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Modelling .... Learning from examples




Machine learning

- Wikipedia:
"the scientific study of algorithms and statistical
models that computer systems use to perform a specific task
without using explicit instructions, relying on patterns
and inference instead ... Machine learning algorithms build
a mathematical model based on sample data, known as
"training data", in order to make predictions or decisions
without being explicitly programmed to perform the task.”

« Christopher M. Bishop:

- "Pattern recognition has its origins in engineering, whereas
machine learning grew out of computer science. However,
these ... can be viewed a two facets of the same field"



Machine learning (2)

The construction of approximate, generalizing (predictive)
models by learning from examples, for problems for which
no full physical model is known (yet)

Focus in this course will be on classification and
statistical machine learning, not (so much) on

regression, structural/syntactic pattern recognition and
reinforcement learning.

Related areas

« Applied statistics

- Pattern recognition
- Artificial intelligence
- Computer vision

- Data mining




Machine learning (3)

Examples:

Computer vision: license plate reading, people counting,
face detection, smart cameras, ...

Signal processing: thermostat, speech/speaker recognition, ...
Information retrieval: Google, Amazon, automated translation, ...

Biometrics: fingerprint recognition, iris scan, signature
verification...

Defensive: friend-or-foe recognition, target tracking, ...
Medicine: interpreting scans, diagnostic systems, ...



Machine learning (4)

* Bioinformatics:
- Gene (function) prediction, SNP prioritization, ...
- Diagnosis/prognosis, biomarker discovery, ...
- Network inference: PPI, metabolic networks, ...

- Cell-type identification, ...
- Etc.
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Goal

After having followed this course, the student has a good
understanding of a wide range of machine learning techniques
and is able to recognize what method is most applicable to
data analysis problems (s)he encounters in bioinformatics and
systems biology applications.

Many problems are in fact machine learning problems!



Machine learning (5)

Finding structure in data
« Qutlier/anomaly detection
 Clustering

- Dimensionality reduction,
selecting useful (combinations of) features

* Regression
 Classification

All aimed at generalisation:
making a prediction for data you have not yet seen



Clustering

- Can we find natural groups in the data?
- E.g. red vs green fruit




Outlier detection

Can we find strange objects?




Dimensionality reduction

- Can we find predictive measurements?




Regression

- Can we predict real-valued outputs?




Classification

- Can we distinguish apples from pears?




Machine learning in bioinformatics genes

- Example:
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Machine learning in bioinformatics

- Example:
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Machine learning in bioinformatics
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Machine learning in bioinformatics

- Example:
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Machine learning in bioinformatics

- Example:
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Machine learning in bioinformatics

- Example:

gene expression T
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Machine learning in bioinformatics

- Example:
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Machine learning in bioinformatics (2)

Tools applicable to any type of biological data

Examples:

* Protein sequence data:
Clustering: finding orthologous groups

Classification: prediction of EC number, subcellular localization, ...

Regression: predicting secondary structure
« TF binding data (ChlIP):

Clustering: finding functional gene groups

Classification: predicting gene annotation

Regression: finding cis-regulatory modules



Terminology



Measurements and features

- To automate these tasks, we have to find a
mathematical representation of objects

« Objects are usually represented by features,
l.e. sets of useful measurements obtained from some sensors

> weight
— —> colour
Vv v .
\ X =[X, X5, X500, X, ]
shape




Measurements and features (2)

This course assumes measurements as given, i.e.
sensor accuracy etc. are not explicitly modeled

However,

* in general measurements will never be perfect
 0bjects within a class will vary intrinsically

Hence, we need statistics to model all variation

This is important!

If we know everything and there is no noise, you'll need
different algorithms/models

SB



Datasets

A dataset is a set of measurements on many objects

For clustering:

Object  Weight Colour

Apple #1 25 36
Apple #2 20 34
Apple #3 35 40
Pear #1 35 55
Pear #2 37 55
Pear #3 40 S7
Pear #4 36 41




Datasets

A dataset is a set of measurements on many objects

For regression:

Object Weight  Colour Price

Apple #1 25 36 0.21
Apple #2 20 34 0.17
Apple #3 35 40 0.33
Pear#1 35 55 0.41
Pear #2 37 55 0.26
Pear #3 40 57 0.35
Pear #4 36 41 0.29




Datasets

A dataset is a set of measurements on many objects

For classification:

Object Weight  Colour Label
Apple #1 25 36 A
Apple #2 20 34 A
Apple #3 35 40 A
Pear#1 35 55 P
Pear #2 37 25 P
Pear #3 40 S7 P
Pear #4 36 41 P




Datasets
- A dataset is a set of measurements on many objects

* For classification:

N

Object Weight  Colour | abel

ohject

Pear #3@ 37 55
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Datasets (2)

- What objects, labels/targets and features are
depends on the problem...
+  (Gene expression-based diagnhostics:
* Object: patient
- feature: gene expression, copy number, mutational pattern, ....
- l|abel: relapse; regressor/dependent variable: survival time
|
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Datasets (2)

- What objects, labels/targets and features are
depends on the problem...

* Protein-protein interactions:
 o0bject: protein PAIR
- feature: gene expression correlation, difference in annotation, ...
- |abel: complex or not; regressor/dependent variable: binding strength
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Datasets (2)

- What objects, labels/targets and features are
depends on the problem...

« Gene prediction:
* Object: gene

- feature: sequence (representation), conservation of sequence, ...

- label: gene or not; regressor/dependent variable: conservation
|
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Datasets (2)

- What objects, labels/targets and features are
depends on the problem...
- TFBS detection:
 object: location on genome
- feature: ChlP-seq, sequence features, distance to TSS ...
- label: TFBS or not; regressor/dependent variable: specificity
|
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Measurements and features (3)

* Problems
* simple
- knowledge present
- afew good features

g

- almost separable classes
(classification) or
a linear relation
(regression)

colour
[ ]
[ ]
[ )
[ ]
[ )

smoothness

#pixels

complex
lack of knowledge
many poor features

overlapping classes
(classification) or

highly non-linear relation
(regression)
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Measurements and features (3)

* Problems
« simple « complex
- knowledge present - lack of knowledge
- afew good features “ ° many poor features

.
v tnvlamimiinen Al

Features (object representatlons) are important!

We don’t deal too much with which features are measured,
although we will touch upon derived features (Day 4.
kernels) and learning features (Day 4: neural networks)
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Feature space

We can interpret objects as vectors in a vector space

X =X, Xy, Xgy ey X, I

Iris plants
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Iris flower dataset, introduced by Ronald Fisher (famous statistician) in 1936
as an example of discriminant analysis




Clustering

« Given unlabeled data x,
find labels o for natural groups in the data

Feature 2

45 50 55 60 65 70 75 80

Feature 1



Dimensionality reduction

Given unlabeled data x,
map it to a lower dimensional feature vector y
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Classification

* Given labeled data x,
assign each point in feature space to a class w
(in effect partitioning the feature space)

Iris plants
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Regression

Given labeled data x,
assign each point in feature space a real-valued output y
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[ ]
This model should be fit to the data
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General model

Construct a model f (x) that outputs o ory

Feature 1

) f(x)=oor f(x)=y



General model (2)

» Construct a model f (x) that outputs @ ory
- This model should be fit to the data

- ldeally, we know p(y | X) or p(@ | X) over the entire feature space

p(y | x)
“ N or
o ) f()=oeorfx=y
25/ ‘ V//// — —\
201 -

45 50 55 60 65 70 75 80
Feature 1

if we know the probability distributions, we can make the most informed decision F




General model (3)

» Construct a model f (x) that outputs @ ory
- This model should be fit to the data
- ldeally, we know p(y | X) or p(@ | X) over the entire feature space

p(y | x)
or

p(@ | X)

) f(x)=oor f(x)=y

Feature 2 ) Feature 1

if we know the probability distributions, we can make the most informed decision f




General model (4)

Clustering: find cluster labels @ given object x
fit model using dataset {x;}

p(@] X)

Dimensionality reduction: find mapping y given object x
. . p(y|x)
fit model using dataset {x;}

Classification: find class labels w given object x

fit model using dataset {x;, @} p(@] x)
Regression: find target y given object X o(y | X)
fit model using dataset {Xx;, y;}

BlOSB

Statistical machine learning




Machine learning pipeline

i Yior o
| output
Dataset

Train

Objects model
| Extract
features _ f()
Output
New or label X
object X y or @




Statistics



Required background

The course is aimed at PhD students with a background in
bioinformatics, systems biology, computer science or a related
field, and life sciences. A working knowledge of basic statistics
and linear algebra is assumed.

Self-assessment; if you have problems, read the primers
Now, a brief recap



Recall: probability

Q : all possible outcomes (sample space)

e.g. the number of eyesonadice: 1, 2, 3,4, 5,6

A € Q) event
e.g. “throwing a 3’
P : probability measure
- 0<P(A)<1
- PQ)=1
- P(AUB) =
P(A) + P(B) - P(AN B)
- E.g.P(A)=1/6

)

A NB




Recall: probability (3)

Subjective approach:
“the probability of A is a number between 0 and 1
iIndicating how likely people believe A to be true”

Frequentist approach:
“the probability of A is a number between 0 and 1
Indicating the average ratio of A being true In
a large number of repeated experiments”

Is really a philosophical debate...
the “right” approach depends on the problem
and the data available

problems (can) arise in interpretation: what does it mean?




Recall: CDFs

Cumulative distribution function

Py(x) = F(x) : probabillity that X < x, R — [0,1]

1.0

0.8

0.6 |

0.4

0.2 ¢

1 é 3 4
e.g. 10,000 dice throws

5

6

1.0;

0.8 :

0.6 :

0.4 :

0.2

100 150 200

10,000 body lengths

250



Recall: PDFs

p(x) = dP( ) . probabillity density function
0.5
p(x) =0
0.4
 p(x)dx =1 04
p(X)dX _ 0.2
Pa<x<hb) ™

-4 -2 0 2 4

* p(x)is not the probability of X being x !



Recall: expectation

Expectation: mean of distribution,

u=E[X]=[ x p(x) dx

Note: expectations are over entire distributions;
on data sets {x} we can only estimate the mean,

N 40
N i—1 300
Elc]=c
[c] 200
E [aX + bY] = a E[X] + b E[Y]
100
00 150 200 250
Important to realize that estimates are always based on a finite dataset! BlOSB

m is an estimate(!) of u; that is why there is a hat!




Recall: variance

Variance: average deviation from expected value,

o? =var(X) = foo(x— 1)% p(x) dx

or
o’ = E[(X —E(X))*]1=E[X*]-(E[X])?

o 1S called the standard deviation

var(X) >0

var(c) =0
var(aXx) = a? var(X)



Recall: variance (2)

Again, on data sets {x} we can

400
only estimate the variance:
300}
1 N
_ A2 . AN 2
2= 6" =10 (XA
i=1
100;
Usually, this unbiased estimator
iS Used: 800 150 200 250

. 1 < 2
2= &°=———=) (X~ i)
N—1i§



Recall: joint distributions

For p > 1 measurements X = (X, , ..., X,),

joint distributions & densities:




Recall: covariance

Covariance: measure of how two random variables
vary together,

cov(X,Y) =E[(X —E(X))(Y —E(Y))]
= E[XY]-E[X]E[Y]

Correlation: normalised covariance,
cov(X,Y)
Jvar(X)var(Y)

cov(X,Y)=0: X and Y are uncorrelated

/O(X’Y): E[_1’1]




Recall: covariance (2)

For a set of random variables X; ... X

AN

we can calculate a covariance matrix,

> = [ cov(Xy, X)) cov(Xy, X,)
cov(X, X;)

cov(X,, Xp)  cov(X,, X,)

5

0.03
0.025

0.02

e.g.

0.015

0.01

0.005

-5 0 5

Pairwise covariance of all features!




Recall: covariance (3)

- Example: IMOX data (images of handwritten digits 1:8)

123456 78 123456 78
1 I I 1
2R 2
3 = 3
+ ‘|
5 5
6 6
7 7
8 8

imagesc (cov (\Ka) ) image#: (corrcoef (+a))

\ /

characters 5/6 are alike B‘°SB



Recall: covariance (4)

- Example: IMOX data

1 23456 7 8

L L L I L L

O~NOOUTRAWNPR

0o N o o b~ WO e

imagesc (cov (+a)




Recall: independence

- Important concept: often needed as assumption!

- Two events A and B are independent iff
P(A N B) =P(A) P(B)

- Two random variables X and Y are independent iff
p(x,y) = p(x) p(y)

X, Y > X, Y
Independent >< uncorrelated

* Uncorrelated: “there’s no linear dependence”
Independent: “there’s no dependence at all”



Recall: Bayes’ theorem

- Conditional probability of A given B,

P(A|B) = P(F?(E)B)

* As a consequence,

P(AnB)=P(A|B)P(B)

=P(B|A)P(A)
- Bayes’ theorem:
P(A|B) = P(BFL?E);(A)

QAmB




Bayes’ theorem (2)

Bayes’ theorem is very useful, but controversial:
* reverses causality
* Introduces subjective (prior) probabilities

P(effect | cause) P(cause)

P(cause | effect) = P(effect)

... but the cornerstone of pattern recognition and machine
learning

p(temperature|disease)pr(disease)
P(temperature)

P(disease|temperature) =

« What is P (disease)? How to measure / know?



Recall: total probability

- Total probability:
* P(A) = Xyp, P(AN B))

* P(A) = g, P(A|B;)P(B;)

)

B,




Multivariate Gaussian distribution

5

5
5 0 5

p - dimensional density:

P9 = 277 det(®)

M . mean
Y. : covariance matrix

3 1%

1% 2

eXp(—%(X—ﬂ)Tzl(X—u)j



Special properties

* The Gaussian distribution is a special case:

X, Y > X, Y
Independent uncorrelated

* Proof: if uncorrelated, X is diagonal (c; ... o)

p(x) = exp(i(x—ule(x—u)j
J27° det(Z) 2

T -2

1 exp(—l( —u) o % (x, — )jx L exp(—l(x— ) o
,727ZO'12 5 X —i) o (Y — 1 ,727Z'O'22 5 2 Hy) O,

exp(—%(xp ) o, —up)}p(xl)p(xz)...p(xp)

X... X

2

27r0p

(x, _ﬂz)j



Special properties (2)

Any projection of a
high-dimensional
Gaussian is itself
again Gaussian




Sphering

Eigenanalysis on a p x p covariance matrix X :
solve fori=1, .., p
1.det(X-41)=0
2.Z-41)g=0
> =ETAE
The e, are the eigenvectors,
stored as the columns of matrix E;
they correspond to the main axes of the Gaussian

The A, are the eigenvalues,
stored on the diagonal of matrix A;
they correspond to the lengths of the main axes



Sphering (2)

- Covariance matrix
determines shape
of density

-2 -1 0 1 2

« Eigenvectors correspond to main axes of Gaussian, e.g.

s=[3-1] E=[-092-038] A= (3410
11 038 -0.92 0 059




Sphering (3)

Eigenanalysis of covariance matrix can be used to

“sphere” or “whiten” data:

S A N o N N o

E" x

X; =cov(t,t;)

After sphering, X; = |

Y =E'AE

N
A 2 x|,
> 0
a.tl




Cross-validation



Cross-validation

Solution:

- Split data into
training set and validation set

* Optimise h w.r.t. likelihood
of validation set,
given Parzen model
trained on training set

Problems:
- Uses a lot of valuable data
- Sensitive to split of data

h = 0.650406: LL =-12.017858




Cross-validation (2)

+ Better solution: K-fold crossvalidation
- Split data into K parts (K = n: leave-one-out)

* Repeat K times:

Find h using (K - 1) parts for training
and 1 part for testing

« Use average of h's as kernel width

— training data

—— testdata —— hy

(will return)



Cross-validation (3)

(Prefer) K-fold cross-validation over leave-one-out
- Smoother (less variance) and more biased (conservative)
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o [
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©0.55 30.55
2 O
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S |
0.45 | ‘ ‘ 0.45 ‘ | | |
0 50 100 150 200 (0] 20 40 60 80 100
nr of features nr of features



Bootstrap

Alternative to cross-validation:

* Repeat K times:

Draw n objects from the dataset, with replacement
(some objects will be selected more than once)

Test using objects that were not selected

Cross-validation and bootstrap estimates are biased

- They are conservative (i.e. too pessimistic)
because they do not use all data available

You want to get an estimate when you fit on complete/all data.
CV/Bootstrap are thus biased wirt fitting on complete data!




Training, test and validation sets

Terminology:
- A training set is used to estimate parameters

- An optional validation set is used to optimize parameter settings,
e.g. by calculating classifier error on this set

- Atestsetis only used to judge performance of the entire
classifier (only used once!)

Error estimates:

« On training set: apparent error
* On test set: true error



Training, test and validation sets (2)

Error

70
*0 -"- % ootee *m o |o
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-, TError on test set (frue error)
%ﬁ#\i

20

10

Error on training set (apparent error)
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/

40 60 80 100 120 140 160 180 200
Number of features



Training, test and validation sets (3)

The test set should never be used to set any parameters!
This leads to biased estimates of performance -- in practice
we may do much worse than we predict

0.3r AE
| s
025 CV10E
TE
0.2
Q
©
L0182
5018/ -
L] Ambroise et al.,
01 PNAS 2002
0.057
O_ : 4+ B 48 lOQO :
0 2 - 6 8 10 . . - . .
log2(number of genes) Especially in bioinformatics

l.e. p>>n problems




Training, test and validation sets (4)

Can lead to complicated schemes for estimating parameters,
e.g. double/nested cross-validation loops

Wessels et al.,
Repeat 100 times ° Bioinformatics 2005
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