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Classification

• Logistic classifier

• Plug-in Bayes classifiers
• Density-based classification: Parzen, nearest neighbour, 

Gaussian

• Decision trees and random forests



Classification (2)

• Given labeled data:

• Assign to each object

a class label

• In effect splits the feature

space in separate regions
2

1

3x



decision boundarydecision boundary



Description of a classifier

There are several ways to describe the classifier:

• If                                            then assign to h otherwise to d

• If                                                                 then assign to h
                                          

• If                                                                 then assign to h
                                      

• If                                                                 then assign to h

A Bayesian classifier is a threshold on the difference between 
posterior probabilities                               

p =h∣x p =d∣x 

p =h∣x 

p =d∣x
1

ln p =h∣x−ln p =d∣x 0

p =h∣x−p =d∣x 0



Logistic classifier

• We can rewrite:

• Assume we can approximate:

• The classifier becomes (computer lab exercise):

ln p =h∣x −ln p =d∣x =lnp =h∣x 

p =d∣x 

p =d∣x =
1

1expwT xw0

lnp =h∣x

p =d∣x=w0w
T x

logit, log-odds



Logistic function

• The function looks like:

f x =
1

1exp−x 

logistic (sigmoid) function



Logistic classifier (2)

• On a two-dimensional dataset it looks like:

wT xw0=0



Logistic classifier (3)

• On a two-dimensional dataset it looks like:



Optimizing the logistic classifier

• To optimize the parameters on a training set, maximize the 

likelihood

where           is the i-th object from class j

• Maximization using gradient ascent

• Appears to be easier to maximize  log(L)

• Weights are iteratively updated as:

L=∏
i=1

n1

p x i
1∣1∏

j=1

n2

p x j
2 ∣2

x i
( j)

wnew=wold
∂ log L

∂w





Optimizing the logistic classifier (2)

• Function to maximize

• Use log(L)

• Use Bayes' theorem

• Therefore

 

L=∏i=1
n1 p x i

1∣1∏ j=1
n2 p x j

2∣2

log L=∑
i=1

n1

log p x i
1
∣1∑

j=1

n2

log p x j
2
∣2

log L=∑
i=1

n1

log p 1∣x i
1

∑
j=1

n2

logp 2∣x j
2

C

logp(x i
(1)∣ω1)=logp (ω1∣x i

(1)
)−logp (ω1)+logp(x i

(1)
)

constant



Optimizing the logistic classifier (3)

• Filling in that 

gives 

p 2∣x =
1

1expwT xw0

log(L)=∑
i=1

n1

(w0+wT x i
(1)

)− ∑
j=1

n1+n2

log(1+exp(w0+wT x j))



Derivative of the log-likelihood

• The gradient of log(L) is

• Take initial values:

• Keep iterating

till convergence

∂ log L

∂w0

=n1− ∑
i=1

n1n2

p 1∣x i

∂ logL

∂w j

=∑
i=1

n1

x i
1

 j− ∑
i=1

n1n2

p 1∣x ix i j , j=1,... ,p

w0=0,w=0

wnew=wold
∂ log L

∂w



Plug-in Bayes classification

• In many cases the posterior is hard to estimate

• Often a functional form of the class distributions can be 
assumed 

• Use Bayes' theorem to rewrite one into the other:

class-conditional distribution:

prior distribution:

data distribution:

p∣x =
px∣p

px

px∣

p

px



Plug-in Bayes classification (2)

CUT

Data set Split in classes

Diseased

Healthy
Density

 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

p x∣=d

Classify

Bayes’
rule

p x∣=h



Bayes decision making

• Estimate the class-conditional 
density (Day 1)

• Parametric 
• Known distribution

• Estimate parameters on training 
set

• Non-parametric
• No knowledge on distribution

• Manage the smoothness
of the distribution

px∣i

px∣i=N x ; ,

px∣i=
1
N
∑
y

K x ,y 



Example plugin

• Two examples

Normal density estimation Parzen density estimation



Example plugin

• Two examples

Normal density estimation Parzen density estimation



Parzen classifier

p x∣m=
1
N ∑

i=1

N m

N  x ; xi , h I 

p x∣m p m∣x 



Parzen width parameter

• The width parameter h has a large influence



Optimization of h

• Use the average k-nearest neighbor distance 
(k=10 is suggested...)

•  Use a heuristic

• Optimize the likelihood using cross-validation 

• and more...

h= 4
p2 

1
p4 n

−1
p4

2=
1
p ∑i=1

p

s ii

∏
i=1

n

p xi



Nearest neighbor classification

• For the k-nearest neighbor density we defined:

where V
k
 is the volume of the sphere centered at x, with

radius r the distance to the k-th nearest neighbor

px =
k

nV k

k=3
V kr

k=3
V kx



Nearest neighbor classification (2)

• When more classes are present, count how many objects of

each of the classes are members of the k neighbors

• Class-conditional density:

k=5

V k

k 2=2
k 1=3

px∣m=
k m

nm V k



Nearest neighbor classification (3)

• Using Bayes:

• Estimate the prior probability by counting:

• Fill in:

• No density estimation is needed!

p̂(x∣ωm) p̂(ωm)≥ p̂(x∣ωi) p̂(ωi)

p m=
nm

n

k m

nm V k

nm

n
≥

k i

ni V k

ni

n
k m≥k i



The choice of k

• When does the classifier become more smooth? When more 
ragged?

• What happens for  k = 1, and  k = n ?



The choice of k (2)

• When does the classifier become more smooth? When 
more ragged?

k=1

k=3

k=30



Sometimes strange results:

k=5



Sometimes strange results (2):

Rescaling the features has large influence!

k=5



Advantages/disadvantages

• simple and flexible classifier

• often a very good 
classification performance

• it is simple to adapt the 
complexity of the classifier

• you have to store the 
complete training set

• distances to all training 
objects have to be 
computed

• scaling of the features should 
be sensible

• you have to optimize 
k or h



Classifying with densities

CUT

Data set Split in classes

Class 2

Class 1 Density
 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

Classify

Bayes’
rule

px∣1

px∣2



Plug-in Gaussian distribution

• Now take the most obvious choice: the Gaussian distribution

• So-called parametric density estimation

• We have to estimate the parameters via maximum likelihood:

p̂ (x∣ω)=
1

√2π
pdet ( Σ̂ω)

exp(−1
2

(x−μ̂ω)
T
Σ̂ω

−1
(x−μ̂ω))

=
1
n
∑i=1

n
x i

=
1
n
∑i=1

n
x i− x i− 

T



Example on banana data

• A single Gaussian distribution on each class:



Class-conditional densities

• Combining

we can derive for log(p):

px∣i=
1

2
pdet  i

exp−1
2

x− i
T
 i

−1
x−i

log(p̂ (ωi∣x))=−
p
2
log(2π)−

1
2
log(det Σi)

−
1
2

(x−μi)
T
Σi

−1
(x−μi)+log(p (ωi))−log(p(x ))

p∣x =
px∣p

px



Normal density-based classifier

• p(x)  is independent of the classes and can be dropped

• Classifier becomes:

assign x to class       when for all        :

gix=−
1
2
logdet  i−

1
2

x−i
T
 i

−1
x− ilogpi

i gixg j x i≠ j



The two-class case

• Define the discriminant

• We get (computer lab exercise):

• This is a quadratic classifier because 
the decision boundary is a quadratic function of x

f x =p 1∣x −p 2∣x 0

f x =xTWxwT xw0



Quadratic classifier on banana data

f x =0

f x 0 f x 0



Estimating the covariance matrix

• For the quadratic classifier you need to estimate

for each of the classes!

• When you have insufficient data, this covariance matrix cannot 
be inverted

• Average over the covariance matrices of different classes:

k=
1
n
∑i=1

n
x i−k x i−k

T

=
1
c
∑k=1

c
k



Average covariance matrix

• When we use the averaged covariance matrix:

• First term and quadratic term are always the same for all 
classes

• We end up with:

• This classifier is linear: 
the linear normal density-based classifier.

gix =−
1
2
logdet −

1
2

x−  i
T −1x−ilogp i

gix =−
1
2

 i
T 

−1  i−
1
2

i
T 

−1 xlogp i



The two-class case (2)

• Define the discriminant

• We get

with

f x =p 1∣x −p 2∣x 0
f x =wT xw0

w= 
−1

 1−2

w0=
1
2

2
T 

−1 2−
1
2

1
T 

−1 1log
p 1

p 2



Linear classifier on banana data



No estimated full covariance matrix

• In some cases even the averaged covariance matrix is too much 
to estimate

• Assume that all features have the same variance, and are 
uncorrelated:  

• Then it becomes even simpler:

=
2I

gix =−
1
2 2   i

T i− i
T x log p i



Nearest mean classifier

• Define the discriminant:

• We get

with

• Again a linear classifier, but it only uses the distance to the 
mean of each of the classes: nearest mean classifier

f x =p 1∣x −p 2∣x 0

f x =wT xw0

w= 1−2

w0=
1
2

2
T
2−

1
2

1
T
1 

2 log
p 1

p 2



Nearest mean on banana data



Nearest mean on gene expression data

Van ‘t Veer et al, Nature 415, 530 (2002)

Two classes:

             no metastases > 5yr

             metastases < 5yr

good prognosis

bad prognosis

threshold

70 genes (= biomarkers)

78
 t

um
o

rs



• Error as a function of the threshold gives an overview of all 
possible (cost/prior) scenarios:  receiver-operator characteristic 
curve

• Classifier: any x left of the threshold belongs to the blue class, 
any x to the right to the red class

ROC curve



ROC curve (2)

• Different classifiers have different ROC curves

error(2)

1
 -

 e
rr

or
(1

)

random classifier

almost perfect classifier



ROC curve (3)

• Example: prediction of synthetic genetic interactions (SGAs)

Wong et al., 
PNAS 2004

Wong et al., 
PNAS 2004



Recapitulation

• Using the Parzen density and nearest neighbor density we 
can derive the Parzen classifier and nearest neighbor 
classifier

• Using the plug-in Bayes' rule with a normal distribution for 
each of the classes gives different classifiers

• Separate mean and covariance matrix per class gives the 
quadratic classifier

• Separate mean, equal covariance matrix per class gives 
the linear classifier (see Fisher classifier, for two 
classes)

• Separate mean, identity covariance matrix per class gives 
the nearest mean classifier

• By changing the thresholds a ROC curve is obtained, 
showing the error on both classes.



Exercises 2.1-2.11



Tree-based models

• Until now: mainly linear and quadratic decision surfaces, often 
real data is more complex

• Classification trees
• Feature selection

• Random forests
• Ensemble of trees

• Randomization

• Bootstrapping

• More on Day 5: neural networks, support vector machines



Classification trees

x

+
+

+

++

x

x

x

Build a tree of (binary) splits parallel to the axes in a 
greedy (=one by one) way.

4y

x + leaf

y=-4
+
1y 

x

y=1

x +

3y

y=-3

x +
1x 1x

root

x=1

split



Classification trees: new data

x +
1x 1x

root

4y

x ?=+ leaf

+
1y

x x +

3y

Can perfectly fit the data: overfitting

y=1

x

+
+

+

++

x

x

x

x=1

y=-4
y=-3

?

Follow path from root to one of the leaves



Classification trees: pruning

x +
1x 1x

x +

3y

x

+
+

+

++

x

x

x

Allow errors on training data in order to reduce overfitting 



Tree ingredients

Main questions:

• How to choose a split

• How to choose a final tree?

• Amount of pruning

Rest: details (but might be important …)

Trees are constructed in a greedy way: 
starting with an empty tree and adding splits one by one 
(and never coming back on a decision taken)



How to choose a split?

x

+
+

+

++

x

x

x

x=1

4 x 
5 +

x

+
+

+

++

x

x

x
3 x
1 +

1 x 
4 +

1x 1x goody=2

2 x
2+

2 x 
3 +

4 x 
5 +

2£y 2>y bad



How to choose a split? (2)

A

B C

Good split at A:

- few x & many + in B, C

- many x & few + in B, C

Find some measure m  that captures 
goodness

m(P)

0          P                 1
P = fraction of x in a node

m(0)=0

m(1)=0

m(P)=P(1-P)

Gini



How to choose a split? (3)

A

B C

m(P)

0          P                 1

P = fraction of x in a node

maximize m(P
A
) - P(B)m(P

B
) - P(C)m(P

C
)

P(X): determined by number of x and + at node X



How to choose a split? (4)

4 x 
5 +

3 x
1 +

1 x 
4 +

1x 1x good

2 x
2+

2 x 
3 +

4 x 
5 +

2£y 2>y bad

m(P
A
) - P(B)m(P

B
) - P(C)m(P

C
)

4 5 4 3 1 5 1 4

9 9 9 4 4 9 5 5

0.075

- - =

4 5 4 2 2 5 2 3

9 9 9 4 4 9 5 5

0.0025

  

maximum



Pruning: one step back
er

ro
r

complexity=# of nodes 

C

D

minimize:  D = C + k(# of leaf nodes in the tree)

0 ≤ k                   k: complexity parameter

                           k penalizes big trees



Pruning: one step back (2)

C

D

C

D

C D

small k: big tree

medium k: medium tree

large k: small tree



Pruning: CART 

• Build a complete tree T

• With each subtree of T corresponds a choice of k

Cannot make choice of k on training set: overfitting

Optimal choice of k is made by cross-validation



10-fold cross-validation:  mean +/- std. error

standard error (1-se)

Pruning: model selection

train

cv

er
ro

r

complexity=# of nodes 

minimum
minimum



Decision tree: application

• Prediction of  synthetic lethal genetic interactions
• Integrate multiple types of data:  localization, mRNA expression, 
 physical interaction, protein function, and characteristics of network 
 topology

Wong et al, PNAS 2004



Advantages/disadvantages

• simple and flexible classifier

• combination of discrete and

continuous features

• feature selection (Day 3)

• interpretability

• hard splits

• splits are axis-aligned

• sensitive to small variations

in data  (high variance, Day 5)



Classifier combination

• Idea: combine different classifiers and have them vote 

• Design choices:

• Identical or different?
• Base classifiers, feature spaces, training sets, initialisations, etc.

• Combination by a fixed rule or by another classifier?



Example: random forests

• General overview: Day 4

• Specific example: random forest – an ensemble of decision trees

• Choices to be made:
• Base classifiers: identical – decision trees

• Feature spaces: for each node in each tree sample randomly m 
features

• m  <<  total number of features 

• Training sets: sampling with replacement (bootstrapping)
• About two-third of the cases are used for training each tree

• Combination: majority vote



Characteristics

• Out-of-bag error (oob) estimate:
• Each tree can be tested on about one-third of the cases – the out-

of-bag samples

• Variable importance:
• For each tree: predict the class for oob cases and count the 

number of votes cast for the correct class

• For each tree: randomly permute the values of variable n in the oob 
cases and count  the number of votes cast for the correct class 

• Importance: rank (from high to low) based on average difference of 
these two scores



Some intuition

• Breiman et al., Machine Learning (2001) paper 

• Accuracy depends on two factors:
• Correlation between any two trees in the forest. Decreasing 

correlation increases the forest accuracy: diversity

• Accuracy of each individual tree (strength) in the forest. Increasing 
strength of individual trees increases the forest accuracy

• Trade-off:
• Reducing m reduces correlation and strength 

• Increasing m increases correlation and strength

• Solution: somewhere in between is an optimal range of m - 
usually quite wide. Using the oob error rate a value of m in the 
range can be found



Random forests: example

• Prediction of genome-wide 
DNA methylation

• Features:
• Neighbors

• Genomic position

• DNA sequence properties

• Cis-regulatory elements

• Random forest: feature 
selection

Zhang et al., Genome Biology (2015)



Recapitulation

• Decision trees: simple and flexible classifier
• Incorporates feature selection

• Interpretable

• Hard, axis-aligned splits

• Pruning is essential to avoid overfitting

• Random forest: example of ensemble method
• Ensemble of decision trees

• Variation between members introduced via randomness

• When number of features is large and percentage of truly 
informative features is small (gene expression-based diagnostics): 
performance tends to decline significantly



Exercises 2.12-2.13



Clustering

• Supervised vs. unsupervised learning

• Hierarchical clustering

• Sum-of-squares clustering (k-means)

• Cluster validation

• Mixtures-of-Gaussians clustering (EM algorithm)



Supervised learning
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Supervised learning (2)

Virginica

Setosa

Versilcolor

Classification



Unsupervised learning
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Unsupervised learning (2)

Virginica

Setosa

Versilcolor
?

Clustering



Shape: compact, convex

Separation: large

Shape: ?

Separation: large?

Shape: strings

Separation: large? 

Shape: loose, convex

Separation: small

Shape: loose, convex

Separation: small

Shape: convex and circular

Separation: large?

What is a cluster?



What is a cluster? (2)

• Clustering: finding natural groups in data...

• which themselves are far apart

• in which objects are close together

• Define what is “far apart” and “close together”: 

• Need a distance measure or dissimilarity measure

• This measure should capture what we think is important for the 

grouping

• The choice for a certain distance measure is often

the most important choice in clustering!

• There is no such thing as the objective clustering



What is a cluster in bioinformatics?

• Clustering gene expression data:

• Genes: similar ~ co-expression ~ co-regulation ~

       same pathway / same function

• Samples: similar ~ same type of tissue

• Used for discovery of new subclasses (subtypes) in tumors

Protein/protein complex

Genes

DNA regulatory elements



Van ‘t Veer et al, Nature 415: 530-536 (2002)

negative

positive

histopathological data 

genes
s
a
m

p
le

s
Example: genes (and samples)

ER gene (ESR1) and 

genes co-regulated with 

ER, some of which are 

known ER target genes



Example: samples

Identified 16 groups of patients with acute 

myeloid leukemia

Valk et al, N Engl J Med. 2004 Apr 15;350(16):1617-28. 



Dissimilarity measures
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Dissimilarity measures (2)

• Let                be the dissimilarity between objects r and s 

• Formally, dissimilarity measures should satisfy

• If in addition, the triangle inequality holds, the

measure is a metric

• Most often used: Euclidean distance (metric)
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• Example: time series data

Dissimilarity measures (3)

(squared) Euclidean distance

2
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t1 t2 tn
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• Example:

time series data

Dissimilarity measures (3)

Euclidean distance

2
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d x x
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= −x x

d(     ,    )   <  d(     ,    )

d(     ,    )  << d(     ,    )

d(     ,    )  << d(     ,    )

t1 t2 tn

xi

match exact shape



• Example: time series data

Dissimilarity measures (3)

Euclidean distance
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t1 t2 tn

xi

match exact shape
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Dissimilarity measures (3)

• Example: time series data

Euclidean distance Pearson correlation
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d(     ,    )  << d(     ,    )

t1 t2 tn

xi

match exact shape ignore amplitude
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Dissimilarity measures (3)

• Example: time series data

Euclidean distance Pearson correlation
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xi

Absolute correlation
match exact shape ignore amplitude ignore amplitude & sign



Clustering techniques

Cluster problem

Hierarchical 
Techniques

Partitional 
Techniques

Graph 
Techniques

Single  
linkage

Complete 
linkage

Average 
linkage

K-means
Mixture of 
Gaussians

Minimum 
spanning tree

Within 
scatter

Density Inter-object(cluster) dissimilarity
Object 

dissimilarity



Clustering techniques (2)

Cluster problem

Hierarchical 

Techniques

Partitional 

Techniques

Graph 

Techniques

1 cluster

2 clusters

3 clusters

4 clusters

x x



x5x4x1x3x2

x2

x3
x4

x5

x1

Input: 

• dataset, X: [n x p], or directly:

• dissimilarity matrix, D: [n x n]                         

• linkage type

Output: 

• dendrogram

Hierarchical clustering



Hierarchical clustering (2)

• Algorithm (agglomerative clustering)

• Start: all objects of X in a separate cluster

• Clustering: combine the 2 clusters with 

the shortest distance in dissimilarity matrix, D

• Distance between clusters is based on linkage type:

• single, complete, average, …  

• Repeat until only 1 cluster is left



Hierarchical clustering (3)

 x1 x2 x3 x4 x5 

x1 0.00 1.58 1.76 5.22 4.53 

x2  0.00 0.74 5.50 5.10 

x3   0.00 4.81 4.48 

x4    0.00 1.12 

x5     0.00 

 

Dataset                   Euclidean distance matrix, D 

x2 x3
x4

x5

x1



x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (4)

• Step 1: 

Find the most similar pair of objects: min(i,j){d(i,j)} = d(2,3)

x2
x3

x4

x5

x1



Hierarchical clustering (5)

• Step 2: 

Merge x2 and x3 into a single object, [x2, x3];

0.74

x5x4x3x2x1



Hierarchical clustering (6)

• Step 3: 

Recompute D – 

what is the distance between [x2, x3] and the rest?

[x2, x3]
x4

x5

x1



Hierarchical clustering (7)

• Step 3: 

Recompute D –

single linkage: d([x2,x3],x1) = min(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2

x3



Hierarchical clustering (8)

• Step 3: 

Recompute D –

complete linkage: d([x2,x3],x1) = max(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2

x3



Hierarchical clustering (9)

• Step 3: 

Recompute D –

average linkage: d([x2,x3],x1) = mean(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2

x3



x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (10a)

• Step 3: 

Recompute D – single linkage:

x2
x3

x4

x5

x1



Hierarchical clustering (10b)

• Step 3: 

Recompute D – single linkage: 

 x1 [x2,x3] x4 x5 

x1 0.00 1.58 5.22 4.53 

[x2,x3]  0.00 4.81 4.48 

x4   0.00 1.12 

x5    0.00 
 



Hierarchical clustering (11)

• Repeat, step 1:

Find the most similar pair of objects: min(i,j){d(i,j)} = d(4,5)

 x1 [x2,x3] x4 x5 

x1 0.00 1.58 5.22 4.53 

[x2,x3] 1.58 0.00 4.81 4.48 

x4 5.22 4.81 0.00 1.12 

x5 4.53 4.48 1.12 0.00 
 

x2
x3

x4

x5

x1



Hierarchical clustering (12)

• Repeat, step 2:

Merge x4 and x5 into a single object, [x4,x5];

1.12

x5x4x3x2x1



Hierarchical clustering (13)

• Repeat, step 3:

Recompute D (single linkage):

 x1 [x2,x3] [x4,x5] 

x1 0.00 1.58 4.53 

[x2,x3]  0.00 4.48 

[x4,x5]   0.00 
 



Hierarchical clustering (14) 

• Repeat steps 1-3 until a single cluster remains

x5x4x3x2x1

x2
x3

x4

x5

x1



Hierarchical clustering (15) 

x5x4x3x2x1

CLUSTER
Dissimilarity 

matrix
Dendrogram

x2
x

3

x4

x

5

x1

CUT Clustering

CUT

x2
x3

x4

x5

x1
CUT

CUT



Hierarchical clustering (16)

• Hierarchical clustering: repeatedly group closest clusters 

• Important choices:

• Distance measure 

between objects:

Euclidean, correlation, 

Hamming, Minkowski, ...

• Linkage 

between clusters: 

single, average (centroid), complete

Single
linkage

Centroid
linkage

Complete
linkage

Distance



Linkage and cluster shape

Complete linkage

Single linkage 



Linkage and cluster shape (2)

Complete linkage

Single linkage 



Linkage and cluster shape (3)

Complete linkage 

Single linkage 



Single

linkage

Complete

linkage

Linkage and outliers



Hierarchical clustering examples

Euclidean, complete linkage



Hierarchical clustering examples (2)

Euclidean, complete linkage



Hierarchical clustering examples (3)

Euclidean, single linkage



Hierarchical clustering (17)

• Advantages:

• dendrogram gives overview of all possible clusterings

• linkage type allows to find clusters of varying shapes (convex and 

non-convex)

• different dissimilarity measures can be used

• Disadvantages:

• computationally intensive: 

O(n2) in complexity and memory

• clusterings limited to “hierarchical nestings”



Hierarchical clustering: warning

• Cluster 500 genes, 5 arrays: 

6 clusters

Data were random …

Validation is needed

CUT



Exercise 2.14-2.19



Sum-of-squares clustering

• Hierarchical:

• Sum-of-squares:

CLUSTER
Dissimilarity 

matrix
Dendrogram ClusteringCUT

CLUSTER

1. Data
2. Criterion
3. # of clusters

Clustering

CUT



Sum-of-squares clustering (2)
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K-means

• Minimize: 

Tr(SW)

Number of clusters (g)1 n
0

W

1

1
Tr( )   
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K-means (2) 

• Iterative procedure to search for min(Tr(SW)):

1.  choose number of clusters (g)

2.  position prototypes (mj, j=1,…,g) randomly

3.  assign samples to closest prototype

4.  compute mean of samples assigned to

 same prototype: new prototype position

Repeat steps 3 and 4 as long as prototypes move



K-means (3)

• Step 1: Choose number of clusters/prototypes

• Step 2: Position prototypes randomly

m1

m3

m2

x2

x3

x4

x5

x1



K-means (4)

• Step 3: Assign samples to closest prototype

x2

x3

x4

x5

x1
m1

m3

m2



K-means (5)

• Step 4: Compute mean of samples assigned to same 

 prototype: new prototype positions

m1

m3

m2

m1

m3

m2

x2

x3

x4

x5

x1



K-means (6)

• Repeat as long as prototype positions change: 

• Step 3: Assign samples

• Step 4: Recompute prototype positions

x2

x3

x4

x5

x1

m1

m3

m2



K-means problems

• Clustering depends on initialization

x2 x3 x4

x5

x1

x2 x3 x4

x5

x1

m1

m2

m3

m1

m3

m2

x2 x3
x4

x5

x1

x2 x3 x4

x5

x1



K-means problems (2)

• Algorithm can get 

stuck in local minima

• Solution:

• start from I different

random initialisations

• keep the best clustering

(lowest Tr(SW))

• For high-dimensional data, many restarts can be

necessary (e.g. I = 100)



K-means problems (3)

• Clusters can loose all samples

• Possible solution: 

• remove cluster and continue with g – 1 means 

• alternatively, split largest cluster into two 

or add a random cluster to continue with g means

m1

m3

m2

x2 x3
x4

x5

x1



K-means example 

Iris dataset
(all 4 features)



Advantages/disadvantages: K-means

• Disadvantages:

• Finds only convex clusters (“round shapes”)

• Sensitive to initialization

• Can get stuck in local minima

• Advantages:

• Very simple

• Fast



Recapitulation

• Clustering is way to detect natural groups in data

• What is natural is partly subjective

• We looked at: 

• Hierarchical clustering

• Sum of squares (k-means) clustering

• Hierarchical clustering: 

• dendrogram shows a complete hierarchy of possible clusterings

• computionally intensive

• K-means

• fast

• sensitive to initialization and local minima



Cluster validation

• Cluster validation:

• Checking whether grouping is really present

• Choosing the optimal number of clusters

• A difficult problem – the ground truth is not known

(since we do not know the object labels)!

• Methods:

• Distortion measures:

• Does clustering approximate structure in data?

• Validity measures:

• Davies-Bouldin index

• Fusion graph

• Gap statistic



Distortion measures

• How well does a dendrogram capture structure in data?

 x1 x2 x3 x4 x5 

x1 0 d3 d3 d4 d4 

x2  0 d1 d4 d4 

x3   0 d4 d4 

x4    0 d2 

x5     0 

 

d4

d3

d2
d1

d*

x5x4x3x2x1



Distortion measures (2)

• Measure of distortion: Pearson correlation of d and d*

d*
 x1 x2 x3 x4 x5 

x1 0.00 1.58 1.76 5.22 4.53 

x2  0.00 0.74 5.50 5.10 

x3   0.00 4.81 4.48 

x4    0.00 1.12 

x5     0.00 

 

d

*
*

*

cov( , )
( , ) [ 1,1]

var( )var( )
 =  −

d d
d d

d d

x1 x2 x3 x4 x5

x1 0 d3 d3 d4 d4

x2 0 d1 d4 d4

x3 0 d4 d4

x4 0 d2

x5 0



Validity measures

• Many are based on within and between group scatter

• The larger the between group scatter and the smaller the within 

group scatter, the better

• Example: Davies-Bouldin

-10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

-10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5



Davies-Bouldin index

• Assumption: clusters are spherical

• For a good clustering, it should hold that:

• objects are compactly organized within a cluster

• clusters are far apart

• D.L. Davies and D.W. Bouldin, IEEE Transactions 

on Pattern Analysis and Machine Intelligence 1,

pp. 224-227, 1979



Davies-Bouldin index (2)
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Davies-Bouldin index (3)
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Davies-Bouldin index (4)
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Davies-Bouldin index (5)

Paired cluster criterion

Worst-case value per cluster

Average worst-case
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Davies-Bouldin index (5)

Dataset

Davies-Bouldin:

3 or 14 clusters

Complete link



Davies-Bouldin index (7)

Davies-Bouldin:

Single link



Fusion graph

• Heuristic approach: fusion level

x5x4x3x2x1

Large jump
Cut here: 

2 clusters



Fusion graph (2)

(Euclidean; complete linkage)



Fusion graph (3)

(Euclidean; complete linkage)



Fusion graph (4)

(Euclidean; single linkage)



Fusion graph (5)

(Euclidean; single linkage)
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What is a large jump?

• Compare the fusion graph of the dataset with a

null hypothesis, i.e. a dataset where the clustering

structure has been destroyed

• Different approaches:

• Generate random data 

within bounding box or

convex hull of data;

• Preferable to shuffle data, i.e. 

not generate new data, but 

perturb relationships between measurements                              

• For example, randomly match feature values, i.e.

permute values within columns                                                                                                



The gap statistic

1. Generate dendrogram and extract fusion graph, 

2. Repeat r times

1. Perturb columns

2. Generate dendrogram and fusion graph, 

3. Compute average      and 

standard deviation      of these perturbed graphs

4. Compute the difference between the data fusion graph 

and the average perturbed fusion graph (gap statistic):

5. Look for large values of gap statistic 𝑔𝑗
𝑔𝑎𝑝

= 𝑓𝑗

 

*

,j rf
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Gap fusion graph (single linkage)
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Gap fusion graph (single linkage) (2)
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DBI vs. fusion graphs

DBI (s) ? 3/4 ? 4 4+

DBI (c) 8+ 2 5+ 4 8+

Gap fusion   

 graph (s)
3 3 2 3 2

Gap fusion 

 graph (c)
2 (?) 2 4 3 3
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Recapitulation

• Cluster validation is used for:

• Assessing clustering

• Deciding on the number of clusters

• Methods:

• Distortion measures (dendrogram)

• Davies-Bouldin index

• Fusion graph and gap statistic

• When applying cluster validation, one also needs to define 
what a good cluster is – like in clustering itself.
There’s no free lunch...



Exercise 2.20-2.28



Clustering overview

CLUSTER
Dissimilarity 

matrix
Dendrogram ClusteringCUT

CLUSTER
1. Data
2. Criterion
3. # of clusters

Clustering

CUT

ESTIMATE
1. Data
2. Model,
3. # of clusters

Estimate             
Clustering

1. Hierarchical:

2. K-means:

3. Density-based:

 *



Density 1 Density 2

Density-based clustering

• Each cluster is described by a probability density function

• Total dataset described by a mixture of density functions

• Clustering = maximizing the mixture fit

• Clusters are based on a posteriori probabilities



Density-based clustering (2)

• Given:

• n independent objects: {x1,...,xn}

• probability density function model:

 

• Estimate parameters  = {, } 

such that model fits data

• Use likelihood as criterion: probability of 

observing the data set, given the model 

(as on Day 1, for kernel width h in Parzen density estimation)

( | ) ~ ( , ) p θ Nx μ 



Estimation: maximum likelihood

• General method to estimate parameters θ of probability 

distribution from data D = {x1, ...,xn}. How?

• Maximize joint probability of the data

1

1

( ,..., | ) ( | )n i

n

i

L p x x p x 
=

= =

independence

likelihood:

1

log ( , | )i

n

i Q

LL p x Q 
=

= 

log-likelihood:

θθ* 2θ1θ

x( )LL X

same solution since log is 

monotonic



Estimation: maximum likelihood (2)

1( ) (1 )x xP x p p −= −

1 1

1 1

11

1 1( ,..., | ) (1 ) ... (1 )

                                        (1 )

n nx xx x

n n

n n n

P X x X x p p p p p

p p

−−

−

= = = − −

= −

1 1( (1 ) )
0

n n nd p p

dp

−−
=

Two possible outcomes: x = 0 or x = 1. 

Success (x = 1) occurs with probability p 

Bernoulli distribution:

Likelihood:

Maximum at p = n1/n

# of successes



Mixture-of-Gaussians

• Choose Gaussian as component density p(x;j):                                                                         

• Describe complete data set as a mixture of p(x;)’s:

T 11 1
( ; ) exp ( ) ( )

22 det( )
j j j jp

j

p θ
π

− 
= − − − 

 
Σ

Σ
x x μ x μ

1

( ; ) ( ; )
g

j j

j

p π p θ
=

 =x x j 

1

 1
g

j

π
=

=with

j={j, j}



Mixture-of-Gaussians (2)

• Parameters:

• Set number of clusters, g

• Estimate other parameters by maximum-likelihood:

1

( ; ) ( ; )
g

j j

j

p π p θ
=

 =x x j 

1

 1
g

j

π
=

=

1...( , ={ , } )j j j g = = Σπ μ

with

mixture coefficients component density parameters

1 1

( ; ) log ( ; )
gn

j i j

i j

LL π p θ
= =

 = X xlog-likelihood:



EM algorithm

• Problem: need to simultaneously estimate two interdependent 

things...

• Cluster membership of each object

• Density parameters of each cluster: 

• Expectation-Maximization algorithm: 

• General class of algorithms for this type of problem

• Repeatedly:

• Recalculate cluster membership of each object (E)

• Recalculate density parameters of each cluster (M)

• Introduce a hidden variable z to explicitly indicate mixture components 

, ,j j j Σμ

( )j p z j = =



Intermezzo: probabilities

:   ( ) ( , )
y

P x P x y=sum rule

:   ( , ) ( | ) ( ) ( | ) ( )P x y P x y P y P y x P x= =product rule

1/ 5 (3) (3,  die 1) (3,  die 2) 3 / 20 1/ 20P P P= = + = +

3/ 20 (3,  die 1) (3 | die 1) (die 1) (3/11)(11/ 20) 3/ 20

                              ( die 1| 3) (3) (3/ 4)(4 / 20) 3/ 20

P P P

P P

= = = =

= = =

die 1

die 2

1     2       3      4        5      6

n = 20



Intermezzo: Bayes’ theorem

( | ) ( ) ( | ) ( )

( | ) ( ) ( | ) ( )
( | )   

( ) ( | ) ( )
x

P x y P y P y x P x

P y x P x P y x P x
P x y

P y P y x P x

=

= =


Bayes :  

From product rule

(3 | die 1) (die 1) (3/11)(11/20)
(die 1|  3) = =3/4 

(3) 4/20

P P
P

P
=



EM algorithm (2)

, ,

, ,

joint post

log ( ) log ( ) ( ) log ( )

( , ) ( , ) ( )
( ) log ( ) log 

( | ) ( | ) ( )

( , ) ( )
( ) log ( ) log 

( ) ( | )

( , ) ( || )

x x z

x z x z

x z x z

KL

p D p x q z p x

p x z p x z q z
q z q z

p z x p z x q z

p x z q z
q z q z

q z p z x

F p q D q p

= =

 
= =  

 

   
= +   

   

= +

 

 

 

arbitrary distribution     hidden variable

    free energy    relative entropy (≥ 0)



EM algorithm: E-step

KLD

( , )F p q

log(P(D | θ))
log(P(D | θ))

( , )F p q

, ,

( , ) ( )
log ( ) ( ) log ( ) log 

( ) ( | )x z x z

p x z q z
p D q z q z

q z p z x

   
= +   

   
 

E-step

E-step: 
new

post( | ) ( | )q z x p p z x= =

=0 (Gibb’s inequality)



EM algorithm: M-step

KLD

( , )F p q

log(P(D | θ))
log(P(D | θ))

( , )F p q

KLD

( , )F p q

log(P(D | θ))

E-step M-step

,

( , )
log ( ) ( | ) log 

( | )x z

p x z
p D p z x

p z x

 
=  

 


M-step: maximize log[p(D)] with respect to the parameters 



EM algorithm (3)

E-step: post ( | , )p p z x =

     Calculate the distribution of the hidden variables given 

       the data and the model parameters

M-step: 
,

arg max ( | ) log ( , | )new

x z

p z x p x z


 = 

Maximize the expected (with respect to hidden variables) 

log-likelihood of the complete data.

Iterate to maximize likelihood:

1 1

log ( ; )
gn

j i j

i j

π p θ
= =

  xCompare M-step with MoG log-likelihood:

M-step is easier: log within sum



EM: mixture model

Very simple example of a model with hidden variables: 

2-component mixture model
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p z j x

p x p x
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


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, {1,2}

( | ) log ( , | )
x z

p z x p x z 


M-step: maximize



EM: mixture model (2)
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EM: mixture model (3)
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EM: mixture model (4)

• M-step: Maximization

Maximize the expected complete LL by updating  

• mixture coefficients j  

• cluster means and covariances j={j, j}, j=1,...,g:

1
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
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i ij
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i

T

jijiij

j

w

μμw

1

1
))((

Σ
ˆxˆx

ˆ

1 1

1 1
ˆ ( | )

n n

j i iji i
π p z j x w

n n= =
= = =  “total membership”

weighted sums



EM: mixture model (5)
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EM: mixture model (6)

M-step: 3            
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EM: mixture model (7)

M-step: 3                M-step: 5    
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EM: mixture model (8)

M-step: 3                M-step: 5                M-step: 9
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• ‘Gauss’:

• ‘Aligned’:

• ‘Circular’:
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Mixture-of-Gaussians (3)



EM: mixture model (9)

• If...

• all clusters are spherical

• the variance of each cluster is infinitely small

 

then the EM algorithm simplifies to the K-means algorithm

(samples are always assigned to the closest cluster!)

2

2

2

0 0

0 0 , 0

0 0



 



 
 

→ 
 
 

Σ =



EM algorithm (4)

• Disadvantages:

• can get stuck in local minima

• depends on initial conditions

• convergence can be slow

• problems with covariance estimates:

if too few samples are members of a cluster,

there will not be enough data to base estimate on

• Advantages:

• simple to implement



Cluster validation: log-likelihood

• For probabilistic models (e.g. mixture-of-Gaussians):

• Log-likelihood will probably not increase anymore 

when too many clusters are used

• Look for “plateau” in log-likelihood graph 

LL
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• Problem: when g = n, the log-likelihood is infinite;

  Solution: information criteria (Day 4)



Recapitulation

• Density based clustering:

• Assume a probability density function per cluster

• Train using the EM algorithm

• Example:

• Mixture of Gaussians

• But many probability densities fit in the same framework
principal component analysis, factor analysis, …

• EM algorithm:

• problem decomposition: simple to implement

• sensitive to local minima



Exercise 2.29
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