

1. Introduction, density estimation& classification

<u>Perry Moerland</u> Amsterdam UMC, University of Amsterdam

Marcel Reinders Delft University of Technology

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin, David Tax & Dick de Ridder

Programme

Day	Lecturer	Subjects			
Monday 20/1	Perry Moerland	Introduction to machine learning Density estimation Bayesian classification			
Tuesday 21/1	Perry Moerland	Parametric and nonparametric classifiers Decision trees & random forests Hierarchical clustering Agglomerative clustering EM and model-based clustering			
Wednesday 22/1	Lodewyk Wessels	Feature extraction Embeddings Feature selection Sparse classifiers			
Thursday 23/1	Marcel Reinders	Artificial neural networks Support vector machines Classifier ensembles Complexity			
Friday 24/1	Marcel Reinders Students Invited speaker	Variational autoencoders Diffusion models Student pitches Invited speaker (application of classification)			

IΛ	2	7	7
LU	-∠	_	1

When	What	Where
9.00-12.00	Course	L0-227
12.00-13.00	Lunch break	The Box (G0-114)
13.00-17.00	Course	L0-227

- Coffee/tea etc. and lunch will be provided
- Thursday there will be drinks, bites and a quiz at 17.00 in Miss Scarlett (at 5 minutes walking distance from the AMC)
- Friday: J1B-223

Certificates and examination

- To obtain a certificate of successful completion:
 - Analyse a biological dataset (preferably one from your own practice) using the tools provided in the course
 - Write a short report (5-10 pages) on the results
 - Hand this in no later than February 14, 2025 (3 weeks after end of course)
- If you have no dataset available, one will be provided
- Grade will be "pass" or "fail", with at most one resubmission
- If no report or "fail": certificate of attendance

BioSB: The Netherlands Bioinformatics and Systems Biology research school

- Yearly conference: 20-21 May 2025 (https://www.aanmelder.nl/biosb2025)
- Courses (https://www.dtls.nl/biosb/courses/):
 - Constraint-based modeling, 10-14 February 2025
 - Algorithms for biomolecular networks, 28 April 2 May 2025
 - Knowledge graphs in the life sciences, Fall 2025
 - Algorithms for genomics, Fall 2025
- YoungCB: Regional Student Group (RSG) Netherlands of the International Society of Computational Biology (https://www.dtls.nl/youngcb/)

Course

Machine learning

- The construction of approximate, generalizing (predictive)
 models by learning from examples, for problems for which
 no full physical model is known (yet)
- Focus in this course will be on classification and statistical machine learning, not (so much) on regression, structural/syntactic pattern recognition and reinforcement learning.
- Related areas
 - Applied statistics
 - Pattern recognition
 - Artificial intelligence
 - Computer vision
 - Data mining

Clustering

Can we find natural groups in the data?

E.g. red vs green fruit

Dimensionality reduction

Can we find predictive features?

Regression

Can we predict real-valued outputs?

Classification

Can we distinguish apples from pears?

Datasets

A dataset is a set of measurements on many objects

For classification:

	Object		Weight	Co	lour	La	bel		
A	Apple #	±1/	25	36		А			
	Apple #	2	20	34		Α			
A	Apple #	‡3 (35	40		Α	Ŏ	ob	ject/sample
F	Pear #1	1	35	55		Р			
F	Pear#	2	37	55		Р			
F	Pear #3	3	40	57		Р			dataset
F	Pear #4	1	36	41		Р			
nea	neasurement feature labels/classes								

Exercise 1.1-1.9

Classification in bioinformatics

Note: theory applies to any type of data!

E.g. Predicting metastasis

Classification (2)

Given labeled data x,
 assign each point in feature space to a class ω_i
 (in effect partitioning the feature space)

General model

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data

General model (2)

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data
- Ideally, we know $p(y \mid x)$ or $p(\omega \mid x)$ over the entire feature space

if we know the probability distributions, we can make the most informed decision

General model (3)

- Construct a model f(x) that outputs ω or y
- This model should be fit to the data
- Ideally, we know $p(y \mid x)$ or $p(\omega \mid x)$ over the entire feature space

General model (4)

 Clustering: find cluster labels ω given object x fit model using dataset {x_i}

$$p(\boldsymbol{\omega} | \boldsymbol{x})$$

• Dimensionality reduction: find mapping y given object x fit model using dataset $\{x_i\}$

• Classification: find class labels ω given object x fit model using dataset $\{x_i, \omega_i\}$

$$p(\boldsymbol{\omega} | \boldsymbol{x})$$

Regression: find target y given object x
 fit model using dataset {x_i, y_i}

Machine learning pipeline

Statistics and Bayesian estimation

Recall: probability

- Ω: all possible outcomes (sample space)
 e.g. the number of eyes on a dice: 1, 2, 3, 4, 5, 6
- $A \in \Omega$: event e.g. "throwing a 3"
- P : probability measure
 - $0 \le P(A) \le 1$
 - $P(\Omega) = 1$
 - $P(A \cup B) =$ $P(A) + P(B) - P(A \cap B)$
 - E.g. P(A) = 1/6

Recall: PDFs

- $p(x) = \frac{dP(x)}{dx}$: probability density function
 - $p(x) \ge 0$

 - $\int_{a}^{b} p(x)dx = P(a \le x \le b)$

p(x) is not the probability of X being x!

Recall: Bayes' theorem

Conditional probability of A given B,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

As a consequence,

$$P(A \cap B) = P(A \mid B)P(B)$$
$$= P(B \mid A)P(A)$$

Bayes' theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Bayes' theorem (2)

- Bayes' theorem is very useful, but controversial:
 - reverses causality
 - introduces subjective (prior) probabilities

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- ... but the cornerstone of pattern recognition and machine learning
 - $P(disease|temperature) = \frac{P(temperature|disease)P(disease)}{P(temperature)}$
 - What is P (disease)? How to measure / know?

Bayes' theorem (3)

- In statistical learning, we want to know p(y|x) so that we can predict (for example) the most probable output y for a given input x
- Problem: this is often very hard to model or estimate...
 - Predict gender based on height measurement:
 p(gender|height)?
 - Predict fruit type based on color measurement:
 p(fruit|color)?
 - Predict temperature based on thermometer reading:
 p(temperature|thermometer reading)?

problem is that you need to measure too much:

for every height you need a number of examples of different genders feature = continuous & class label not

Bayes' theorem (4)

- Solution: combine probabilities
 - y = cause, outcome, target, label (ω), ...
 - x =effect, measurement, feature, ...

Bayes' theorem (5)

- Classification example $p(\omega | x)$:
 - ω ∈ { 'man', 'woman' } = label
 - $x \in \mathbb{R}^1$ = height measurement(m)
- p(ω): prior probability of seeing a 'man' or a 'woman' here: ...?
- $p(x|\omega)$: density of x (height) when the person is actually a 'man' or a 'woman'
 - p(x): density of height measurement x here (total probability):

$$p(x) = \sum_{i} p(x \mid \omega_{i}) p(\omega_{i})$$

Bayesian estimation

- Estimate prior, p(y), and conditional, p(x|y)
- Use this to obtain posterior, p(y|x)
- Construct a cost function $\Lambda(y',y)$: the cost of predicting y' when the true outcome is y
 - for classification: cost matrix
 - when all mistakes are equally bad:
 - $\Lambda(y',y) = 0$ when y' = y
 - $\Lambda(y',y) = 1$ otherwise

Bayesian classification

As example, consider a single gene expression measurement x

Posterior probability

For each object, we have to estimate $p(\omega|x)$ or p(y|x)

- healthy
- diseased

Posterior probability (2)

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

diseased

Posterior probability (2)

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

Labels ω

- healthy
- diseased

• Of course:
$$\mathop{\overset{C}{\stackrel{}{\circ}}}_{c=1} p(\mathcal{W}=c\mid x)=1$$

Posterior probability (3)

• For each object, we have to estimate $p(\omega|x)$ or p(y|x)

Assign label of class with the largest posterior probability

A classifier

There are several ways to describe a classifier:

• if
$$p(\omega = h \mid x) > p(\omega = d \mid x)$$
 then assign to h otherwise to d
• if $p(\omega = h \mid x) - p(\omega = d \mid x) \ge 0$ then assign to h otherwise to d
• if $\frac{p(\omega = h \mid x)}{p(\omega = d \mid x)} \ge 1$ then assign to h otherwise to d
• if $\ln[p(\omega = h \mid x)] - \ln[p(\omega = d \mid x)] \ge 0$ then assign to h

 A Bayesian classifier is a threshold on the difference between posterior probabilities

otherwise to d

Bayes' rule

- In many cases, the posterior is hard to estimate
- Often a certain functional form can be assumed for the class-conditional distributions
- Use Bayes' theorem to rewrite one into the other:

$$p(\omega = c \mid x) = \frac{p(x \mid \omega = c)p(\omega = c)}{p(x)}$$

• class-conditional distribution: $p(x \mid \omega = c)$

• prior distribution:
$$p(\omega)$$

• data distribution:
$$p(x) = \mathop{\bigcirc}_{c=1}^{C} p(x \mid W = c) p(W = c)$$

Bayes' rule (2)

The decision rule becomes

$$p(\omega = h \mid x) > p(\omega = d \mid x)$$

$$\frac{p(x \mid \omega = h) p(\omega = h)}{p(x)} > \frac{p(x \mid \omega = d) p(\omega = d)}{p(x)}$$

$$p(x \mid \omega = h) p(\omega = h) > p(x \mid \omega = d) p(\omega = d)$$

Bayes' rule (3)

The effect of the prior:

Prior can shift the decision boundary
If one class is very unlikely, we will not make a large error if we misclassify that class

Bayes' rule (4)

Bayes' error: minimal attainable error
 (if data follows class-conditional contributions...)

- $\Lambda(\omega',\omega) = 0$
- when $\omega' = \omega$

• $\Lambda(\omega',\omega)=1$

otherwise

Bayes' rule (5)

In practice:

Plug-in Bayes classifier

Bayes' rule:

$$c_{opt} = \operatorname{arg\,max}_c \ p(\omega = c \mid x) = \operatorname{arg\,max}_c \ p(x \mid \omega = c) \ p(\omega = c)$$

- Given priors, we only require the class conditional distributions $p(x/\omega=c)$
- In practice we will always have to estimate $p(x/\omega=c)$ by $\hat{p}(x \mid \omega=c)$ and hope that the resultinh classifier when we *plug in* this approximation will still perform well
- Density estimation is a very hard problem!
- The resulting classifier will be sub-optimal and in general will not attain Bayes' error

Plug-in Bayes classifier (2)

• Same problem, two different density estimates $\hat{p}(x \mid \omega = c)$

Parzen density estimation

Which one is best (Parzen)
Which one is optimal (none: true dist = normal perpendicular to two half-circles)

Density estimation

Density estimation

Simplest approach: approximate density by histogram

Density estimation (2)

Problem: accuracy

Gauss: 50 bin -> 50 parameters to estimate

Density estimation (3)

For 1 - dimensional data,
 ± 1000 points needed

For p - dimensional data, $\pm 1000^{p}$ points needed

• Unworkable for p > 2 measurements

Curse of dimensionality

- Intuitively, using more features
 (e.g. width, height, color etc.) should give us
 more information about the outcome to predict
- But we never know the densities, so we have to estimate them
- The number of parameters (e.g. histogram bins)
 to estimate increases with the number of features
- To estimate these well, you need more objects
- Consequence:
 there is an optimal number of features to use

Curse of dimensionality (2)

So, realize if n -> INF than you can have many features

Density estimation (4)

- Two main approaches:
 - parametric: assume simple global model,
 e.g. Gaussian, and estimate its parameters
 - non-parametric: assume simple local model,
 e.g. uniform, Gaussian, and aggregate

The Gaussian distribution

- Why Gaussians?
 - Special distribution: the Central Limit Theorem says that sums of large numbers of i.i.d. (independent, identically distributed) random variables will have a Gaussian distribution
 - Simple, few parameters
 - Often occurs in real life

e.g. sum of eyes of 10,000 dice throws (expectation = 3.5 per throw)

The Gaussian distribution (2)

Not necessarily too restrictive: mixture models (discussed

tomorrow)

Gaussian

Mixture of Gaussians

The Gaussian distribution (3)

- Normal distribution =
 Gaussian distribution
- Standard normal distribution: $\mu = 0, \ \sigma^2 = 1$
- 95.45% of data between $[\mu 2\sigma, \mu + 2\sigma]$ (in 1D!)

1-dimensional density:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$

 μ : mean

 σ^2 : variance

Multivariate Gaussian distribution

$$\Sigma = \begin{bmatrix} 3 & 1\frac{1}{2} \\ 1\frac{1}{2} & 2 \end{bmatrix}$$

p - dimensional density:

$$p(\mathbf{x}) = \frac{1}{\sqrt{2\pi^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

u: mean

 Σ : covariance matrix

Multivariate Gaussian distribution (2)

Parametric estimation

- Assume model, e.g. Gaussian and estimate mean μ and covariance Σ from data
- Sounds simple, but for *p* dimensional data set:
 - μ : vector with p elements
 - Σ : matrix with 0.5 p(p+1) elements
- Number of parameters increases quadratically with p: need a lot of data for high-dimensional problems

Density estimation (4)

- Two main approaches:
 - parametric: assume simple global model,
 e.g. Gaussian, and estimate its parameters
 - non-parametric: assume simple local model,
 e.g. uniform, Gaussian, and aggregate

Exercise 1.10-1.14

Histogramming

- Histogram method:
 - Divide feature space into N^p bins (N bins per feature)
 - Count number of objects in each bin
 - Normalize:

$$\hat{p}(\mathbf{x}) = \frac{n_i}{\sum_{i=1}^{N^p} n_i dx dy}$$

Histogramming (2)

• For example, using N=50 bins per dimension

Histogramming (3)

Histogram density estimate:

$$\hat{p}(\mathbf{x} \mid d\mathbf{x}) = \left(\frac{\text{fraction of objects}}{\text{volume}}\right)$$

- Fix cell size (dx)
- Count #objects per cell

k-nearest neighbor density estimation

k-nearest neighbor estimate:

$$\hat{p}(\mathbf{x} \mid k) = \left(\frac{\text{fraction of objects}}{\text{volume}}\right) \hat{p}(\mathbf{x})$$

$$= \frac{k}{n\Delta x_k} = \frac{k}{n\|\mathbf{x} - \mathbf{x}_k\|}$$

- Fix #objects per cell (k)
- Determine cell size (volume)

k-nearest neighbor density estimation (2)

• The density estimate for k = 1 contains singularities:

- Procedure:
 - Fix volume of cell
 - Vary positions of cells
 - Add contributions of cells
- Define cell shape (kernel), e.g. uniform

$$K(r,h) = \begin{cases} 0 & \text{if } |r| > h \\ \frac{1}{V} & \text{if } |r| \le h \end{cases}$$

(with V the volume of the kernel) or Gaussian

• With Gaussian kernel: $K(r,h) = \frac{1}{2\pi^{1/2}h} \exp\left(-\frac{1}{2}\frac{r^2}{h^2}\right)$

Example: viral insertions in each chromosome

Density of highly expressed genes

Density of viral insertions

Feature: position along chromosome

- Maximum likelihood (ML) estimate: choose kernel width h
 such that the probability of the observed data is maximal
 - PDF of observing a point z :

$$\hat{p}(z \mid h) = \frac{1}{n} \sum_{i=1}^{n} K(||z - x_i||, h)$$

• PDF of observing dataset $x_1, ..., x_n$ (likelihood):

$$\hat{p}(X|h) = \prod_{i=1}^{n} \hat{p}(x_i|h)$$

(this assumes independence!)

• Maximize log-likelihood w.r.t. h (convenient to avoid multiplication):

$$LL = \log(g(\mathbf{x}_1, \square, \mathbf{x}_n)) = \mathop{a}_{i=1}^n \log(\hat{p}(\mathbf{x}_i \mid h))$$

Maximum likelihood on training set:

1.6

1.4

1.2

8.0

0.6

0.4

0.2

0<u>└</u>

- Maximum likelihood on training set:
 - $h \rightarrow 0$: $LL \rightarrow \infty$
 - Extreme example of overtraining:
 fitting data too much

Cross-validation

Solution:

- Split data into training set and validation set
- Optimise h w.r.t. likelihood of validation set, given Parzen model trained on training set

Problems:

- Uses a lot of valuable data
- Sensitive to split of data

Cross-validation (2)

- Better solution: K-fold crossvalidation
 - Split data into K parts (K = n: leave-one-out)
 - Repeat K times:
 - Find h using (K 1) parts for training and 1 part for validating
 - Use average of h's as kernel width

Training, test and validation sets

- Terminology:
 - A training set is used to estimate parameters
 - An optional validation set is used to optimize parameter settings,
 e.g. by calculating classifier error on this set
 - A test set is only used to judge performance of the entire classifier (only used once!)
- Error estimates:
 - On training set: apparent error
 - On test set: true error

Training, test and validation sets (2)

Bayesian classification

In practice:

Recapitulation

- Bayesian estimation
 - provides a framework for minimizing cost due to errors
 - combines class-conditional and prior distributions into posterior ones
- We never know these distributions, so we have to estimate them;
 this is problematic due to the curse of dimensionality
- Possible approaches:
 - Parametric: e.g. Gaussian
 - Nonparametric: histogramming, k-nearest neighbor density estimation, Parzen density estimation

Recapitulation (2)

- Maximum likelihood estimation is a method for estimating parameters of density functions
- To optimize parameters, the error should be calculated on a validation set
- A completely independent test set should only be used to judge performance of the final classifier
- Cross-validation and bootstrapping can help to estimate performance when little data is available

Exercise 1.15-1.25

