

Machine Learning for Bioinformatics & Systems Biology

0. On-line background

<u>Perry Moerland</u> Amsterdam UMC, University of Amsterdam

Marcel Reinders Delft University of Technology

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin, David Tax & Dick de Ridder

Modelling Learning from examples

Machine learning

- Wikipedia:
 - "the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead ... Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task."
- Christopher M. Bishop:
 - "Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these ... can be viewed a two facets of the same field"

Machine learning (2)

- The construction of approximate, generalizing (predictive)
 models by learning from examples, for problems for which
 no full physical model is known (yet)
- Focus in this course will be on classification and statistical machine learning, not (so much) on regression, structural/syntactic pattern recognition and reinforcement learning.
- Related areas
 - Applied statistics
 - Pattern recognition
 - Artificial intelligence
 - Computer vision
 - Data mining

Machine learning (3)

• Examples:

- Computer vision: license plate reading, people counting, face detection, smart cameras, ...
- Signal processing: thermostat, speech/speaker recognition, ...
- Information retrieval: Google, Amazon, automated translation, ...
- Biometrics: fingerprint recognition, iris scan, signature verification...
- Defensive: friend-or-foe recognition, target tracking, ...
- Medicine: interpreting scans, diagnostic systems, ...

Machine learning (4)

- Bioinformatics:
 - Gene (function) prediction, SNP prioritization, ...
 - Diagnosis/prognosis, biomarker discovery, ...
 - Network inference: PPI, metabolic networks, ...
 - Cell-type identification, ...
 - Etc.

Goal

- After having followed this course, the student has a good understanding of a wide range of machine learning techniques and is able to recognize what method is most applicable to data analysis problems (s)he encounters in bioinformatics and systems biology applications.
- Many problems are in fact machine learning problems!

Machine learning (5)

- Finding structure in data
 - Outlier/anomaly detection
 - Clustering
 - Dimensionality reduction, selecting useful (combinations of) features
 - Regression
 - Classification
 - •
- All aimed at generalisation:
 making a prediction for data you have not yet seen

Clustering

Can we find natural groups in the data?

E.g. red vs green fruit

Outlier detection

Dimensionality reduction

Can we find predictive measurements?

Regression

Can we predict real-valued outputs?

Classification

Can we distinguish apples from pears?

Clustering of genes: similar 'disruptive' processes

Technical error / rare patient-rare genetic background

- Tools applicable to any type of biological data
- Examples:
 - Protein sequence data:
 - Clustering: finding orthologous groups
 - Classification: prediction of EC number, subcellular localization, ...
 - Regression: predicting secondary structure
 - TF binding data (ChIP):
 - Clustering: finding functional gene groups
 - Classification: predicting gene annotation
 - Regression: finding cis-regulatory modules
 - •

Terminology

Measurements and features

- To automate these tasks, we have to find a mathematical representation of objects
- Objects are usually represented by features,
 i.e. sets of useful measurements obtained from some sensors

Measurements and features (2)

- This course assumes measurements as given, i.e. sensor accuracy etc. are not explicitly modeled
- However,
 - in general measurements will never be perfect
 - objects within a class will vary intrinsically
- Hence, we need statistics to model all variation

This is important!

If we know everything and there is no noise, you'll need different algorithms/models

- A dataset is a set of measurements on many objects
- For clustering:

Object	Weight	Colour
Apple #1	25	36
Apple #2	20	34
Apple #3	35	40
Pear #1	35	55
Pear #2	37	55
Pear #3	40	57
Pear #4	36	41

- A dataset is a set of measurements on many objects
- For regression:

Object	Weight	Colour	Price
Apple #1	25	36	0.21
Apple #2	20	34	0.17
Apple #3	35	40	0.33
Pear #1	35	55	0.41
Pear #2	37	55	0.26
Pear #3	40	57	0.35
Pear #4	36	41	0.29

- A dataset is a set of measurements on many objects
- For classification:

Object	Weight	Colour	Label
Apple #1	25	36	A
Apple #2	20	34	Α
Apple #3	35	40	Α
Pear #1	35	55	Р
Pear #2	37	55	Р
Pear #3	40	57	Р
Pear #4	36	41	Р

• A dataset is a set of measurements on many objects

For classification:

				_
Object	Weight	Colour	Label	
Apple #1	25	36	Α	
Apple #2	20	34	Α]\
Apple #3	35	40	A	object
Pear #1	35	55	Р	
Pear #2	37	55	Р	/
Pear #3	40	57	Р	datase
Pear #4	36	41	P	datas
asurem	ent fe	ature	labels	

- What objects, labels/targets and features are depends on the problem...
- Gene expression-based diagnostics:
 - object: patient
 - feature: gene expression, copy number, mutational pattern,
 - label: relapse; regressor/dependent variable: survival time

- What objects, labels/targets and features are depends on the problem...
- Protein-protein interactions:
 - object: protein PAIR
 - feature: gene expression correlation, difference in annotation, ...
 - label: complex or not; regressor/dependent variable: binding strength

- What objects, labels/targets and features are depends on the problem...
- Gene prediction:
 - object: gene
 - feature: sequence (representation), conservation of sequence, ...
 - label: gene or not; regressor/dependent variable: conservation

- What objects, labels/targets and features are depends on the problem...
- TFBS detection:
 - object: location on genome
 - feature: ChIP-seq, sequence features, distance to TSS ...
 - label: TFBS or not; regressor/dependent variable: specificity

Measurements and features (3)

Problems

- simple
- knowledge present
- a few good features
- almost separable classes (classification) or a linear relation (regression)

- complex
- lack of knowledge
- many poor features
- overlapping classes (classification) or highly non-linear relation (regression)

Measurements and features (3)

- Problems
 - simple
 - knowledge present
 - a few good features

- complex
- lack of knowledge
- many poor features

Features (object representations) are important!

We don't deal too much with which features are measured, although we will touch upon derived features (Day 4: kernels) and learning features (Day 4: neural networks)

Feature space

We can interpret objects as vectors in a vector space

$$\mathbf{x} = [x_1, x_2, x_3, ..., x_p]^T$$

Iris flower dataset, introduced by **Ronald Fisher (famous statistician)** in 1936 as an example of discriminant analysis

Clustering

• Given unlabeled data x, find labels ω for natural groups in the data

Dimensionality reduction

Given unlabeled data x,
 map it to a lower dimensional feature vector y

Classification

• Given labeled data x, assign each point in feature space to a class ω_i (in effect partitioning the feature space)

Regression

Given labeled data x,
 assign each point in feature space a real-valued output y

General model

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data

General model (2)

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data
- Ideally, we know $p(y \mid x)$ or $p(\omega \mid x)$ over the entire feature space

if we know the probability distributions, we can make the most informed decision

General model (3)

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data
- Ideally, we know $p(y \mid x)$ or $p(\omega \mid x)$ over the entire feature space

General model (4)

 Clustering: find cluster labels ω given object x fit model using dataset {x_i}

$$p(\boldsymbol{\omega} | \boldsymbol{x})$$

• Dimensionality reduction: find mapping y given object x fit model using dataset $\{x_i\}$

• Classification: find class labels ω given object x fit model using dataset $\{x_i, \omega_i\}$

$$p(\boldsymbol{\omega} | \boldsymbol{x})$$

Regression: find target y given object x
 fit model using dataset {x_i, y_i}

Machine learning pipeline

Statistics

Required background

- The course is aimed at PhD students with a background in bioinformatics, systems biology, computer science or a related field, and life sciences. A working knowledge of basic statistics and linear algebra is assumed.
- Self-assessment; if you have problems, read the primers
- Now, a brief recap

Recall: probability

- Ω: all possible outcomes (sample space)
 e.g. the number of eyes on a dice: 1, 2, 3, 4, 5, 6
- $A \in \Omega$: event e.g. "throwing a 3"
- P : probability measure
 - $0 \le P(A) \le 1$
 - $P(\Omega) = 1$
 - $P(A \cup B) =$ $P(A) + P(B) - P(A \cap B)$
 - E.g. P(A) = 1/6

Recall: probability (3)

Subjective approach:

"the probability of *A* is a number between 0 and 1 indicating how likely people believe *A* to be true"

Frequentist approach:

"the probability of A is a number between 0 and 1 indicating the average ratio of A being true in a large number of repeated experiments"

Is really a philosophical debate...
 the "right" approach depends on the problem and the data available

Recall: CDFs

- Cumulative distribution function
- $P_X(x) = F(x)$: probability that $X \le x$, $\Re \to [0,1]$

Recall: PDFs

- $p(x) = \frac{dP(x)}{dx}$: probability density function
 - $p(x) \ge 0$

 - $\int_{a}^{b} p(x)dx = P(a \le x \le b)$

p(x) is not the probability of X being x!

Recall: expectation

Expectation: mean of distribution,

$$\mu = E[X] = \int_{-\infty}^{\infty} x \ p(x) \ dx$$

Note: expectations are over entire distributions;
 on data sets {x} we can only estimate the mean,

$$m = \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- E[c] = c
- E [aX + bY] = a E[X] + b E[Y]

Important to realize that estimates are always based on a finite dataset! m is an estimate(!) of μ ; that is why there is a hat!

Recall: variance

Variance: average deviation from expected value,

$$\sigma^2 = \operatorname{var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) \ dx$$

or

$$\sigma^2 = E[(X - E(X))^2] = E[X^2] - (E[X])^2$$

- σ is called the standard deviation
- $\operatorname{var}(X) \ge 0$
- $\operatorname{var}(c) = 0$
- $\operatorname{var}(aX) = a^2 \operatorname{var}(X)$

Recall: variance (2)

 Again, on data sets {x} we can only estimate the variance:

$$s^2 = \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Usually, this unbiased estimator is used:

$$s^2 = \hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Recall: joint distributions

• For p > 1 measurements $x = (x_1, ..., x_p)$, joint distributions & densities:

Recall: covariance

Covariance: measure of how two random variables vary together,

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

= $E[XY] - E[X]E[Y]$

Correlation: normalised covariance,

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} \in [-1,1]$$

• cov(X,Y) = 0 : X and Y are uncorrelated

Recall: covariance (2)

• For a set of random variables $X_1 ... X_p$, we can calculate a covariance matrix,

$$\Sigma = \begin{bmatrix} \cos(X_1, X_1) & \cos(X_1, X_2) & \dots & \cos(X_1, X_p) \\ \cos(X_2, X_1) & \dots & \dots & \cos(X_2, X_p) \\ \dots & \dots & \dots & \dots \\ \cos(X_p, X_1) & \cos(X_p, X_2) & \dots & \cos(X_p, X_p) \end{bmatrix}$$

Pairwise covariance of all features!

BioSB

Recall: covariance (3)

Example: IMOX data (images of handwritten digits 1:8)

Recall: covariance (4)

Example: IMOX data

Recall: independence

- Important concept: often needed as assumption!
- Two events A and B are independent iff $P(A \cap B) = P(A) P(B)$
- Two random variables X and Y are independent iff p(x,y) = p(x) p(y)

Uncorrelated: "there's no linear dependence"
 Independent: "there's no dependence at all"

Recall: Bayes' theorem

Conditional probability of A given B,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

As a consequence,

$$P(A \cap B) = P(A \mid B)P(B)$$
$$= P(B \mid A)P(A)$$

Bayes' theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Bayes' theorem (2)

- Bayes' theorem is very useful, but controversial:
 - reverses causality
 - introduces subjective (prior) probabilities

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- ... but the cornerstone of pattern recognition and machine learning
 - $P(disease|temperature) = \frac{P(temperature|disease)P(disease)}{P(temperature)}$
 - What is P (disease)? How to measure / know?

Recall: total probability

- Total probability:
- $P(A) = \sum_{\forall B_i} P(A \cap B_i)$
- $P(A) = \sum_{\forall B_i} P(A|B_i) P(B_i)$

Multivariate Gaussian distribution

$$\Sigma = \begin{bmatrix} 3 & 1\frac{1}{2} \\ 1\frac{1}{2} & 2 \end{bmatrix}$$

p - dimensional density:

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

u: mean

 Σ : covariance matrix

Special properties

The Gaussian distribution is a special case:

• Proof: if uncorrelated, Σ is diagonal ($\sigma_1 \dots \sigma_p$)

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^{p} \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{2\pi\sigma_{1}^{2}}} \exp\left(-\frac{1}{2}(x_{1} - \mu_{1})^{\mathrm{T}} \sigma_{1}^{-2} (x_{1} - \mu_{1})\right) \times \frac{1}{\sqrt{2\pi\sigma_{2}^{2}}} \exp\left(-\frac{1}{2}(x_{2} - \mu_{2})^{\mathrm{T}} \sigma_{2}^{-2} (x_{2} - \mu_{2})\right)$$

$$\times ... \times \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}} \exp\left(-\frac{1}{2}(x_{p} - \mu_{p})^{\mathrm{T}} \sigma_{p}^{-2} (x_{p} - \mu_{p})\right) = p(x_{1}) p(x_{2})... p(x_{p})$$

Special properties (2)

 Any projection of a high-dimensional Gaussian is itself again Gaussian

Sphering

- Eigenanalysis on a p × p covariance matrix Σ: solve for i = 1, ..., p
 1. det (Σ λ_i I) = 0
 - 2. $(\Sigma \lambda_i \mathbf{I}) e_i = 0$
- $\Sigma = \mathbf{E}^{\mathrm{T}} \Lambda \mathbf{E}$
- The e_i are the eigenvectors, stored as the columns of matrix E; they correspond to the main axes of the Gaussian
- The λ_i are the eigenvalues, stored on the diagonal of matrix Λ; they correspond to the lengths of the main axes

Sphering (2)

 Covariance matrix determines shape of density

Eigenvectors correspond to main axes of Gaussian, e.g.

$$\Sigma = \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \longrightarrow \mathbf{E} = \begin{bmatrix} -0.92 & -0.38 \\ 0.38 & -0.92 \end{bmatrix} \quad \Lambda = \begin{bmatrix} 3.41 & 0 \\ 0 & 0.59 \end{bmatrix}$$

Sphering (3)

 Eigenanalysis of covariance matrix can be used to "sphere" or "whiten" data:

• After sphering, $\Sigma_{ij} = I$

Cross-validation

Cross-validation

Solution:

- Split data into training set and validation set
- Optimise h w.r.t. likelihood of validation set, given Parzen model trained on training set

Problems:

- Uses a lot of valuable data
- Sensitive to split of data

Cross-validation (2)

- Better solution: K-fold crossvalidation
 - Split data into K parts (K = n: leave-one-out)
 - Repeat K times:
 - Find h using (K 1) parts for training and 1 part for testing
 - Use average of h's as kernel width

Cross-validation (3)

- (Prefer) K-fold cross-validation over leave-one-out
 - Smoother (less variance) and more biased (conservative)

Bootstrap

- Alternative to cross-validation:
 - Repeat *K* times:
 - Draw n objects from the dataset, with replacement (some objects will be selected more than once)
 - Test using objects that were not selected
- Cross-validation and bootstrap estimates are biased
 - They are conservative (i.e. too pessimistic) because they do not use all data available

You want to get an estimate when you fit on complete/all data. CV/Bootstrap are thus biased wrt fitting on complete data!

Training, test and validation sets

- Terminology:
 - A training set is used to estimate parameters
 - An optional validation set is used to optimize parameter settings,
 e.g. by calculating classifier error on this set
 - A test set is only used to judge performance of the entire classifier (only used once!)
- Error estimates:
 - On training set: apparent error
 - On test set: true error

Training, test and validation sets (2)

Training, test and validation sets (3)

The test set should never be used to set any parameters!
 This leads to biased estimates of performance -- in practice we may do much worse than we predict

Training, test and validation sets (4)

Can lead to complicated schemes for estimating parameters,
 e.g. double/nested cross-validation loops

