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1. Introduction, density estimation
& classification

Perry Moerland Amsterdam UMC, University of Amsterdam
Marcel Reinders Delft University of Technology
Lodewyk Wessels  Netherlands Cancer Institute

Some material courtesy of Robert Duin, David Tax & Dick de Ridder



Programme

Day

Monday 20/1

Lecturer

Perry Moerland

Subjects

Introduction to machine learning
Density estimation
Bayesian classification

Tuesday 21/1

Perry Moerland

Parametric and nonparametric classifiers
Decision trees & random forests
Hierarchical clustering

Agglomerative clustering

EM and model-based clustering

Wednesday 22/1

Lodewyk Wessels

Feature extraction
Embeddings
Feature selection
Sparse classifiers

Thursday 23/1

Marcel Reinders

Artificial neural networks
Support vector machines
Classifier ensembles
Complexity

Friday 24/1

Marcel Reinders
Students
Invited speaker

Variational autoencoders

Diffusion models

Student pitches

Invited speaker (application of classification)




Schedule LO-227

9.00-12.00 Course LO-227
12.00-13.00 Lunch break The Box (G0-114)
13.00-17.00 Course LO-227

« Coffeeltea etc. and lunch
will be provided

«  Thursday there will be
drinks, bites and a quiz at
17.00 in Miss Scarlett (at 5
minutes walking distance
from the AMC)

* Friday: J1B-223




Certificates and examination

To obtain a certificate of successful completion:

* Analyse a biological dataset (preferably one from your own
practice) using the tools provided in the course

»  Write a short report (5-10 pages) on the results

- Hand this in no later than February 14, 2025 (3 weeks after end
of course)

If you have no dataset available, one will be provided
Grade will be “pass” or “fail”, with at most one resubmission
If no report or “fail”: certificate of attendance



BioSB: The Netherlands Bioinformatics and
Systems Biology research school

Yearly conference: 20-21 May 2025
(https://www.aanmelder.nl/biosb2025)

Courses (https://www.dtls.nl/biosb/courses/):
Constraint-based modeling, 10-14 February 2025
Algorithms for biomolecular networks, 28 April — 2 May 2025

Knowledge graphs in the life sciences, Fall 2025

Algorithms for genomics, Fall 2025

YoungCB: Regional Student Group (RSG) Netherlands of the
International Society of Computational Biology
(https://www.dtls.nl/youngchb/)



Course



Machine learning

The construction of approximate, generalizing (predictive)
models by learning from examples, for problems for which
no full physical model is known (yet)

Focus in this course will be on classification and
statistical machine learning, not (so much) on
regression, structural/syntactic pattern recognition and
reinforcement learning.

Related areas

« Applied statistics

- Pattern recognition
- Artificial intelligence
- Computer vision

- Data mining




Clustering

- Can we find natural groups in the data?
- E.g. red vs green fruit




Dimensionality reduction

- Can we find predictive features?




Regression

- Can we predict real-valued outputs?




Classification

- Can we distinguish apples from pears?




Datasets
- A dataset is a set of measurements on many objects

* For classification:
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Exercise 1.1-1.9
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Classification in bioinformatics

- Example:

gene expressior
data ﬂ 11’ 1”[ .l‘ r
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Note: theory applies to any type of datal E.g. Predicting metastasis




Classification (2)

* Given labeled data x,
assign each point in feature space to a class w
(in effect partitioning the feature space)

Iris plants
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This model should be fit to the data
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General model

Construct a model f (x) that outputs o ory

Feature 1

) f(x)=oor f(x)=y



General model (2)

» Construct a model f (x) that outputs @ ory
- This model should be fit to the data

- ldeally, we know p(y | X) or p(@ | X) over the entire feature space

p(y | x)
“ N or
o ) f()=oeorfx=y
25/ ‘ V//// — —\
201 -

45 50 55 60 65 70 75 80
Feature 1

if we know the probability distributions, we can make the most informed decision F




General model (3)

» Construct a model f (x) that outputs @ ory
- This model should be fit to the data
- ldeally, we know p(y | X) or p(@ | X) over the entire feature space

p(y | x)
or

p(@ | X)

) f(x)=oor f(x)=y

Feature 2 ) Feature 1

if we know the probability distributions, we can make the most informed decision f




General model (4)

Clustering: find cluster labels @ given object x
fit model using dataset {x;}

p(@] X)

Dimensionality reduction: find mapping y given object x
. . p(y|x)
fit model using dataset {x;}

Classification: find class labels w given object x

fit model using dataset {x;, @} p(@] x)
Regression: find target y given object X o(y | X)
fit model using dataset {Xx;, y;}

BlOSB

Statistical machine learning




Machine learning pipeline

i Yior o
| output
Dataset

Train

Objects model
| Extract
features _ f()
Output
New or label X
object X y or @




Statistics and Bayesian estimation



Recall: probability

Q : all possible outcomes (sample space)

e.g. the number of eyesonadice: 1, 2, 3,4, 5,6

A € Q) event
e.g. “throwing a 3’
P : probability measure
- 0<P(A)<1
- PQ)=1
- P(AUB) =
P(A) + P(B) - P(AN B)
- E.g.P(A)=1/6

)

A NB




Recall: PDFs

p(x) = dP( ) . probabillity density function
0.5
p(x) =0
0.4
 p(x)dx =1 04
p(X)dX _ 0.2
Pa<x<hb) ™

-4 -2 0 2 4

* p(x)is not the probability of X being x !



Recall: Bayes’ theorem

- Conditional probability of A given B,

P(A|B) = P(F?(E)B)

* As a consequence,

P(AnB)=P(A|B)P(B)

=P(B|A)P(A)
- Bayes’ theorem:
P(A|B) = P(BFL?E);(A)

QAmB




Bayes’ theorem (2)

Bayes’ theorem is very useful, but controversial:
* reverses causality
* Introduces subjective (prior) probabilities

P(effect | cause) P(cause)

P(cause | effect) = P(effect)

... but the cornerstone of pattern recognition and machine
learning

p(temperature|disease)pr(disease)
P(temperature)

P(disease|temperature) =

« What is P (disease)? How to measure / know?



Bayes’ theorem (3)

In statistical learning, we want to know p(y | X)
so that we can predict (for example) the most
probable output y for a given input x

Problem: this is often very hard to model or estimate...

* Predict gender based on height measurement:
p(gender|height)?

 Predict fruit type based on color measurement:
p(fruit|color)?

+ Predict temperature based on thermometer reading:
p(temperature[thermometer reading)?

problem is that you need to measure too much:
for every height you need a number of examples of different genders
feature = continuous & class label not




Bayes’ theorem (4)

Solution: combine probabilities
* Y = cause, outcome, target, label (), ...

e X = effect, measurement, feature, ...

conditional prior
probability probability

[ A Y A \
X
o(y | x) = PXIY)P(Y)
p(X)
\ v J |
posterior  normalisation
probability

We update our prior belief (prior) using observations (conditional) [g:




Bayes’ theorem (5)

Classification example p(@| X) :
 we {'man’, ‘woman’ } = label
* X € R! = height measurement(m)
pP(w) : prior probability of seeing a ‘man’ or a ‘woman’
here: ...?

pP(X|w) : density of x (height) when the person is actually
a ‘man’ or a ‘woman’

p(x) :  density of height measurement x
here (total probability):

p(x) =2 p(x| @) p(e)

Issue: Prior for man/woman? In NL? In Delft? In classroom?




Bayesian estimation

Estimate prior, p(y), and conditional, p(x|y)
Use this to obtain posterior, p(y|x)

Construct a cost function A(y’.y):
the cost of predicting y’ when the true outcome is y
- for classification: cost matrix
- when all mistakes are equally bad:
A(y.y)=0 wheny’ =y
ALy =1 otherwise



Bayesian classification



Classification
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As example, consider a single gene expression measurement X

BlOSB




Posterior probability

» For each object, we have to estimate p(aix) or p(y|x)

Labels w
@ healthy
@ diseased



Posterior probability (2)

» For each object, we have to estimate p(aix) or p(y|x)

p(e=h|Xx)

Labels w
@ healthy
@ diseased



Posterior probability (2)

» For each object, we have to estimate p(aix) or p(y|x)

p(e=h|Xx) p(@=d]Xx)

Labels w X
@ healthy
@ diseased

C
- Of course: é pw=c|x)=1
c=1 " BioSB



Posterior probability (3)

» For each object, we have to estimate p(aix) or p(y|x)

plo=h|x)>ple=d|x) plo=d|x)>p(e=h|x)

Labels *
@ healthy
@ diseased
decision boundary

Assign label of class with the largest posterior probability



A classifier

There are several ways to describe a classifier:

« if plo=h|x)>p(w=d|Xx) then assign to h
otherwise to d
- if plo=h|X)—p(o=d|x)=>0 then assign to h

otherwise to d

o if p(@=h|x) >1 then assign to h
p(w=d|X) otherwise to d

- if In[p(w=h|x)]-In[p(w=d|x)] =0 then assign to h
otherwise to d

A Bayesian classifier is a threshold on the
difference between posterior probabilities



Bayes’ rule

In many cases, the posterior is hard to estimate

Often a certain functional form can be assumed
for the class-conditional distributions

Use Bayes' theorem to rewrite one into the other:

p(x|@=c)p(@=c)

- posterior distribution: p(w=cC|X) =
p(x)
- class-conditional distribution: p(X|@ =)
- prior distribution: p(w)
S
- data distribution: p(x)=aplx|w=c)p(w=c)

c=1



Bayes’ rule (2)

The decision rule becomes

p(ew=h[x)> p(e=d|X)

$

p(x|o=h)plw=h) p(x|o=d)p(w=d)

p(x) p(x)

$

p(x|@=h)p(e@=h) > p(x|w=d)p(e=d)




Bayes’ rule (3)
The effect of the prior:

p(x|@=h) | p(x|o=d)

XN

p(x|@=h)p(ew=h)

p(x|o=d)p(w=d)

)

Prior can shift the decision boundary
If one class is very unlikely, we will not make a large error if we misclassify that class




Bayes' rule (4)

Bayes’ error: minimal attainable error
(if data follows class-conditional contributions...)

H|D

p(x|@=h)p(e=h) p(x|w=d)p(w=d)

« Alw’,w)=0 when o’ = w
c Aw’,w)=1 otherwise



Bayes’ rule (5)

* In practice:

Density
Healthy estimation

Data set ' Splitin classes Classify

Density

Diseased estimation

Plug in:
Gaussian
Histogram Bayes’ rule
k-nearest neighbour
Parzen




Plug-in Bayes classifier

Bayes' rule:

Copt =aArgmax, p(w=c|x)=argmax, p(x|w=c)p(w=c)

Given priors, we only require the
class conditional distributions p(x|w=c)

In practice we will always have to estimate p(x|o=c) by p(x| @ = ¢)
and hope that the resultinh classifier when we plug in
this approximation will still perform well

Density estimation is a very hard problem!

The resulting classifier will be sub-optimal
and in general will not attain Bayes’ error -



Plug-in Bayes classifier (2)

- Same problem, two different density estimates p(X| o =)

Normal density estimation

Banang Sel

Feahire 2
& m 4+ R S R+ m

'
—_
' =]

Feature 1

Feahire 2

'
—_

' =]
T

Parzen density estimation

Banana Sel

' ' ' '
=] =] - ] =] ] - =]
T T T T T T

Featura 1

Which one is best (Parzen)

Which one is optimal (none: true dist = normal perpendicular to two half-circles

5B




Density estimation



Density estimation

Simplest approach: approximate density by histogram

e.g. 10,000 throws
of a dice
L%

10,000 objects

p(x)

1 measurement

0.2l 6 parameters

dx volume

But...

_dP(x) _(fraction of objects) i

0.1

0.05¢




Density estimation (2)

Problem: accuracy

100 objects 1,000 objects 10,000 objects

0.0

100 repetitions | ¢

0.6 | T 0.6 0.6
0.5 1 X 0.5
0.4 1 0.4
0.3 1 0.3
0.2 1 0.2
0.1 1 0.1
1
- WL AR :

Gauss: 50 bin -> 50 parameters to estimate




Density estimation (3)

For 1 - dimensional data,
+ 1000 points needed

50 parameters

-5 0

5

For p - dimensional data,
+ 1000 P points needed

502 parameters

Unworkable for p > 2 measurements



Curse of dimensionality

Intuitively, using more features
(e.g. width, height, color etc.) should give us
more information about the outcome to predict

But we never know the densities, so we have to estimate them

The number of parameters (e.g. histogram bins)
to estimate increases with the number of features

To estimate these well, you need more objects

Consequence:
there is an optimal number of features to use



Curse of dimensionality (2)

overall
error

3

€ # objects n

#features

So, realize if n -> INF than you can have many features | s
u.O




Density estimation (4)

Two main approaches:

« parametric: assume simple global model,
e.g. Gaussian, and estimate its parameters

TR—

4321012 3 4

4321012 3 4

4 3210 1 2 3 4



The Gaussian distribution

Why Gaussians?

- Special distribution: the Central Limit Theorem says that sums
of large numbers of i.i.d. (independent, identically distributed)
random variables will have a Gaussian distribution

- Simple, few parameters

- Often occurs in real life

e.g. sum of eyes of
10,000 dice throws
(expectation = 3.5 per throw)

34000 34500 35000 35500 36000



The Gaussian distribution (2)

* Not necessarily too restrictive: mixture models (discussed
tomorrow)

Gaussian

Mixture of Gaussians



The Gaussian distribution (3)

0.5

0.4}

0.3}

0.2}

0.1

0

-5 0

- 1-dimensional density:

p(Xx) =

4. mean
o 2:variance

e Normal distribution =
Gaussian distribution

e Standard normal
distribution:
u=0,0°=1

« 95.459% of data between
[ - 20, u+20] (in 1D!)




Multivariate Gaussian distribution

5

5
5 0 5

p - dimensional density:

P9 = 277 det(®)

M . mean
Y. : covariance matrix

3 1%

1% 2

eXp(—%(X—ﬂ)Tzl(X—u)j



Multivariate Gaussian distribution (2)

5 =10 5
& BEER -

[
1
o W
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Parametric estimation

Assume model, e.g. Gaussian and estimate
mean x and covariance X from data

Sounds simple, but for p - dimensional data set:

 u:vector with p elements
« X :matrix with 0.5 p(p+1) elements

Number of parameters
Increases quadratically

with p : need a lot of data

for high-dimensional problems

2r

Ky




Density estimation (4)

Two main approaches:

* non-parametric: assume simple local model,
e.g. uniform, Gaussian, and aggregate

TR—

4-32-1012 34 4321012234 4-32-1012 34
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Histogramming

« Histogram method:

 Divide feature space
Into NP bins (N bins per feature)

« Count number of
objects in each bin

- Normalize: i{
p(X) = —— dy -
> ndxdy 1 ] ]
=1




Histogramming (2)

For example, using N=50 bins per dimension




Histogramming (3)

Histogram density estimate:

fraction of objects

ﬁ(x|dx)=(

volume

« Fix cell size (dx)
« Count #objects per cell




k-nearest neighbor density estimation

k-nearest neighbor estimate: I ' \J
. fraction of objects) 4
b= Sk
volume v
kK |
A, nxx,| | N
/v Q00 O/O :

 Fix #objects per cell (k) X X, X, X

« Determine cell size (volume)



k-nearest neighbor density estimation (2)

The density estimate for k = 1 contains singularities:

n=10,k =1 n=10,k =5

0.5/ :
2t ] \

0.5




Also known as kernel-based density estimation
Parzen density estimation

* Procedure: *
* Fix volume of cell I
 Vary positions of cells il .
- Add contributions of cells IR
- Define cell shape (kernel), T, .
e.g. uniform o R
Oif (ril>h 7 .
K(r,h)=< . T R T BT Er
X f ri<h

(with V the volume of the kernel)
or Gaussian 1

+ For test object z, sum all cells: p(z|h)==) K (”Z—Xi”,h)
ni3



Parzen density estimation (2)

With Gaussian kernel: K(r,h): !

2ml/2p




Parzen density estimation (3)

Example: viral insertions in each chromosome

1 2 3 4 5
Density of highly f N f \ | A \
Density of 6 ! 8 3 10
viral insertions A I\i i ﬂk :
AV | 1
11 12 13 14 15
A /
s
AL L A N LA Y
16 17 1. 19 o
J M JQ/\ \ f‘ /|
P,
M S 5 Uﬁ o M 5 5

Feature: position along chromosome




Parzen density estimation (4)

Maximum likelihood (ML) estimate: choose kernel width h
such that the probability of the observed data is maximal

« PDF of observing a point z :

-1 s

- PDF of observing dataset X, ..., X, (likelihood):

pexiny = | |pealn)
i—1

(this assumes independence! )
- Maximize log-likelihood w.r.t. h (convenient to avoid multiplication):

LL = logg(x,) x,)) = Alog(p(x, 1)



Parzen density estimation (5)

Maximum likelihood on training set:

0.045-

0.04

0.035F

0.03r

0.025~

0.02-

0.015+

0.01-

0.005F

h = 10.000000: LL =-32.279747




Parzen density estimation (5)

Maximum likelihood on training set:

h =5.000000: LL =-25.538351

0.09"
0.08" :
0.07/\
0.06/ :
0.05
0.04;
0.03f
0.02/

0.01r




Parzen density estimation (5)

Maximum likelihood on training set:

0.45

0.4

0.35

0.3~

0.25F

0.2~

0.15-

0.1-

0.05

h = 1.000000: LL =-13.554438




Parzen density estimation (5)

Maximum likelihood on training set:

1.6

1.4+

1.2+

0.8+

0.6-

0.4~

0.2

h =0.100000: LL =-4.170235




Parzen density estimation (5)

Maximum likelihood on training set:

18

16}

14+

12+

10+

h = 0.010000: LL = 16.605494




Parzen density estimation (5)

Maximum likelihood on training set:
* h—>0:LL > w

« Extreme example of
overtraining :
fitting data too much

45+

40~

35~

30

25r

20r

15+

10

h = 0.001000: LL = 36.877153




Cross-validation

Solution:

- Split data into
training set and validation set

* Optimise h w.r.t. likelihood
of validation set,
given Parzen model
trained on training set

Problems:
- Uses a lot of valuable data
- Sensitive to split of data

h = 0.650406: LL =-12.017858




Cross-validation (2)

+ Better solution: K-fold crossvalidation
- Split data into K parts (K = n: leave-one-out)

* Repeat K times:

Find h using (K - 1) parts for training
and 1 part for validating

« Use average of h's as kernel width

—— train data

—— testdata —— hy

(will return)



Training, test and validation sets

Terminology:
- A training set is used to estimate parameters

- An optional validation set is used to optimize parameter settings,
e.g. by calculating classifier error on this set

- Atestsetis only used to judge performance of the entire
classifier (only used once!)

Error estimates:

« On training set: apparent error
* On test set: true error



Training, test and validation sets (2)

Error

70
*0 -"- % ootee *m o |o
v o S VO B A ot e Bl
50— A T T
-, TError on test set (frue error)
%ﬁ#\i

20

10

Error on training set (apparent error)
‘/,/'

/

40 60 80 100 120 140 160 180 200
Number of features



Bayesian classification

* In practice:

Density
Healthy " ggtimation

Data set ' Splitin classes Classify

Density

Diseased estimation

Plug in:
Gaussian
Histogram Bayes’ rule
k-nearest neighbour
Parzen




Recapitulation

Bayesian estimation

 provides a framework for minimizing cost due to errors

« combines class-conditional and prior distributions into posterior ones
We never know these distributions, so we have to estimate them;
this is problematic due to the curse of dimensionality
Possible approaches:

- Parametric: e.g. Gaussian

« Nonparametric: histogramming, k-nearest neighbor density
estimation, Parzen density estimation



Recapitulation (2)

Maximum likelthood estimation is a method for
estimating parameters of density functions

To optimize parameters, the error should be calculated
on a validation set

A completely independent test set should only
be used to judge performance of the final classifier

Cross-validation and bootstrapping can help to estimate
performance when little data is available



Exercise 1.15-1.25
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