blue object on the
incorrect side of the boundary:

yi(wai +Wo) 2 1_51'

The variable ¢ is called a slack variable




Class overlap (2)

In the ideal (non-overlapping) case, all slack variables are 0

To force slack variables to be small,
we add them to the margin to be minimized:

min%”w”2 + Czn: & such that
i=1
wix, +w, <—(1-8) |y, =-1

wix +w, 2 +(1-&) |y, =+1

We can rewrite that in almost the same way we did before:

n 1 n n
T
max ), —52 D00,y ,X] X,
i=1

i=1 j=1

with 0 < ai@ Vi and Zaiyl. =0
i=1



The kernel trick

¢ e o
an \.;a °ly
* Function ® maps data ° /o8, e

into a space in which
C|aSSificati0n may be easier Input Space Feature Space

\ X=[x1,x2] .




The kernel trick (2)

Classifier:

f(R)=w'z+w,
n
= ZaiyixiTZ W,
i=1

Optimization problem:

maXZa ——ZZyy]alajxl X;

11]1

a, 20, Vi

n
Z )y, =
i=1

f(z)<-1

 f(2)=0



The kernel trick (3)

Classifier can be rewritten as: : -
f@=w D)+ w, R
n @
=2 2y D(x,) O(z)+w, .
f(z)<-1

Optimization problem can be rewritten as:

maxZa ——ZZyy]ala]CD(x) O(x))

11]1

a, 20, Vi
Zaiyi =
i=1

Only need to specify kernel (inner product of transformed pomts)
K(a,b)=D(a ) D (b) “otaco

(inner product = distance)



Kernels

Kernels K(a,b) = CD(a)T @ (b): nonlinear classifier in original space
Not necessary to actually know ®(.),
as long as K(a,b) fullfulls some conditions (!) (positive semi-definite)

Polynomial kernel

T d RBF kernel
K(d,b) :(a b+1) P Bf -
“+T + : 1 a4t +
+
2r *, .1 2 . +, +
+ + + +
+
[a] 0 * + o 0 * i*. ++
g + o - +
=
2 -2 + + 12 -2 + 4+
& & - .
-4 + -4 +
i it .
-6 - -6} . .
-8 -8} *
*
10k~ L L L 1 i —10k— af 2
-0 -8 -6 -4 -2 4 6 10 -8 -6 - Ha _bH
Feature 1

Also kernel versions of
PCA, ICA, LDA, CCA, ...

resultant vector will always be less than or equal 7. The positive definite matrix tries to keep the vector within a
certain half space containing the vector.



Kernels (2)

Vector kernels:

- Linear K(a,b)=a"b
. . d
- Polynomial K(a,b) = (a b+ 1)
. Radial basis funct —exo| a8
Radial basis function K(a,b) =exp >



Kernels (3)

For other data types: empirical kernel map

- If we have some kind of a distance measure (not per se positive
definite),
then for each object we can construct a vector with distances
to a number of other objects

» This vector can then be used in a vector kernel

Example: BLAST kernel
- BLAST a set of sequences w.r.t. each other

* Represent each sequence by
a vector of -log(E£)-values

« Use linear kernels on these vectors

"BiosB



Kernels (4)

Spectrum kernel:
« Construct a dictionary of all &~-mers

Construct vector with #occurences of each k~~-mer

Use this in a linear kernel

Need for smart data structures (trie)

Versions with gaps, substitutions, wildcards...

Q ©U.Q o.Q d.Q

Q.09 0.Q O o ©

. Q.Q wWd.QQd

Example: T dg.Q.Qad.Q.Q

a = aabbababa 1112100
—_ —_— K(a,b)=8

b = abbaabbab 1210011

"BiosB



Kernels (10)

Convolution kernel:

« When kernels operate on subparts,
but it is not clear which subparts

- Try all possible decompositions into subparts:

K ®K,®.®K, (a,b)= > K/(a.b)K,(a,.b,)..K, (a,b,)s

no
a=aa, ..
bbb b’



Kernels (11)

Local alignment kernel:

Trivial kernel: K (a,b) =1
Letter alignment kernel: K (a,b) =

with S the substitution cost
Gap kernel: K, (a,b)=cxp(B(|a|+|b]))
Local alignment kernel of length n:
Kym(@b) =K, ®(K,®K,)" ®K, ®K,(a,b)

Local alignment kernel:
K, (a,b)=) K, (a,b)
n=0

la|>1v|b|>1
exp(BS(a,b))  otherwise



Kernel combination

«  Combination: weighted sum of normalized kernel matrices

K. (a,b)

Ki(@b)= @k = wK
\/Ki (Cl, a)Ki (b, b) Kcombmed (Cl,b) ZZ::‘ Wle (Cl,b)

powerful: can apply optimal kernel to each data type




Recapitulation

The support vector classifier is based on a
well-founded theoretical basis (Vapnik dimension)

The original support vector classifier is limited to
problems with two non-overlapping classes, but:

« can be extended to overlapping classes using slack variables
« can be extended to nonlinear decision boundaries using kernels

- can be extended to multiple classes by combining
multiple 2-class classifiers

A large number of specific kernels for
biological data are available

A support vector regressor is available (not discussed)

"BiosB



Recapitulation (2)

Classification performance is often very good

In particular suited for problems with high-dimensional

datasets, for which classes are often separable

(and hence estimating densities is extremely difficult)

The optimization problem is formulated in terms of the

training objects, not the features: slow training for large datasets
The value for the slack variable trade-off C and

kernel-specific parameters d, o etc. have to be set

Kernels need to be chosen, also an ART!
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Classifier combination



Data integration

Often required in bioinformatics, e.g. in interaction prediction

017 NO0.9

p "/ \
- 5 il €



Data integration (2)

» Intermediate integration: common representation
(e.g. kernels or probability distributions)

\ -
Classifier




Data integration (3)

Late integration: classifier combination

X, Classifier

Classifier

Classifier

Classifier




Classifier combination

« Design choices:

- Base classifier: Identical or different?
Base classifiers, feature spaces, training sets, initialisations, etc.

- Combination by a fixed rule or by another classifier?
- Related to work on committees-of-experts

- ‘10 doubt about B '
mq} be B ~ definitely not A

A 4 1' rhs
\ 1t sA ! per nps P! eltheerrB

Key issues:
» Assessing individual expertise

« Combining expert opinions BlOSB

a cleflr exmlple of A




Fixed combination

£i(x) Opinion base classifier 1
base /
T classifier | ¥,
X, r
1
! fo(x;)
base 4
classifiat y—) combiner r) ‘o)
2 \
A 1
! [
I -]g(xl) y3 I
I
base ’
classifier 3 ’
. . ’
4: revision . ’
1 S eae==" -

« Classifiers: individual opinion = posterior probabilities or labels
«  Combination by fixed rule, e.g.:
w, = arg max (combination-rule(y, . = f; .(x;)))
l.e. assign label . = c to object x; if the combination of
outputs y, . for class c over all classifiers f; (x;) is maximum

Combination rule might be maximum over all classn‘/ers A
or votes by all classifiers for that class




Fixed combination (2)

Combination rules on posterior probabilities y, . = p(w7c|x)):
« Generally applicable:
Maximum, to select “most confident” classifier
(assumes good estimates of posteriors)
« Preferable for classifiers trained in different feature spaces:

Product, justified if feature spaces independent
Minimum, to select “least objecting” classifier

(assumes good estimates of posteriors)

- Preferable for comparable classifiers trained on the same features:
Sum/median, to (robustly) improve estimates of posteriors

"BiosB



Fixed combination (4)

+ Alternatively, combine labels assigned by classifiers:
* Veto (like minimum)
« Majority vote (like sum/median)

Number of votes for class A

Majority

Veto Rule

Class A



3

Trained combination | .
L
- Treat base classifier outputs as new dataset N
AB |
base I #2_ |7 . *
claccifiar | o= + +++ft+ ++
' t}, L Oﬂ %ﬁ*ﬁ- } 0‘5 1
mfeatures AB ABABAB
9 | v
& base 2 trained
s ‘ Crassijier Z %’ combiner
\ AB
classifier 3 \‘g‘—-

* In principle, possible to use any classifier

- Danger of overtraining when using full training
set for both stages: use (nested) cross-validation!



Base classifier generation

Let’s not combine some classifiers,
but set out to generate MANY

Bagging: bootstrapping and aggregating

* For B repetitions

Sample a subset of size n’ < n using bootstrapping

Train classifier on this subset (e.g. linear or decision tree)

- Combine B classifier outputs (e.g. sum or vote)

Boosting:

* Initialize all objects with equal weight

 As often as necessary/wanted

Sample a subset of size n’ < n according to object weights

Train a weak classifier on this subset

Increase weights of incorrectly classified objects

- Combine classifier outputs

" RinSR

Use weak classifiers: only sensible to average over things that differ




Base classifier generation (2)

Adaboost:

* Initialize all objects with equal weight

- As often as necessary
Select a train set size n’ < n according to object weights
Train a weak classifier j
Classify entire data set and calculate classifier error ¢,
Calculate classifier weight o, = 0.5 log((1-¢))/e))

Multiply weights of incorrectly classified objects with exp(a,),
multiply weights of correctly classified objects with exp(-a,)

- Combine weak classifiers by weighted voting, using a,

Boosting: weight objects with #errors
Adaboost: weight objects with classifier error




Base classifier generation (3)

+ Adaboost example



Base classifier generation (4)

For all combination methods: base classifier should be
fast and weak, i.e. have large bias and small variance

* Decision stumps: short decision trees
- Linear classifiers: nearest mean, LDA

E *
%+ #*
* * *
dRE1E * #
+ |4 P
*ht i e L *
- 'Tm; - - = # t:"’ = - &
e *’ | *
.l._ e
E3
100 decision stumps, 10 decision stumps,
combined by Adaboost combined by LDA



Recapitulation

Combining classifiers can help, but is no panacea

» Fixed combination:
Usually sub-optimal

« Trained combination:
Use cross-validation to prevent overtraining

Use weak classifiers: fast, large bias, small variance
Combination requires variation between classifiers:
 Train different classifiers on the same features
 Train classifiers on different feature spaces (sample features!)
« Subsample the train set (bagging, boosting)

"BiosB



Complexity



Sample size

Feature 2
P

-10 -5 -B | -2
Feature 1

What is a good classifier?




Sample size (2)

Feature 2

Feature 1

What is a good classifier?
And now?




Sample size (3)
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Feature 1

What is a good classifier?
And now? Training size matters! But how?




Learning curves

How does the error change with varying sample size
(number of objects in the train set)?

A
» True error not small because of
T /A linear classifier and data is not
@ True error linearly separable

® Apparent error e,

— N

True error: error on infinite test data Bl.oSB
Apparent error: error on training data



Learning curves (2)

- How does the error change with varying sample size
(number of objects in the train set)?

A

e

T True error

Asymptotic error

ol Bayes error
Apparent error e,
g

*n

Bayes error: overall minimal error (can be smaller than true error for given classifiér)



Learning curves (3)

* How does the error change with varying sample size
(number of objects in the train set)?

A

e

True error
Apparent error is too optimistic

Asymptotic error

— Bayes error
Apparent error ¢,
5=

*n




Learning curves (4)

What happens when you take another classifier?
(say, use a gdc instead of an 1dc)

More flexible:
- Better performance on the training set
« Worse performance on the test set
«  Will perform best in the limit of many training objects

Less flexible:
» Less adapted to the training set
- Better performance on the test set
«  Will not perform best in the limit of many training objects

"BiosB



Learning curves (5)

Switching to a more complex classifier
influences the learning curves

A

qdc
= |dC

e

- True error increases

Asymptotic error improves

\ '
\

— N Apparent error improves

So why not always use complex classifiers?



Classifier complexity

«  Optimal complexity depends on sample size

Complexity not well-defined.
Intuitively: More parameters, more complex

3

- Small: use a simple classifier
- Large: can use a complex classifier " BioSB



Classifier complexity (2)

- There is a tradeoff between complexity and training size




Classifier complexity (3)

- Remember the curse of dimensionality: for fixed sample size,
error increases if classifier complexity increases

F

Sample size
\

Minimum error

—» Complexity
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Classifier complexity (6)

How to find the best complexity for a given problem?

Standard approach:
« Define a large set of classifiers

- Use cross-validation, and repeatedly
Train all the classifiers on the training set
Test all the classifiers on the test set

 Find the best classifier

This is a lot of work....

"BiosB



Regularization

For many classifiers, it is possible to reduce the complexity of
a classifier by adding constraints on the parameters 6

Often a term is added to the cost function:
E = eA + ﬂ“]preg (9)

For example:

- Multilayer perceptron: E = Z|t g(xk)| '
- Support vector classifier: E % CZ@
i=1



Regularization (2)

Another form of
regularization:
starting with small
initial weights in

. . test error
training multilayer
perceptrons

mse
Effective complexity apparent error
of MLPs increases
during training training time

"BiosB



Regularization (3)

Intuitively:
« Regularization is often a quadratic penalty on weight values

- Small weights correspond to simple classifier,
large weights to complex classifiers

» This boils down to a prior on weights
« For example:

n p(w))
E:Z|tk_g(xk)|2’ » E
k=1 I

0
Regularization is like Bayesian estimation on parameters

Bayesian model selection: apply Bayesian estimation
to entire models (classifiers/regressors)



Bayesian model selection

The evidence for model M is the probability of
data X = {x} given model M

Found by integrating over all possible values of parameters @

p(X |M)={p(X|M,0)p(6|M)do
If multiple alternative models are available, use the Bayes factor:
P(X|M,)
p(X|M,)

>1 = M,

We can even take priors on models into account:

p(X| M) p(M))
p(X|M,) p(M,)

>1 = M,

"BiosB



Bayesian model selection (2)

Integrating over all possible values of @ is very hard in practice

« Use Monte Carlo methods

« Use approximations:
Akaike Information Criterion:

AIC =2k —2log[ p(X | M.0,,)]

Bayesian Information Criterion:
BIC = klog(n)—2log| p(X |M.0,,) |

k = number of parameters
n = number of training objects
0

L = parameters optimizing likelihood

0
2

AIC .
y \

-6 \

8 \
10 |
9123456780910

4

BIC 3¢

20
10

0

012345678910
#clusters —

(fit MoG, 3 Gau&ﬂ)agﬁ)



Recapitulation

A fundamental trade-off in pattern recognition is between
model descriptiveness (e.g. classification error)
and model complexity

Optimal complexity depends on the problem and sample size,
and can be assessed/controlled through:

« Cross-validation and learning curves
* Regularization

» Bayesian information criteria

More fundamental approaches are:

- Bayesian model selection

"BiosB



Recent developments

Recent developments focus not so much on developing
new methods, but tackling new types of problems

« multiple instance learning

« structured learning

* semi-supervised learning

* active learning

* and more deep learners ....

"BiosB



Multiple instance learning

« Uses bag-of-instances representations of objects, usually
labeling a bag positive if at least one instance is labeled positive

Serge’s Sanjoy’s Lawrence’s
key-chain key-chain key-chain
Serge cannot enter Sanjoy can enter Lawrence can enter
the Secret Room the Secret Room the Secret Room
Zebra Handbag
bag bag
-
\
/
I . ‘. ! Cake
/ bag
\ —
. N
Zebra-like ~ ~
concept
L3 L] L]
Negative Positive

Bag Bag BlOSB



Multiple instance learning

- Uses bag-of-instances representations of objects, usually
labeling a bag positive if at least one instance is labeled positive

) Ap pI icati O n S : " Pharmacophore Fingerprint
Mol. Conf. P, P, .. P .. P,
* drug discovery G 1o . 1 . 1
U I P - T Y O |
» predicting
. NN:NNH € C; 1 1 . 0 . 0
activity of s O
molecules wew S
r A - -*"—‘ ¢, 0 1 .. 0 . 1
® pl’edICtIng Molecule (bag) . M ¢ 1 1 . 1 . 0
. Conformers (instances)
protein
. . . (3) Molecular Conformers (instance-based embedding) @)
binding sites —— ¢
M, o(m,, ) D(M,, C?) D(m,, €7)

M, DM, C)  D(M,C) . D[M,C)

Molecules

. . M, D(M, C7) D(M, C?) D(m, €
G. Fu et al, “Implementation

of multiple-instance learning M, D(IV.I.,., c) D(N;I.,; ) D(M, )
in drug activity prediction’,
BMC Bioinformatics 2012




Structured learning

« Predicting arbitrarily shaped output rather than a single label

- Applications in predicting:
* gene structure

» secondary
protein structure

 drug activity

» metabolic reaction

« Special case:
multi-label learning,
outputting several
related labels, for
example gene ontology
(GO) annotations

SR =t
a002 2 Go0007048 ™,
Saccharamycas) |

3 ool cycla
-~ \‘-i: 0899989

.;/-J

gulation of cell cycle )
B o022/

GO:0000C
'\ mitotic spindle assembly (sensu Saccharomyces)

Z. Barutcuoglu et al.,

“Hierarchical multi-label

prediction of gene function”,
— Bioinformatics 2006

oy

o

GO:0000087
s of mitolic el cye
p=0.007198
I"\,
. E— 2 _
-~ ", e T
/7 GOD00TOET ™\ g { GO:0006261 \'
mitosis | | { DMNA-depandent DNA replication
N _p= 0007198 / I b p = 0.887821 ’,/
—< | — Ex
\ |
\\
v P
GODGO00T0 5 //- GO:0008270 B
L) QMOSoME sagregat { DMNA replication initiation
— P = 0.000597 4 \‘\ p=0.819476




Semi-supervised learning

Used when large numbers of unlabeled
objects are available besides a small
set of labeled objects
Applications in

* clustering expression

 predicting gene function

- predicting TF binding sites
Related: positive unlabeled
learning, assuming some o

Supervised learning

. i o) .
objects have a (single, 0 * .
cyn 0 »
positive) label and the o [ =
remainder is unlabeled, e.g. '
Positive & Negative data are

available for training

for protein-protein and
genetic interaction data

©): positive data

Positive, Negative &
data are available for training

# : negative data

Positive learning

Paositive & data
are available for training



Active learning

« Using a classifier to decide which unlabeled object
should be labeled next to best improve that classifier

* Applications:

. . O
- diagnosis -
» drug discovery O O 0O
o | o © s
 predicting protein O
interactions, S 0 O D
transmembrane — O O
helices O = 7 &
S 0
O O
O O
M.K. Warmuth et al., “Active learning @ @
with support vector machines in EB

the drug discovery process”,
Journal of Chemical Information
and Computer Sciences 2003



and of course deep nets
Residual Networks




and of course deep nets
Variational Autoencoder
Autoencoder with generating distribution
Allows to generate new IDdata

) ‘ffs
' “ﬁ"f

j | Latent s : .
of \©
| Encoder (Inference) i\
Pa(2l) 1/ qolx|z)




and of course deep nets
generative adversarial network (GAN)

Generator Discriminator

Noise
Source

Real
Fake



and of course deep nets
Autoencode sequences (Language modes)

Protein embeddings, function prediction, redesign
I
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and of course deep nets
Siamese Networks

Siamese network

D(x;)  D(xz)

1D(x1) — D(x2)|l2

s J

E(xhxﬂi 5)

“ BioSB



and of course deep nets
Incorporate knowledge into neural network
Eg how genes relate to each other
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and of course deep nets
Incorporate knowledge into neural network

Eg how molecules relate to each other
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and of course deep nets
Alfafold: predicting 3D structure of proteins
Based on graph convolutional neural net (GNN)
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and of course deep nets
Incorporate knowledge into neural network
Eg on physical constraints on output

Partial Differential Equation
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and of course deep nets

Learn cellular drug/perturbation response
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