
Machine Learning for
Bioinformatics & Systems Biology

2. Classification and clustering

Perry Moerland Amsterdam UMC, University of Amsterdam

Marcel Reinders Delft University of Technology

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin and David Tax

Classification

• Logistic classifier

• Plug-in Bayes classifiers
• Density-based classification: Parzen, nearest neighbour,

Gaussian

• Decision trees and random forests

Classification (2)

• Given labeled data:

• Assign to each object

a class label

• In effect splits the feature

space in separate regions
2

1

3x



decision boundarydecision boundary

Description of a classifier

There are several ways to describe the classifier:

• If then assign to h otherwise to d

• If then assign to h

• If then assign to h

• If then assign to h

A Bayesian classifier is a threshold on the difference between
posterior probabilities

p =h∣x p =d∣x 

p =h∣x 

p =d∣x
1

ln p =h∣x−ln p =d∣x 0

p =h∣x−p =d∣x 0

Logistic classifier

• We can rewrite:

• Assume we can approximate:

• The classifier becomes (computer lab exercise):

ln p =h∣x −ln p =d∣x =lnp =h∣x 

p =d∣x 

p =d∣x =
1

1expwT xw0

lnp =h∣x

p =d∣x=w0w
T x

logit, log-odds

Logistic function

• The function looks like:

f x =
1

1exp−x 

logistic (sigmoid) function

Logistic classifier (2)

• On a two-dimensional dataset it looks like:

wT xw0=0

Logistic classifier (3)

• On a two-dimensional dataset it looks like:

Optimizing the logistic classifier

• To optimize the parameters on a training set, maximize the

likelihood

where is the i-th object from class j

• Maximization using gradient ascent

• Appears to be easier to maximize log(L)

• Weights are iteratively updated as:

L=∏
i=1

n1

p x i
1∣1∏

j=1

n2

p x j
2 ∣2

x i
(j)

wnew=wold
∂ log L

∂w

Optimizing the logistic classifier (2)

• Function to maximize

• Use log(L)

• Use Bayes' theorem

• Therefore

L=∏i=1
n1 p x i

1∣1∏ j=1
n2 p x j

2∣2

log L=∑
i=1

n1

log p x i
1
∣1∑

j=1

n2

log p x j
2
∣2

log L=∑
i=1

n1

log p 1∣x i
1

∑
j=1

n2

logp 2∣x j
2

C

logp(x i
(1)∣ω1)=logp (ω1∣x i

(1)
)−logp (ω1)+logp(x i

(1)
)

constant

Optimizing the logistic classifier (3)

• Filling in that

gives

p 2∣x =
1

1expwT xw0

log(L)=∑
i=1

n1

(w0+wT x i
(1)

)− ∑
j=1

n1+n2

log(1+exp(w0+wT x j))

Derivative of the log-likelihood

• The gradient of log(L) is

• Take initial values:

• Keep iterating

till convergence

∂ log L

∂w0

=n1− ∑
i=1

n1n2

p 1∣x i

∂ logL

∂w j

=∑
i=1

n1

x i
1

 j− ∑
i=1

n1n2

p 1∣x ix i j , j=1,... ,p

w0=0,w=0

wnew=wold
∂ log L

∂w

Plug-in Bayes classification

• In many cases the posterior is hard to estimate

• Often a functional form of the class distributions can be
assumed

• Use Bayes' theorem to rewrite one into the other:

class-conditional distribution:

prior distribution:

data distribution:

p∣x =
px∣p

px

px∣

p

px

Plug-in Bayes classification (2)

CUT

Data set Split in classes

Diseased

Healthy
Density

 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

p x∣=d

Classify

Bayes’
rule

p x∣=h

Bayes decision making

• Estimate the class-conditional
density (Day 1)

• Parametric
• Known distribution

• Estimate parameters on training
set

• Non-parametric
• No knowledge on distribution

• Manage the smoothness
of the distribution

px∣i

px∣i=N x ; ,

px∣i=
1
N
∑
y

K x ,y 

Example plugin

• Two examples

Normal density estimation Parzen density estimation

Example plugin

• Two examples

Normal density estimation Parzen density estimation

Parzen classifier

p x∣m=
1
N ∑

i=1

N m

N  x ; xi , h I 

p x∣m p m∣x 

Parzen width parameter

• The width parameter h has a large influence

Optimization of h

• Use the average k-nearest neighbor distance
(k=10 is suggested...)

• Use a heuristic

• Optimize the likelihood using cross-validation

• and more...

h= 4
p2 

1
p4 n

−1
p4

2=
1
p ∑i=1

p

s ii

∏
i=1

n

p xi

Nearest neighbor classification

• For the k-nearest neighbor density we defined:

where V
k
 is the volume of the sphere centered at x, with

radius r the distance to the k-th nearest neighbor

px =
k

nV k

k=3
V kr

k=3
V kx

Nearest neighbor classification (2)

• When more classes are present, count how many objects of

each of the classes are members of the k neighbors

• Class-conditional density:

k=5

V k

k 2=2
k 1=3

px∣m=
k m

nm V k

Nearest neighbor classification (3)

• Using Bayes:

• Estimate the prior probability by counting:

• Fill in:

• No density estimation is needed!

p̂(x∣ωm) p̂(ωm)≥ p̂(x∣ωi) p̂(ωi)

p m=
nm

n

k m

nm V k

nm

n
≥

k i

ni V k

ni

n
k m≥k i

The choice of k

• When does the classifier become more smooth? When more
ragged?

• What happens for k = 1, and k = n ?

The choice of k (2)

• When does the classifier become more smooth? When
more ragged?

k=1

k=3

k=30

Sometimes strange results:

k=5

Sometimes strange results (2):

Rescaling the features has large influence!

k=5

Advantages/disadvantages

• simple and flexible classifier

• often a very good
classification performance

• it is simple to adapt the
complexity of the classifier

• you have to store the
complete training set

• distances to all training
objects have to be
computed

• scaling of the features should
be sensible

• you have to optimize
k or h

Classifying with densities

CUT

Data set Split in classes

Class 2

Class 1 Density
 estimation

Density
 estimation

Parzen
Gaussian

k-nearest neighbor

Classify

Bayes’
rule

px∣1

px∣2

Plug-in Gaussian distribution

• Now take the most obvious choice: the Gaussian distribution

• So-called parametric density estimation

• We have to estimate the parameters via maximum likelihood:

p̂ (x∣ω)=
1

√2π
pdet (Σ̂ω)

exp(−1
2

(x−μ̂ω)
T
Σ̂ω

−1
(x−μ̂ω))

=
1
n
∑i=1

n
x i

=
1
n
∑i=1

n
x i− x i− 

T

Example on banana data

• A single Gaussian distribution on each class:

Class-conditional densities

• Combining

we can derive for log(p):

px∣i=
1

2
pdet  i

exp−1
2

x− i
T
 i

−1
x−i

log(p̂ (ωi∣x))=−
p
2
log(2π)−

1
2
log(det Σi)

−
1
2

(x−μi)
T
Σi

−1
(x−μi)+log(p (ωi))−log(p(x))

p∣x =
px∣p

px

Normal density-based classifier

• p(x) is independent of the classes and can be dropped

• Classifier becomes:

assign x to class when for all :

gix=−
1
2
logdet  i−

1
2

x−i
T
 i

−1
x− ilogpi

i gixg j x i≠ j

The two-class case

• Define the discriminant

• We get (computer lab exercise):

• This is a quadratic classifier because
the decision boundary is a quadratic function of x

f x =p 1∣x −p 2∣x 0

f x =xTWxwT xw0

Quadratic classifier on banana data

f x =0

f x 0 f x 0

Estimating the covariance matrix

• For the quadratic classifier you need to estimate

for each of the classes!

• When you have insufficient data, this covariance matrix cannot
be inverted

• Average over the covariance matrices of different classes:

k=
1
n
∑i=1

n
x i−k x i−k

T

=
1
c
∑k=1

c
k

Average covariance matrix

• When we use the averaged covariance matrix:

• First term and quadratic term are always the same for all
classes

• We end up with:

• This classifier is linear:
the linear normal density-based classifier.

gix =−
1
2
logdet −

1
2

x−  i
T −1x−ilogp i

gix =−
1
2

 i
T 

−1  i−
1
2

i
T 

−1 xlogp i

The two-class case (2)

• Define the discriminant

• We get

with

f x =p 1∣x −p 2∣x 0
f x =wT xw0

w= 
−1

 1−2

w0=
1
2

2
T 

−1 2−
1
2

1
T 

−1 1log
p 1

p 2

Linear classifier on banana data

No estimated full covariance matrix

• In some cases even the averaged covariance matrix is too much
to estimate

• Assume that all features have the same variance, and are
uncorrelated:

• Then it becomes even simpler:

=
2I

gix =−
1
2 2   i

T i− i
T x log p i

Nearest mean classifier

• Define the discriminant:

• We get

with

• Again a linear classifier, but it only uses the distance to the
mean of each of the classes: nearest mean classifier

f x =p 1∣x −p 2∣x 0

f x =wT xw0

w= 1−2

w0=
1
2

2
T
2−

1
2

1
T
1 

2 log
p 1

p 2

Nearest mean on banana data

Nearest mean on gene expression data

Van ‘t Veer et al, Nature 415, 530 (2002)

Two classes:

 no metastases > 5yr

 metastases < 5yr

good prognosis

bad prognosis

threshold

70 genes (= biomarkers)

78
 t

um
o

rs

• Error as a function of the threshold gives an overview of all
possible (cost/prior) scenarios: receiver-operator characteristic
curve

• Classifier: any x left of the threshold belongs to the blue class,
any x to the right to the red class

ROC curve

ROC curve (2)

• Different classifiers have different ROC curves

error(2)

1
 -

 e
rr

or
(1

)

random classifier

almost perfect classifier

ROC curve (3)

• Example: prediction of synthetic genetic interactions (SGAs)

Wong et al.,
PNAS 2004

Wong et al.,
PNAS 2004

Recapitulation

• Using the Parzen density and nearest neighbor density we
can derive the Parzen classifier and nearest neighbor
classifier

• Using the plug-in Bayes' rule with a normal distribution for
each of the classes gives different classifiers

• Separate mean and covariance matrix per class gives the
quadratic classifier

• Separate mean, equal covariance matrix per class gives
the linear classifier (see Fisher classifier, for two
classes)

• Separate mean, identity covariance matrix per class gives
the nearest mean classifier

• By changing the thresholds a ROC curve is obtained,
showing the error on both classes.

Exercises 2.1-2.11

Tree-based models

• Until now: mainly linear and quadratic decision surfaces, often
real data is more complex

• Classification trees
• Feature selection

• Random forests
• Ensemble of trees

• Randomization

• Bootstrapping

• More on Day 5: neural networks, support vector machines

Classification trees

x

+
+

+

++

x

x

x

Build a tree of (binary) splits parallel to the axes in a
greedy (=one by one) way.

4y

x + leaf

y=-4
+
1y 

x

y=1

x +

3y

y=-3

x +
1x 1x

root

x=1

split

Classification trees: new data

x +
1x 1x

root

4y

x ?=+ leaf

+
1y

x x +

3y

Can perfectly fit the data: overfitting

y=1

x

+
+

+

++

x

x

x

x=1

y=-4
y=-3

?

Follow path from root to one of the leaves

Classification trees: pruning

x +
1x 1x

x +

3y

x

+
+

+

++

x

x

x

Allow errors on training data in order to reduce overfitting

Tree ingredients

Main questions:

• How to choose a split

• How to choose a final tree?

• Amount of pruning

Rest: details (but might be important …)

Trees are constructed in a greedy way:
starting with an empty tree and adding splits one by one
(and never coming back on a decision taken)

How to choose a split?

x

+
+

+

++

x

x

x

x=1

4 x
5 +

x

+
+

+

++

x

x

x
3 x
1 +

1 x
4 +

1x 1x goody=2

2 x
2+

2 x
3 +

4 x
5 +

2£y 2>y bad

How to choose a split? (2)

A

B C

Good split at A:

- few x & many + in B, C

- many x & few + in B, C

Find some measure m that captures
goodness

m(P)

0 P 1
P = fraction of x in a node

m(0)=0

m(1)=0

m(P)=P(1-P)

Gini

How to choose a split? (3)

A

B C

m(P)

0 P 1

P = fraction of x in a node

maximize m(P
A
) - P(B)m(P

B
) - P(C)m(P

C
)

P(X): determined by number of x and + at node X

How to choose a split? (4)

4 x
5 +

3 x
1 +

1 x
4 +

1x 1x good

2 x
2+

2 x
3 +

4 x
5 +

2£y 2>y bad

m(P
A
) - P(B)m(P

B
) - P(C)m(P

C
)

4 5 4 3 1 5 1 4

9 9 9 4 4 9 5 5

0.075

- - =

4 5 4 2 2 5 2 3

9 9 9 4 4 9 5 5

0.0025

  

maximum

Pruning: one step back
er

ro
r

complexity=# of nodes

C

D

minimize: D = C + k(# of leaf nodes in the tree)

0 ≤ k k: complexity parameter

 k penalizes big trees

Pruning: one step back (2)

C

D

C

D

C D

small k: big tree

medium k: medium tree

large k: small tree

Pruning: CART

• Build a complete tree T

• With each subtree of T corresponds a choice of k

Cannot make choice of k on training set: overfitting

Optimal choice of k is made by cross-validation

10-fold cross-validation: mean +/- std. error

standard error (1-se)

Pruning: model selection

train

cv

er
ro

r

complexity=# of nodes

minimum
minimum

Decision tree: application

• Prediction of synthetic lethal genetic interactions
• Integrate multiple types of data: localization, mRNA expression,
 physical interaction, protein function, and characteristics of network
 topology

Wong et al, PNAS 2004

Advantages/disadvantages

• simple and flexible classifier

• combination of discrete and

continuous features

• feature selection (Day 3)

• interpretability

• hard splits

• splits are axis-aligned

• sensitive to small variations

in data (high variance, Day 5)

Classifier combination

• Idea: combine different classifiers and have them vote

• Design choices:

• Identical or different?
• Base classifiers, feature spaces, training sets, initialisations, etc.

• Combination by a fixed rule or by another classifier?

Example: random forests

• General overview: Day 4

• Specific example: random forest – an ensemble of decision trees

• Choices to be made:
• Base classifiers: identical – decision trees

• Feature spaces: for each node in each tree sample randomly m
features

• m << total number of features

• Training sets: sampling with replacement (bootstrapping)
• About two-third of the cases are used for training each tree

• Combination: majority vote

Characteristics

• Out-of-bag error (oob) estimate:
• Each tree can be tested on about one-third of the cases – the out-

of-bag samples

• Variable importance:
• For each tree: predict the class for oob cases and count the

number of votes cast for the correct class

• For each tree: randomly permute the values of variable n in the oob
cases and count the number of votes cast for the correct class

• Importance: rank (from high to low) based on average difference of
these two scores

Some intuition

• Breiman et al., Machine Learning (2001) paper

• Accuracy depends on two factors:
• Correlation between any two trees in the forest. Decreasing

correlation increases the forest accuracy: diversity

• Accuracy of each individual tree (strength) in the forest. Increasing
strength of individual trees increases the forest accuracy

• Trade-off:
• Reducing m reduces correlation and strength

• Increasing m increases correlation and strength

• Solution: somewhere in between is an optimal range of m -
usually quite wide. Using the oob error rate a value of m in the
range can be found

Random forests: example

• Prediction of genome-wide
DNA methylation

• Features:
• Neighbors

• Genomic position

• DNA sequence properties

• Cis-regulatory elements

• Random forest: feature
selection

Zhang et al., Genome Biology (2015)

Recapitulation

• Decision trees: simple and flexible classifier
• Incorporates feature selection

• Interpretable

• Hard, axis-aligned splits

• Pruning is essential to avoid overfitting

• Random forest: example of ensemble method
• Ensemble of decision trees

• Variation between members introduced via randomness

• When number of features is large and percentage of truly
informative features is small (gene expression-based diagnostics):
performance tends to decline significantly

Exercises 2.12-2.13

Clustering

• Supervised vs. unsupervised learning

• Hierarchical clustering

• Sum-of-squares clustering (k-means)

• Cluster validation

• Mixtures-of-Gaussians clustering (EM algorithm)

Supervised learning

Virginica

Setosa

Versilcolor

Objects

Train

classifier

with

data

and

class

labels

































































Virginica-Iris

Versicolor-Iris

Setosa-Iris

2.5 6.0, 3.3, 6.3,

1.4 4.7, 3.2, 7.0,

0.2 1.4, 3.5, 5.1,

S
e

p
a

l
le

n
g

th

S
e
p
a
l
w

id
th

P
e

ta
l
le

n
g

th

P
e

ta
l
w

id
th

Data collection

C
la

s
s
 l
a

b
e

ls

Supervised learning (2)

Virginica

Setosa

Versilcolor

Classification

Unsupervised learning

Virginica

Setosa

Versilcolor

Explore

data

without

class

labels:

PCA,

MDS,

clustering

































































Virginica-Iris

Versicolor-Iris

Setosa-Iris

2.5 6.0, 3.3, 6.3,

1.4 4.7, 3.2, 7.0,

0.2 1.4, 3.5, 5.1,

S
e

p
a

l
le

n
g

th

S
e
p
a
l
w

id
th

P
e

ta
l
le

n
g

th

P
e

ta
l
w

id
th

C
la

s
s
 l
a
b
e
ls

Objects Data collection

Unsupervised learning (2)

Virginica

Setosa

Versilcolor
?

Clustering

Shape: compact, convex

Separation: large

Shape: ?

Separation: large?

Shape: strings

Separation: large?

Shape: loose, convex

Separation: small

Shape: loose, convex

Separation: small

Shape: convex and circular

Separation: large?

What is a cluster?

What is a cluster? (2)

• Clustering: finding natural groups in data...

• which themselves are far apart

• in which objects are close together

• Define what is “far apart” and “close together”:

• Need a distance measure or dissimilarity measure

• This measure should capture what we think is important for the

grouping

• The choice for a certain distance measure is often

the most important choice in clustering!

• There is no such thing as the objective clustering

What is a cluster in bioinformatics?

• Clustering gene expression data:

• Genes: similar ~ co-expression ~ co-regulation ~

 same pathway / same function

• Samples: similar ~ same type of tissue

• Used for discovery of new subclasses (subtypes) in tumors

Protein/protein complex

Genes

DNA regulatory elements

Van ‘t Veer et al, Nature 415: 530-536 (2002)

negative

positive

histopathological data

genes
s
a
m

p
le

s
Example: genes (and samples)

ER gene (ESR1) and

genes co-regulated with

ER, some of which are

known ER target genes

Example: samples

Identified 16 groups of patients with acute

myeloid leukemia

Valk et al, N Engl J Med. 2004 Apr 15;350(16):1617-28.

Dissimilarity measures

C

B

A

















=

















=

0

2 0

11 10 0

0

)(0

)()(0

CB

CABA

,d

,d,d

D

x2

x1

Dissimilarity measures (2)

• Let be the dissimilarity between objects r and s

• Formally, dissimilarity measures should satisfy

• If in addition, the triangle inequality holds, the

measure is a metric

• Most often used: Euclidean distance (metric)

),(srd

r,srsdsrd

rrrd

r,ssrd

),,(),(

 0,),(

 0,),(

=

=



tr,ssrdstdtrd ,),,(),(),(+ r

t

s

• Example: time series data

Dissimilarity measures (3)

(squared) Euclidean distance

2

, ,

1

(,) ()
n

i j i t j t

t

d x x
=

= −x x

t1 t2 tn

xi

• Example:

time series data

Dissimilarity measures (3)

Euclidean distance

2

, ,

1

(,) ()
n

i j i t j t

t

d x x
=

= −x x

d(,) < d(,)

d(,) << d(,)

d(,) << d(,)

t1 t2 tn

xi

match exact shape

• Example: time series data

Dissimilarity measures (3)

Euclidean distance

2

, ,

1

(,) ()
n

i j i t j t

t

d x x
=

= −x x

t1 t2 tn

xi

match exact shape

, ,

1

()()
n

ij i t i j t j i j

t

x x    
=

= − −

Dissimilarity measures (3)

• Example: time series data

Euclidean distance Pearson correlation

2

, ,

1

(,) ()
n

i j i t j t

t

d x x
=

= −x x
1 ij−

d(,)  d(,)

d(,) << d(,)

d(,) << d(,)

d(,) < d(,)

d(,) << d(,)

d(,) << d(,)

t1 t2 tn

xi

match exact shape ignore amplitude

, ,

1

()()
n

ij i t i j t j i j

t

x x    
=

= − −

Dissimilarity measures (3)

• Example: time series data

Euclidean distance Pearson correlation

2

, ,

1

(,) ()
n

i j i t j t

t

d x x
=

= −x x
1 ij− 1 ij−

d(,)  d(,)

d(,)  d(,)

d(,) << d(,)

d(,)  d(,)

d(,) << d(,)

d(,) << d(,)

d(,) < d(,)

d(,) << d(,)

d(,) << d(,)

t1 t2 tn

xi

Absolute correlation
match exact shape ignore amplitude ignore amplitude & sign

Clustering techniques

Cluster problem

Hierarchical
Techniques

Partitional
Techniques

Graph
Techniques

Single
linkage

Complete
linkage

Average
linkage

K-means
Mixture of
Gaussians

Minimum
spanning tree

Within
scatter

Density Inter-object(cluster) dissimilarity
Object

dissimilarity

Clustering techniques (2)

Cluster problem

Hierarchical

Techniques

Partitional

Techniques

Graph

Techniques

1 cluster

2 clusters

3 clusters

4 clusters

x x

x5x4x1x3x2

x2

x3
x4

x5

x1

Input:

• dataset, X: [n x p], or directly:

• dissimilarity matrix, D: [n x n]

• linkage type

Output:

• dendrogram

Hierarchical clustering

Hierarchical clustering (2)

• Algorithm (agglomerative clustering)

• Start: all objects of X in a separate cluster

• Clustering: combine the 2 clusters with

the shortest distance in dissimilarity matrix, D

• Distance between clusters is based on linkage type:

• single, complete, average, …

• Repeat until only 1 cluster is left

Hierarchical clustering (3)

 x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Dataset Euclidean distance matrix, D

x2 x3
x4

x5

x1

x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (4)

• Step 1:

Find the most similar pair of objects: min(i,j){d(i,j)} = d(2,3)

x2
x3

x4

x5

x1

Hierarchical clustering (5)

• Step 2:

Merge x2 and x3 into a single object, [x2, x3];

0.74

x5x4x3x2x1

Hierarchical clustering (6)

• Step 3:

Recompute D –

what is the distance between [x2, x3] and the rest?

[x2, x3]
x4

x5

x1

Hierarchical clustering (7)

• Step 3:

Recompute D –

single linkage: d([x2,x3],x1) = min(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2

x3

Hierarchical clustering (8)

• Step 3:

Recompute D –

complete linkage: d([x2,x3],x1) = max(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2

x3

Hierarchical clustering (9)

• Step 3:

Recompute D –

average linkage: d([x2,x3],x1) = mean(d(x1,x2),d(x1,x3))

[x2, x3]

x1

x2

x3

x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (10a)

• Step 3:

Recompute D – single linkage:

x2
x3

x4

x5

x1

Hierarchical clustering (10b)

• Step 3:

Recompute D – single linkage:

 x1 [x2,x3] x4 x5

x1 0.00 1.58 5.22 4.53

[x2,x3] 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

Hierarchical clustering (11)

• Repeat, step 1:

Find the most similar pair of objects: min(i,j){d(i,j)} = d(4,5)

 x1 [x2,x3] x4 x5

x1 0.00 1.58 5.22 4.53

[x2,x3] 1.58 0.00 4.81 4.48

x4 5.22 4.81 0.00 1.12

x5 4.53 4.48 1.12 0.00

x2
x3

x4

x5

x1

Hierarchical clustering (12)

• Repeat, step 2:

Merge x4 and x5 into a single object, [x4,x5];

1.12

x5x4x3x2x1

Hierarchical clustering (13)

• Repeat, step 3:

Recompute D (single linkage):

 x1 [x2,x3] [x4,x5]

x1 0.00 1.58 4.53

[x2,x3] 0.00 4.48

[x4,x5] 0.00

Hierarchical clustering (14)

• Repeat steps 1-3 until a single cluster remains

x5x4x3x2x1

x2
x3

x4

x5

x1

Hierarchical clustering (15)

x5x4x3x2x1

CLUSTER
Dissimilarity

matrix
Dendrogram

x2
x

3

x4

x

5

x1

CUT Clustering

CUT

x2
x3

x4

x5

x1
CUT

CUT

Hierarchical clustering (16)

• Hierarchical clustering: repeatedly group closest clusters

• Important choices:

• Distance measure

between objects:

Euclidean, correlation,

Hamming, Minkowski, ...

• Linkage

between clusters:

single, average (centroid), complete

Single
linkage

Centroid
linkage

Complete
linkage

Distance

Linkage and cluster shape

Complete linkage

Single linkage

Linkage and cluster shape (2)

Complete linkage

Single linkage

Linkage and cluster shape (3)

Complete linkage

Single linkage

Single

linkage

Complete

linkage

Linkage and outliers

Hierarchical clustering examples

Euclidean, complete linkage

Hierarchical clustering examples (2)

Euclidean, complete linkage

Hierarchical clustering examples (3)

Euclidean, single linkage

Hierarchical clustering (17)

• Advantages:

• dendrogram gives overview of all possible clusterings

• linkage type allows to find clusters of varying shapes (convex and

non-convex)

• different dissimilarity measures can be used

• Disadvantages:

• computationally intensive:

O(n2) in complexity and memory

• clusterings limited to “hierarchical nestings”

Hierarchical clustering: warning

• Cluster 500 genes, 5 arrays:

6 clusters

Data were random …

Validation is needed

CUT

Exercise 2.14-2.19

Sum-of-squares clustering

• Hierarchical:

• Sum-of-squares:

CLUSTER
Dissimilarity

matrix
Dendrogram ClusteringCUT

CLUSTER

1. Data
2. Criterion
3. # of clusters

Clustering

CUT

Sum-of-squares clustering (2)

2)5,2,3,(Σ 211
===== =

Cnnn
n

n
i

C

i

i
wS

i

C

i

iT

ii

C

i

i
B

n

n

n

n
mmmmmmS  ==

=−−=
11

,))((

m1
m

x2

x3
x4

x5

x1

m2

• Within and between scatter:

K-means

• Minimize:

Tr(SW)

Number of clusters (g)1 n
0

W

1

1
Tr()

g

j

jn =

= S S

 -
1

2


=

=
jn

i

jij mxS

(sum of per cluster variances)

1

2


=

=
n

i

iT - mxS
m1

x2

x3

x1

K-means (2)

• Iterative procedure to search for min(Tr(SW)):

1. choose number of clusters (g)

2. position prototypes (mj, j=1,…,g) randomly

3. assign samples to closest prototype

4. compute mean of samples assigned to

 same prototype: new prototype position

Repeat steps 3 and 4 as long as prototypes move

K-means (3)

• Step 1: Choose number of clusters/prototypes

• Step 2: Position prototypes randomly

m1

m3

m2

x2

x3

x4

x5

x1

K-means (4)

• Step 3: Assign samples to closest prototype

x2

x3

x4

x5

x1
m1

m3

m2

K-means (5)

• Step 4: Compute mean of samples assigned to same

 prototype: new prototype positions

m1

m3

m2

m1

m3

m2

x2

x3

x4

x5

x1

K-means (6)

• Repeat as long as prototype positions change:

• Step 3: Assign samples

• Step 4: Recompute prototype positions

x2

x3

x4

x5

x1

m1

m3

m2

K-means problems

• Clustering depends on initialization

x2 x3 x4

x5

x1

x2 x3 x4

x5

x1

m1

m2

m3

m1

m3

m2

x2 x3
x4

x5

x1

x2 x3 x4

x5

x1

K-means problems (2)

• Algorithm can get

stuck in local minima

• Solution:

• start from I different

random initialisations

• keep the best clustering

(lowest Tr(SW))

• For high-dimensional data, many restarts can be

necessary (e.g. I = 100)

K-means problems (3)

• Clusters can loose all samples

• Possible solution:

• remove cluster and continue with g – 1 means

• alternatively, split largest cluster into two

or add a random cluster to continue with g means

m1

m3

m2

x2 x3
x4

x5

x1

K-means example

Iris dataset
(all 4 features)

Advantages/disadvantages: K-means

• Disadvantages:

• Finds only convex clusters (“round shapes”)

• Sensitive to initialization

• Can get stuck in local minima

• Advantages:

• Very simple

• Fast

Recapitulation

• Clustering is way to detect natural groups in data

• What is natural is partly subjective

• We looked at:

• Hierarchical clustering

• Sum of squares (k-means) clustering

• Hierarchical clustering:

• dendrogram shows a complete hierarchy of possible clusterings

• computionally intensive

• K-means

• fast

• sensitive to initialization and local minima

Cluster validation

• Cluster validation:

• Checking whether grouping is really present

• Choosing the optimal number of clusters

• A difficult problem – the ground truth is not known

(since we do not know the object labels)!

• Methods:

• Distortion measures:

• Does clustering approximate structure in data?

• Validity measures:

• Davies-Bouldin index

• Fusion graph

• Gap statistic

Distortion measures

• How well does a dendrogram capture structure in data?

 x1 x2 x3 x4 x5

x1 0 d3 d3 d4 d4

x2 0 d1 d4 d4

x3 0 d4 d4

x4 0 d2

x5 0

d4

d3

d2
d1

d*

x5x4x3x2x1

Distortion measures (2)

• Measure of distortion: Pearson correlation of d and d*

d*
 x1 x2 x3 x4 x5

x1 0.00 1.58 1.76 5.22 4.53

x2 0.00 0.74 5.50 5.10

x3 0.00 4.81 4.48

x4 0.00 1.12

x5 0.00

d

*
*

*

cov(,)
(,) [1,1]

var()var()
 =  −

d d
d d

d d

x1 x2 x3 x4 x5

x1 0 d3 d3 d4 d4

x2 0 d1 d4 d4

x3 0 d4 d4

x4 0 d2

x5 0

Validity measures

• Many are based on within and between group scatter

• The larger the between group scatter and the smaller the within

group scatter, the better

• Example: Davies-Bouldin

-10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

-10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Davies-Bouldin index

• Assumption: clusters are spherical

• For a good clustering, it should hold that:

• objects are compactly organized within a cluster

• clusters are far apart

• D.L. Davies and D.W. Bouldin, IEEE Transactions

on Pattern Analysis and Machine Intelligence 1,

pp. 224-227, 1979

Davies-Bouldin index (2)

2
1

1

j

i j

j

i j

j i jn

C

j in

C






= −

=





x

x

x μ

μ x

+ +
+

+ ++

++

+
+

+

+

+
+ ++

+
++

+ +
+

+
+

+

+
+

+
+

+

+ +
+

+
+

+

+
+

+

+

+

+
+

+

+
+

+
+

3

1 1(,)μ
+

+
+

+

++

+

2 2(,)μ 3 3(,)μ

4 4(,)μ

Davies-Bouldin index (3)

2
1

1

j

i j

j

i j

j k

jk

j k

j i jn

C

j in

C

R
 






+
=

−

= −

=





x

x

μ μ

x μ

μ x

+ +
+

+ ++

++

+
+

+

+

+
+ ++

+
++

+ +
+

+
+

+

+
+

+
+

+

+ +
+

+
+

+

+
+

+

+

+

+
+

+

+
+

+
+

3

1 1(,)μ
+

+
+

+

++

+

2 2(,)μ 3 3(,)μ

4 4(,)μ

Davies-Bouldin index (4)

1,.. ;
max

j k

jk

j k

j jk
k g k j

R

R R

 

= 

+
=

−

=

μ μ

+ +
+

+ ++

++

+
+

+

+

+
+ ++

+
++

+ +
+

+
+

+

+
+

+
+

+

+ +
+

+
+

+

+
+

+

+

+

+
+

+

+
+

+
+

3

1 1(,)μ
+

+
+

+

++

+

2 2(,)μ 3 3(,)μ

4 4(,)μ

Davies-Bouldin index (5)

Paired cluster criterion

Worst-case value per cluster

Average worst-case

1,.. ;

1

1

max

j k

jk

j k

j jk
k g k j

g

DB jg

j

R

R R

I R

 

= 

=

+
=

−

=

= 

μ μ

Davies-Bouldin index (5)

Dataset

Davies-Bouldin:

3 or 14 clusters

Complete link

Davies-Bouldin index (7)

Davies-Bouldin:

Single link

Fusion graph

• Heuristic approach: fusion level

x5x4x3x2x1

Large jump
Cut here:

2 clusters

Fusion graph (2)

(Euclidean; complete linkage)

Fusion graph (3)

(Euclidean; complete linkage)

Fusion graph (4)

(Euclidean; single linkage)

Fusion graph (5)

(Euclidean; single linkage)

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

Feature 1

F
e

a
tu

re
 2

What is a large jump?

• Compare the fusion graph of the dataset with a

null hypothesis, i.e. a dataset where the clustering

structure has been destroyed

• Different approaches:

• Generate random data

within bounding box or

convex hull of data;

• Preferable to shuffle data, i.e.

not generate new data, but

perturb relationships between measurements

• For example, randomly match feature values, i.e.

permute values within columns

The gap statistic

1. Generate dendrogram and extract fusion graph,

2. Repeat r times

1. Perturb columns

2. Generate dendrogram and fusion graph,

3. Compute average and

standard deviation of these perturbed graphs

4. Compute the difference between the data fusion graph

and the average perturbed fusion graph (gap statistic):

5. Look for large values of gap statistic 𝑔𝑗
𝑔𝑎𝑝

= 𝑓𝑗

*

,j rf

*

j

*

j

jf

 *max ,0 , 1,2,...,gap

j j jg f j g= − =

Gap fusion graph (single linkage)

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

Number of clusters

c
lu

s
te

r
in

d
e
x

Data
Perturbed

0 5 10 15
0

0.02

0.04

0.06

Number of clusters

G
a
p
 s

ta
ti
s
ti
c

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

Feature 1

F
e

a
tu

re
 2

Gap fusion graph (single linkage) (2)

5 10 15 20

0

0.1

0.2

0.3

Number of clusters

c
lu

s
te

r
in

d
e
x

Data
Perturbed

0 5 10 15
0

0.005

0.01

0.015

Number of clusters

G
a
p
 s

ta
ti
s
ti
c

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

Feature 1

F
e

a
tu

re
 2

DBI vs. fusion graphs

DBI (s) ? 3/4 ? 4 4+

DBI (c) 8+ 2 5+ 4 8+

Gap fusion

 graph (s)
3 3 2 3 2

Gap fusion

 graph (c)
2 (?) 2 4 3 3

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

Feature 1

F
e

a
tu

re
 2

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

Feature 1

F
e

a
tu

re
 2

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Feature 1

F
e

a
tu

re
 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Feature 1

F
e

a
tu

re
 2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Feature 1

F
e

a
tu

re
 2

Recapitulation

• Cluster validation is used for:

• Assessing clustering

• Deciding on the number of clusters

• Methods:

• Distortion measures (dendrogram)

• Davies-Bouldin index

• Fusion graph and gap statistic

• When applying cluster validation, one also needs to define
what a good cluster is – like in clustering itself.
There’s no free lunch...

Exercise 2.20-2.28

Clustering overview

CLUSTER
Dissimilarity

matrix
Dendrogram ClusteringCUT

CLUSTER
1. Data
2. Criterion
3. # of clusters

Clustering

CUT

ESTIMATE
1. Data
2. Model,
3. # of clusters

Estimate
Clustering

1. Hierarchical:

2. K-means:

3. Density-based:

 *

Density 1 Density 2

Density-based clustering

• Each cluster is described by a probability density function

• Total dataset described by a mixture of density functions

• Clustering = maximizing the mixture fit

• Clusters are based on a posteriori probabilities

Density-based clustering (2)

• Given:

• n independent objects: {x1,...,xn}

• probability density function model:

• Estimate parameters  = {, }

such that model fits data

• Use likelihood as criterion: probability of

observing the data set, given the model

(as on Day 1, for kernel width h in Parzen density estimation)

(|) ~ (,) p θ Nx μ 

Estimation: maximum likelihood

• General method to estimate parameters θ of probability

distribution from data D = {x1, ...,xn}. How?

• Maximize joint probability of the data

1

1

(,..., |) (|)n i

n

i

L p x x p x 
=

= =

independence

likelihood:

1

log (, |)i

n

i Q

LL p x Q 
=

= 

log-likelihood:

θθ* 2θ1θ

x()LL X

same solution since log is

monotonic

Estimation: maximum likelihood (2)

1() (1)x xP x p p −= −

1 1

1 1

11

1 1(,..., |) (1) ... (1)

 (1)

n nx xx x

n n

n n n

P X x X x p p p p p

p p

−−

−

= = = − −

= −

1 1((1))
0

n n nd p p

dp

−−
=

Two possible outcomes: x = 0 or x = 1.

Success (x = 1) occurs with probability p

Bernoulli distribution:

Likelihood:

Maximum at p = n1/n

of successes

Mixture-of-Gaussians

• Choose Gaussian as component density p(x;j):

• Describe complete data set as a mixture of p(x;)’s:

T 11 1
(;) exp () ()

22 det()
j j j jp

j

p θ
π

− 
= − − − 

 
Σ

Σ
x x μ x μ

1

(;) (;)
g

j j

j

p π p θ
=

 =x x j

1

 1
g

j

π
=

=with

j={j, j}

Mixture-of-Gaussians (2)

• Parameters:

• Set number of clusters, g

• Estimate other parameters by maximum-likelihood:

1

(;) (;)
g

j j

j

p π p θ
=

 =x x j

1

 1
g

j

π
=

=

1...(, ={ , })j j j g = = Σπ μ

with

mixture coefficients component density parameters

1 1

(;) log (;)
gn

j i j

i j

LL π p θ
= =

 = X xlog-likelihood:

EM algorithm

• Problem: need to simultaneously estimate two interdependent

things...

• Cluster membership of each object

• Density parameters of each cluster:

• Expectation-Maximization algorithm:

• General class of algorithms for this type of problem

• Repeatedly:

• Recalculate cluster membership of each object (E)

• Recalculate density parameters of each cluster (M)

• Introduce a hidden variable z to explicitly indicate mixture components

, ,j j j Σμ

()j p z j = =

Intermezzo: probabilities

: () (,)
y

P x P x y=sum rule

: (,) (|) () (|) ()P x y P x y P y P y x P x= =product rule

1/ 5 (3) (3, die 1) (3, die 2) 3 / 20 1/ 20P P P= = + = +

3/ 20 (3, die 1) (3 | die 1) (die 1) (3/11)(11/ 20) 3/ 20

 (die 1| 3) (3) (3/ 4)(4 / 20) 3/ 20

P P P

P P

= = = =

= = =

die 1

die 2

1 2 3 4 5 6

n = 20

Intermezzo: Bayes’ theorem

(|) () (|) ()

(|) () (|) ()
(|)

() (|) ()
x

P x y P y P y x P x

P y x P x P y x P x
P x y

P y P y x P x

=

= =


Bayes :

From product rule

(3 | die 1) (die 1) (3/11)(11/20)
(die 1| 3) = =3/4

(3) 4/20

P P
P

P
=

EM algorithm (2)

, ,

, ,

joint post

log () log () () log ()

(,) (,) ()
() log () log

(|) (|) ()

(,) ()
() log () log

() (|)

(,) (||)

x x z

x z x z

x z x z

KL

p D p x q z p x

p x z p x z q z
q z q z

p z x p z x q z

p x z q z
q z q z

q z p z x

F p q D q p

= =

 
= =  

 

   
= +   

   

= +

 

 

 

arbitrary distribution hidden variable

 free energy relative entropy (≥ 0)

EM algorithm: E-step

KLD

(,)F p q

log(P(D | θ))
log(P(D | θ))

(,)F p q

, ,

(,) ()
log () () log () log

() (|)x z x z

p x z q z
p D q z q z

q z p z x

   
= +   

   
 

E-step

E-step:
new

post(|) (|)q z x p p z x= =

=0 (Gibb’s inequality)

EM algorithm: M-step

KLD

(,)F p q

log(P(D | θ))
log(P(D | θ))

(,)F p q

KLD

(,)F p q

log(P(D | θ))

E-step M-step

,

(,)
log () (|) log

(|)x z

p x z
p D p z x

p z x

 
=  

 


M-step: maximize log[p(D)] with respect to the parameters

EM algorithm (3)

E-step: post (| ,)p p z x =

 Calculate the distribution of the hidden variables given

 the data and the model parameters

M-step:
,

arg max (|) log (, |)new

x z

p z x p x z


 = 

Maximize the expected (with respect to hidden variables)

log-likelihood of the complete data.

Iterate to maximize likelihood:

1 1

log (;)
gn

j i j

i j

π p θ
= =

  xCompare M-step with MoG log-likelihood:

M-step is easier: log within sum

EM: mixture model

Very simple example of a model with hidden variables:

2-component mixture model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial Configuration

1 1 2 2() (|) (|)p x p x p x   = +

hidden variable z = 1,2 - component label

(|)(|) (| ,)
(| ,)

(|) ()

j jp xp z j p x z j
p z j x

p x p x

  




= =
= = =E-step:

responsibility

, {1,2}

(|) log (, |)
x z

p z x p x z 


M-step: maximize

EM: mixture model (2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial Configuration

Initialization

EM: mixture model (3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial Configuration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E-step

Initialization E-step

EM: mixture model (4)

• M-step: Maximization

Maximize the expected complete LL by updating

• mixture coefficients j

• cluster means and covariances j={j, j}, j=1,...,g:

1

1

ˆ

n

ij ii
j n

iji

w
μ

w

=

=

=




x





=

=
−−

=
n

i ij

n

i

T

jijiij

j

w

μμw

1

1
))((

Σ
ˆxˆx

ˆ

1 1

1 1
ˆ (|)

n n

j i iji i
π p z j x w

n n= =
= = =  “total membership”

weighted sums

EM: mixture model (5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial Configuration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E-step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

Initialization E-step M-step

EM: mixture model (6)

M-step: 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

EM: mixture model (7)

M-step: 3 M-step: 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

EM: mixture model (8)

M-step: 3 M-step: 5 M-step: 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M-step

• ‘Gauss’:

• ‘Aligned’:

• ‘Circular’:

=
2221

1211

σσ

σσ
Σ

=
22

11

0

0

σ

σ
Σ

=
σ

σ

0

0
Σ

Mixture-of-Gaussians (3)

EM: mixture model (9)

• If...

• all clusters are spherical

• the variance of each cluster is infinitely small

then the EM algorithm simplifies to the K-means algorithm

(samples are always assigned to the closest cluster!)

2

2

2

0 0

0 0 , 0

0 0



 



 
 

→ 
 
 

Σ =

EM algorithm (4)

• Disadvantages:

• can get stuck in local minima

• depends on initial conditions

• convergence can be slow

• problems with covariance estimates:

if too few samples are members of a cluster,

there will not be enough data to base estimate on

• Advantages:

• simple to implement

Cluster validation: log-likelihood

• For probabilistic models (e.g. mixture-of-Gaussians):

• Log-likelihood will probably not increase anymore

when too many clusters are used

• Look for “plateau” in log-likelihood graph

LL

g
-2 0 2 4 6 8

-2

0

2

4

6

8

0 5 10
2

4

6

8

10

1 2 3 4 6 7 8 9

• Problem: when g = n, the log-likelihood is infinite;

 Solution: information criteria (Day 4)

Recapitulation

• Density based clustering:

• Assume a probability density function per cluster

• Train using the EM algorithm

• Example:

• Mixture of Gaussians

• But many probability densities fit in the same framework
principal component analysis, factor analysis, …

• EM algorithm:

• problem decomposition: simple to implement

• sensitive to local minima

Exercise 2.29

	Day2_classification
	Titel in lettertype: Trebuchet MS – 28 pt bold
	Contents
	Recap
	Function approximation
	Logistic classifier
	Logistic function
	Multivar Loglc
	Dia 8
	Optimizing loglc
	Dia 10
	Dia 11
	Dia 12
	Derivative of L
	Bayes' theorem
	Dia 15
	Bayes decision making
	Example
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Gaussian Plug-in
	example qdc
	Cond. densities
	Cond. dens. (2)
	Two-class
	example (2)
	Full covariance matrix
	Average covariance matrix
	Dia 39
	Example banana data
	Even worse
	Nearest mean classifier
	Nearest mean
	nD example
	ROC curve (3)
	ROC curve (4)
	ROC curve (5)
	Conclusions
	Dia 49
	Dia 50
	Feature selection: classification trees
	Classification trees: new data
	Classification trees: pruning
	Tree Ingredients
	How to Choose a Split
	Dia 56
	Dia 57
	Dia 58
	Pruning: One Step Back
	Dia 60
	Pruning: CART
	Pruning: Model Selection
	Dia 63
	Dia 64
	Classifier combination
	Dia 66
	Dia 67
	Dia 68
	Dia 69
	Dia 70
	Dia 71

	Day2_clustering
	Slide 1: Clustering
	Slide 2: Supervised learning
	Slide 3: Supervised learning (2)
	Slide 4: Unsupervised learning
	Slide 5: Unsupervised learning (2)
	Slide 6: What is a cluster?
	Slide 7: What is a cluster? (2)
	Slide 8: What is a cluster in bioinformatics?
	Slide 9
	Slide 10: Example: samples
	Slide 11: Dissimilarity measures
	Slide 12: Dissimilarity measures (2)
	Slide 13: Dissimilarity measures (3)
	Slide 14: Dissimilarity measures (3)
	Slide 15: Dissimilarity measures (3)
	Slide 16: Dissimilarity measures (3)
	Slide 17: Dissimilarity measures (3)
	Slide 18: Clustering techniques
	Slide 19: Clustering techniques (2)
	Slide 20: Hierarchical clustering
	Slide 21: Hierarchical clustering (2)
	Slide 22: Hierarchical clustering (3)
	Slide 23: Hierarchical clustering (4)
	Slide 24: Hierarchical clustering (5)
	Slide 25: Hierarchical clustering (6)
	Slide 26: Hierarchical clustering (7)
	Slide 27: Hierarchical clustering (8)
	Slide 28: Hierarchical clustering (9)
	Slide 29: Hierarchical clustering (10a)
	Slide 30: Hierarchical clustering (10b)
	Slide 31: Hierarchical clustering (11)
	Slide 32: Hierarchical clustering (12)
	Slide 33: Hierarchical clustering (13)
	Slide 34: Hierarchical clustering (14)
	Slide 35: Hierarchical clustering (15)
	Slide 36: Hierarchical clustering (16)
	Slide 37: Linkage and cluster shape
	Slide 38: Linkage and cluster shape (2)
	Slide 39: Linkage and cluster shape (3)
	Slide 40: Linkage and outliers
	Slide 41: Hierarchical clustering examples
	Slide 42: Hierarchical clustering examples (2)
	Slide 43: Hierarchical clustering examples (3)
	Slide 44: Hierarchical clustering (17)
	Slide 45: Hierarchical clustering: warning
	Slide 46: Exercise 2.14-2.19
	Slide 47: Sum-of-squares clustering
	Slide 48: Sum-of-squares clustering (2)
	Slide 49: K-means
	Slide 50: K-means (2)
	Slide 51: K-means (3)
	Slide 52: K-means (4)
	Slide 53: K-means (5)
	Slide 54: K-means (6)
	Slide 55: K-means problems
	Slide 56: K-means problems (2)
	Slide 57: K-means problems (3)
	Slide 58: K-means example
	Slide 59: Advantages/disadvantages: K-means
	Slide 60: Recapitulation
	Slide 61: Cluster validation
	Slide 62: Distortion measures
	Slide 63: Distortion measures (2)
	Slide 65: Validity measures
	Slide 66: Davies-Bouldin index
	Slide 67: Davies-Bouldin index (2)
	Slide 68: Davies-Bouldin index (3)
	Slide 69: Davies-Bouldin index (4)
	Slide 70: Davies-Bouldin index (5)
	Slide 71: Davies-Bouldin index (5)
	Slide 73: Davies-Bouldin index (7)
	Slide 74: Fusion graph
	Slide 75: Fusion graph (2)
	Slide 76: Fusion graph (3)
	Slide 77: Fusion graph (4)
	Slide 78: Fusion graph (5)
	Slide 79: What is a large jump?
	Slide 80: The gap statistic
	Slide 81: Gap fusion graph (single linkage)
	Slide 82: Gap fusion graph (single linkage) (2)
	Slide 85: DBI vs. fusion graphs
	Slide 86: Recapitulation
	Slide 87: Exercise 2.20-2.28
	Slide 88: Clustering overview
	Slide 89: Density-based clustering
	Slide 90: Density-based clustering (2)
	Slide 91: Estimation: maximum likelihood
	Slide 92: Estimation: maximum likelihood (2)
	Slide 93: Mixture-of-Gaussians
	Slide 94: Mixture-of-Gaussians (2)
	Slide 95: EM algorithm
	Slide 96: Intermezzo: probabilities
	Slide 97: Intermezzo: Bayes’ theorem
	Slide 101: EM algorithm (2)
	Slide 102: EM algorithm: E-step
	Slide 103: EM algorithm: M-step
	Slide 104: EM algorithm (3)
	Slide 105: EM: mixture model
	Slide 106: EM: mixture model (2)
	Slide 107: EM: mixture model (3)
	Slide 108: EM: mixture model (4)
	Slide 109: EM: mixture model (5)
	Slide 110: EM: mixture model (6)
	Slide 111: EM: mixture model (7)
	Slide 112: EM: mixture model (8)
	Slide 113
	Slide 114: EM: mixture model (9)
	Slide 115: EM algorithm (4)
	Slide 116: Cluster validation: log-likelihood
	Slide 117: Recapitulation
	Slide 118: Exercise 2.29

