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• Feature extraction 

• Linear:

• PCA

• Fisher
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Overview

• Feature selection 

• Criteria

• Search algorithms 

• n-best selection

• Forward selection

• Backward selection

• …



Overview

• Regularized classifiers 

• PAM (Prediction Analysis of Micro-arrays = shrunken centroids)

• Ridge regression

• LASSO (Least Absolute Shrinkage and Selection Operator)
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Dimensionality reduction 

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?

1. Fewer parameters: faster, easier to estimate – possibly better

performance

2. Explain which measurements (features) are useful and which

are not (reduce redundancy)

3. Visualisation
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Curse of dimensionality

• Curse of dimensionality (# features / # samples): 

• for fixed sample size 

• and increasing number of features (number of parameters)

• performance decreases 

• (There are fewer samples per parameter, i.e. worse estimates)

• Traditional assumption in pattern recognition: 

• need 5-10 times as many samples as there are parameters

• with regularization we can do with fewer

• But genomic data (e.g. RNAseq) is extreme: 

• 100-1000 times fewer samples than parameters!

• For example: nearest mean classifier on Golub data

• p = 3051, k = 2 → number of parameters = 6102

• Number of samples, n = 38
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select d out of p features
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Feature selection vs. extraction

• Feature selection:

select d out of p features

• Feature extraction:

map p features

to d features

(e.g. PCA)
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Feature selection v extraction (2)

Advantage Disadvantage

Selection cut in features  expensive

easy interpretation often approximate



Feature selection v extraction (2)

Advantage Disadvantage

Selection cut in features  expensive

easy interpretation often approximate

Extraction cheap need all features

linear and nonlinear criterion sub-optimal

not axis aligned



Feature extraction (2)

• Linear, unsupervised (= no class labels):

• Principal Component Analysis (PCA)

• Linear, supervised (= use class labels):

• Linear Discriminant Analysis (LDA)



Principal component analysis

(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):

Goal: find directions in data...
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Principal component analysis

(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):

Goal: find directions in data...

• which retain as much variation as possible

• which minimise squared reconstruction error



Principal component analysis

(Unsupervised feature extraction)
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Principal component analysis

(Unsupervised feature extraction)

-5 0 5

-5

0

5

Steps:
1. Center data

2. Compute covariance, C

3. Perform PCA on C

Output:
1. Eigenvectors: e1, e2

2. Eigenvalues: λ1, λ2

Reducing dimensions:
1. Choosing d = 1

2. Project data on e1 
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Choosing reduced dimensionality

• To choose d inspect the retained variance,  

• or the ratio of retained variance,

• Rule of thumb: Select d for which 80-90% variance is retained

• Reduced dimensionality data set
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Principal component analysis

(Unsupervised feature extraction)
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2. Compute covariance, C

3. Perform PCA on C

Output:
1. Eigenvectors: e1, e2

2. Eigenvalues: λ1, λ2

Reducing dimensions:
1. Choosing d = 1

2. Project data on e1 
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PCA example

• e.g. NIST digits: 2000 samples, p = 256 (16 X 16)
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PCA tips

• Ensure data is centered (mean of each feature is zero):
x’  (x - )
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• Ensure data is centered (mean of each feature is zero):
x’  (x - )

• PCA is sensitive to scaling

• length in cm has a much larger variance than length in m

• best to standardise: x’  (x - ) / 
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PCA tips

• Ensure data is centered (mean of each feature is zero):
x’  (x - )

• PCA is sensitive to scaling

• length in cm has a much larger variance than length in m

• best to standardise: x’  (x - ) / 
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PCA conclusions

• PCA:

• Is global and linear

• Criterion: maximizes the retained variance

• Is unsupervised (but we can do PCA on each class)

• Needs a lot of data to estimate the covariance matrix well.



PCA conclusions

• PCA:

• Is global and linear

• Criterion: maximizes the retained variance

• Is unsupervised (but we can do PCA on each class)

• Needs a lot of data to estimate the covariance matrix well.

• Danger: 

• Criterion is not necessarily

related to the goal; 

• Might discard important directions



Supervised, linear feature extraction

• Extraction: mapping of features to new (sub)space (figure)

• Class label is given, hence supervised extraction

• Criterion: Reduce dimensionality and maximize class separation

• Examples: Fisher mapping; Linear Discriminant Analysis



Supervised feature extraction > Criteria
(supervised = we know the class labels)
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Supervised feature extraction > Criteria

Within-class and between-class scatter matrices: 

• Within-class:
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Supervised feature extraction > Criteria

Within-class and between-class scatter matrices: 

• Within-class:

• Between-class:
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Fisher mapping: finding the direction 

(subspace) to project onto for the best class 

separation



Fisher mapping: defining the Fisher criterion
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Fisher mapping (Fisher criterion)
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Fisher mapping: defining the Fisher criterion
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Fisher mapping: defining the Fisher criterion
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Fisher mapping

• Find basis vector a1 for {x} such that in the projections, the 

classes are maximally separated

• Choose a1 to maximise Fisher criterion:

• Maximize between class variance

 Minimize within class variance

• Solution: 

• eigen-analysis on SW
-1SB

• select c-1 (# classes – 1) dimensions for final classifier 

   

J
F
(a

1
) =
a

1

T
S
B
a

1

a
1

T
S
W
a

1



Fisher mapping (3) 

• Map down to a 

maximum of c - 1 

dimensions

• Example: NIST digits

1 2 3

4 5 6

7 8 9



Fisher mapping (4) 

• To avoid fitting noise, can do PCA first

• If system is underdetermined (n  p), first doing PCA is 

required, otherwise matrix inversion results in singularity 

• But then… ?



Fisher mapping (4) 

• To avoid fitting noise, can do PCA first

• If system is underdetermined (n  p), first doing PCA is 

required, otherwise matrix inversion results in singularity 

• But then we might be destroying the class separation as 

PCA is unsupervised



Summary

• Discussed:

• Linear feature extraction

• Unsupervised: Principal Component Analysis (PCA)

• Supervised: Fisher mapping
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Nonlinear, unsupervised feature extraction

• Multidimensional scaling (MDS):

• Nonlinear: 

• Sammon mapping

• t-SNE / UMAP / ViVAE
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Nonlinear feature extraction (3)

Example: embedding

• Find new representation 

such that distances 

between samples are 

preserved 

as well as possible



Multidimensional scaling (MDS)

• Criterion: preserve all inter-sample distances

• Needed: n x n distance matrix between all samples

• Map samples to a new (lower dimensional) space
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Multidimensional scaling (MDS)

• Criterion: preserve all inter-sample distances

• Needed: n x n distance matrix between all points

• Map samples to a new (lower dimensional) space

A

B

C

B

C

A
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MDS (2)

• Advantages of using distances:

• do not necessarily need original data
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amino acids when comparing proteins)
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MDS (2)

• Advantages of using distances:

• do not necessarily need original data

• allows inclusion of knowledge on objects (e.g. characteristics of 

amino acids when comparing proteins)

• allows inclusion of knowledge of relations (e.g. invariances) in 

distance measure (e.g. Pearson correlation being shift and scale 

invariant when comparing expression profiles)

• easy to introduce nonlinearity

• Algorithms should find:

• new, low-dimensional coordinates for each object

• the number of dimensions to embed the data in
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MDS: Non-linear mappings (5) 

• dij  : distance || xi - xj  || in original space (? - dimensional)

• ij   : distance || yi - yj || in new space      (d - dimensional)
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MDS: Non-linear mappings (5) 

• dij  : distance || xi - xj  || in original space (? - dimensional)

• ij   : distance || yi - yj || in new space      (d - dimensional)

• weight factor q = ..., -2, -1, 0, 1, 2,...

q > 0 : emphasise large distances

     q < 0 : de-emphasise large distances (smaller more important)

 Sammon mapping: q = -1
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MDS: Non-linear mappings (6) 

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)
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MDS: Non-linear mappings (6) 

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress
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MDS: Non-linear mappings (6) 

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

• Compute derivative of the stress with respect to positions of 
samples in new space

2

( 2)

1
( ) ( )q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y



62

MDS: Non-linear mappings (6) 

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

• Compute derivative of the stress with respect to positions of 
samples in new space

• Adapt the positions of samples in lower dimensional space
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MDS: Non-linear mappings (6) 

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

• Compute derivative of the stress with respect to positions of 
samples in new space

• Adapt the positions of samples in lower dimensional space

• Repeat till convergence (positions of samples do not change)

2

( 2)

1
( ) ( )q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y

( )
'

Stress



= −



y
y y

y



64

Embedding new points

• Problematic: re-run entire algorithm...

• Sub-optimal solution: triangulation

• Embed new point D

• D has A and B as neighbors 

 in original space 

• Preserve distance 

to two embedded

neigbours A’, B’

exactly

• Use C’ to decide

which of the two

candidates D1’, D2’ 

to use



MDS example

Neuroblastoma (NB)

Rhabdomyosarcoma (RMS)

Burkitt lymphoma (BL) 

Ewing family of tumors (EWS),

Khan et al, Nature Medicine, 2001



t-SNE (t-distributed stochastic neighbor 

embedding) (van der Maaten et al, 2008)

• In the input (high-D) space, X: compute dissimilarities between 

all pairs of points using a gaussian dissimilarity measure, pij

• In the output (low-D) space, Y: compute dissimilarities between 

all pairs of points using a t-distribution (with 1 d.o.f. (Cauchy)) 

dissimilarity measure, qij

• Minimize the Kullback-Leibler distance between these two 

distributions



t-SNE: Cauchy and Gaussian distribution

Points that are close 

have the same dissimilarity

In both low-D and high-D spaces



t-SNE: Cauchy and Gaussian distribution

Points further away in high-D space can be placed 

even further away in low-D space and preserve 

similarity



t-SNE (t-distributed stochastic neighbor 

embedding) (van der Maaten et al, 2008)

• In the input (high-D) space, X: compute dissimilarities between 

all pairs of points using a gaussian dissimilarity measure, pij

• In the output (low-D) space, Y: compute dissimilarities between 

all pairs of points using a t-distribution (with 1 d.o.f. (Cauchy)) 

dissimilarity measure, qij

• Minimize the Kullback-Leibler distance between these two 

distributions (P and Q)

• t-SNE faithfully retains small distances



t-SNE: Sammon map of digit data

(q = -1; de-emphasis of large distances)

Distance from oriin



t-SNE: t-SNE map of digit data

Distance from origin



UMAP 
(Uniform Manifold Approximation and Projection)

• As t-SNE constructs a high-D graph representation of the data 

then optimizes a low-D graph to be as structurally similar

Bech et al, Nature Biotechnology, 2018



UMAP 
(Uniform Manifold Approximation and Projection)

• As t-SNE constructs a high-D graph representation of the data 

then optimizes a low-D graph to be as structurally similar

• High-D graph:

• "fuzzy simplicial complex”

• weighted graph: edge weights representing the likelihood that two 

points are connected. 

• Connects points within a certain radius

• Radius includes nth neighbor

• ”Fuzzy" likelihood of connection decreases with radius



UMAP 
(Uniform Manifold Approximation and Projection)

• As t-SNE constructs a high-D graph representation of the data 

then optimizes a low-D graph to be as structurally similar

• High-D graph:

• "fuzzy simplicial complex”

• weighted graph: edge weights representing the likelihood that two 

points are connected. 

• Connects points within a certain radius

• Radius includes nth neighbor

• ”Fuzzy" likelihood of connection decreases with radius

• Low-D graph:

• optimizes layout of a low-D graph to be as similar as possible

• This process is essentially the same as in t-SNE 

• Using a few clever tricks for speed



UMAP Parameters

• n_neighbors

• # approximate nearest neighbors used to construct the initial high-

D graph. 

• controls how UMAP balances local versus global structure

• min_dist:

• minimum distance between points in low-D space. 

• controls how tightly UMAP clumps points together

• low values = tightly packed embeddings.



UMAP Parameters

Local structure emphasized

Tightly packed low-D



UMAP Parameters

Global structure emphasized

Tightly packed low-D



UMAP Parameters

Global structure emphasized

Loosely packed low-D



ViVAE (Novak et al. bioRxiv, 2024)

• Imposes a structure-preserving (Quartet loss):

• Preserve relative distances within quartets (groups of 4) of points 

that are randomly (repeatedly) drawn

Novak et al. bioRxiv, 2024



ViVAE (Novak et al. bioRxiv, 2024)

• Uses a variational autoencoder (VAE), to optimise both local 

and global distances between points. 

• VAE is trained to optimise all the intra-quartet distances jointly 

at each iteration.



Comparison of approaches (zebrafish embryo)

Early

Late
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MDS conclusions

• Experts or measurements provide distances

• Optimise a stress-function (MDS) or KL distance (t-SNE)

• Important:

• the distance measure used: is it representative?

• Parameter choices can influence outcome heavily.

• Remaining problem: embedding new data points

• t-SNE (and now UMAP, ViVAE) are modern techniques to 

perform representation of data in high-D space in 2D

• Use multiple methods (or multiple parameter settings) to prevent 

over-interpretation 



Supervised Feature selection

• For supervised feature selection, we need:

• A criterion function

e.g. error, class overlap, information loss

• A search algorithm

e.g. pick the best single feature at each time



Feature selection > Criteria > Wrapper

1. Wrapper: exact performance measure

• base performance estimate on classifier;

• estimate performance using cross-validation: 

• very expensive!
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Note: 

we should never use the training set to calculate

performance; this will give a biased estimate!



Feature Selection > Criteria

1. Wrapper: direct performance measure

• base performance estimate on classifier;

• estimate performance using cross-validation: 

• very expensive!

2. Filter: approximate performance predictors:

• calculate the performance of an easy-to-use/’cheap’ model

• indication of how well a more powerful model may perform

• is much faster to compute.

Note: 

we should never use the training set to calculate

performance; this will give a biased estimate!



Feature Selection > Criteria > Filter

• Example

• Simple measure of the ‘separability’ of classes given a feature

• 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:
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Feature Selection > Criteria > Filter

• Example

• Simple measure of the ‘separability’ of classes given a feature

• 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

• If JF is large: good separability

• If JF is small: poor separability
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Feature Selection > Criteria > Filter

• The multi-variate equivalent of the Fisher criterion is the

• Mahalanobis distance: 

• assumes 

• Gaussian distributions with 

• equal covariance matrix :
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Feature Selection > Search algorithms

• Feature selection: select a subset of d out of p features which

optimises the criterion

• Brute force solution: consider all possible subsets

• Problem: there are                                  subsets

• e.g. p = 50 features, d = 2  : 1225 subsets

d = 5  : 2.1 x 106 subsets

d = 25: 1.3 x 1014 subsets

!)!(

!

ddp

p

d

p

−
=











Feature Selection > Search algorithms

• Sub-optimal algorithms: 

• Simplest: d best (individually evaluated)

but these are not necessarily the best d ! (“dB not Bd”)

• Demonstration: two Gaussians; 

select 2 features out of 3 for classification



Feature Selection > Search algo’s (2B not B2)
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Feature Selection > Search algo’s (2B not B2)
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Feature Selection > Search algo’s (2B not B2)
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Feature Selection > Search algorithms
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• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time 

so that the entire subset so far performs best
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• start with entire set

• keep removing one feature at a time
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Feature Selection > Search algorithms

• Other sub-optimal algorithms:

• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time 

so that the entire subset so far performs best

• Backward selection (for when d is high)

• start with entire set

• keep removing one feature at a time

so that the entire subset so far performs best

• Plus-l-takeaway-r (may be slightly better)

• start with empty set (if l > r) or entire set (if l < r)

• keep adding best l and removing worst r



Feature Selection > Search algorithms > Stopping

• When should we stop?

• Due to estimation problems (e.g. covariance matrix), 

we may be overtraining on training set

• This is revealed by increasing error on the test set

• Otherwise (with very large sample sizes), we will have to specify

a desired number of measurements

d

E
rr

o
r

Training error

Test error



Example: Recursive feature elimination (RFE)

Train

Classifier

(SVM)

Eliminate

Genes

with

smallest 

weights

Gene weights

Stop if

perf.

peaks

Wrapper, Backward search



What can go wrong?

Selection bias...

• Guyon et al. (2002). Machine Learning 46, 389 – 422. 

• Ambroise and McLachlan (2002). PNAS 99, 6562-6566. 



Repeat for different 

           splits, (xi,yi)

Biased selection

Data

Set

X

Select

best N

predictor

genes Build

Classifier:

C(xi
N)

Test on 

Left-out 

set:

P(C(xi
N),yi

N)

Train

Set:

xi

Test

Set:

yi

S
a
m

p
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s



Repeat for different 

           splits, (xi,yi)

Unbiased selection

Data

Set

X
Select

best N

predictor

genes

Build

Classifier:

C(xi
N)

Test on 

Left-out 

set:

P(C(xi
N),yi

N)

Train

Set:

xi

Test

Set:

yi



Ambroise & McLachlan experiments

Data

set

50%

50%

Train final

classifier
CV1IE

CV10E

AE
Estimate

Errors

Test TE



Ambroise & McLachlan experiments

Colon vs. normal data



Ambroise & McLachlan experiments

Random data

Random data



Cross-validation

• Remember: 

• for small sample size: use cross-validation 

• Cross-validation should be applied to 

every choice made, including:

• the number of features to use

• the features to use

• the type of classifier to use

• …

Note: 

we should never use the training set to calculate

performance; this will give a biased estimate!



Feature selection: summary

• Feature selection can improve performance 

and help interpretation

• Requirements: a criterion and a search algorithm

• Methodology (cross-validation) is very important,

especially for ‘p >> n’ problems, e.g. RNAseq data 

• There seems to be some evidence that the simplest methods 

(individual selection) work best



Shrinkage

• Feature selection: selects a subset of features (1/0)

• Feature extraction: combinations of features are constructed 

based on variance and accuracy arguments

• Regularization 1: control contribution of genes to classifier 

based on individual quality and control degree of contribution 

with cross-validated classification error

• Regularization 2: combines accuracy (error) and penalty on 

large weights (= simple models) in one criterion.



Shrunken centroids  

• Same principle as forward filtering

• Genes are evaluated individually

• BUT, do not start with the best and keep adding;

• RATHER, start removing worst genes from the back

• In PAM* genes can participate ‘partially’, in forward filtering a 

gene is either 100% in or out.

* PAM: Prediction analysis of micro-arrays; R. Tibshirani, T. Hastie, B. 

Narasimhan and G. Chu. Diagnosis of multiple cancer types by shrunken 

centroids of gene expression. PNAS 99(10):6567 6572, 2002.



Shrunken centroids (1)

Step 1: Compute class centroids per gene

gene expression

CancerNormal



Shrunken centroids (2)

Step 1: Compute class centroids per gene

gene expression

CancerNormal

Mean 

expression of 

normal samples: 

N

Mean 

expression of 

cancer samples: 

C



Shrunken centroids (3)

Step 2: Compute overall centroids per gene

gene expression

CancerNormal

Mean 

expression of 

normal samples: 

N

Mean 

expression of 

cancer samples: 

C

Mean of all 

samples: 



Shrunken centroids (4)

Step 3: Compute d per gene

gene expression

CancerNormal
dC=(C-) 

Distance between 

the class mean and 

the overall mean

Mean 

expression of 

normal samples: 

N

Mean 

expression of 

cancer samples: 

C

Mean of all 

samples: 

dC



Shrunken centroids (4)

Step 3: Compute d per gene

gene expression

CancerNormal
dC=(C-) 

Distance between 

the class mean and 

the overall mean

Mean 

expression of 

normal samples: 

N

Mean 

expression of 

cancer samples: 

C

Mean of all 

samples: 

dC



Shrunken centroids (5)

Step 3: Compute d per gene

gene expression

CancerNormal
dC=(C-) 

Distance between 

the class mean and 

the overall mean

Mean 

expression of 

normal samples: 

N

Mean 

expression of 

cancer samples: 

C

Mean of all 

samples: 

dC

Note: for poor 

reporters, SNR is 

small AND 

D is small



Shrunken centroids (6)

Step 4: Shrink the centroids

gene expression

CancerNormal

Mean 

expression of 

normal samples: 

N

Mean 

expression of 

cancer samples: 

C

Mean of all 

samples: 

dCdCd’C

d’C = sign(dC)(|dC| -    )

Distance between the 

class mean and the 

overall mean



Shrunken centroids (7)

Step 5: Classify with shrunken centroids / perf.

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till 

all genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till 

all genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till 

all genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till 

all genes shrunk away

gene expression

CancerNormal

CancerNormal



Shrunken centroids: selecting the 

genes

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Cancer Normal

dC

Genes sorted based on D-measure: best to worse



Shrunken centroids: selecting the 

genes
Cancer Normal

CV Performance

#
 g

e
n
e
s

Train classifier on all 8 genes; estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8



Shrink all d by =1: reduce length by 1

Cancer Normal
CV Performance=1

#
 g

e
n
e
s

Train classifier on 7 genes (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8



Shrink all d by =2: reduce length by 2

Cancer Normal
CV Performance=2

#
 g

e
n
e
s

Train classifier on 5 genes (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8



Shrink all d by =3: reduce length by 3

Cancer Normal
CV Performance=3

#
 g

e
n
e
s

Train classifier on 4 genes (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8



Shrink all d by =7: reduce length by 7

Cancer Normal
CV Performance=7

#
 g

e
n
e
s

Train classifier on 1 gene (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8



Determining the optimal 

p

p e





1. Split the data (X) in 10 equal parts (x1,…x10) 

2. For each of the 10 folds (i=1,2,…,10)

3. On the training set (X\xi) 

1. Compute the class and overall centroids

2. For a range of  ( = [0,0.5,…,7]) 

i. Shrink d for all genes

ii. Compute ‘shrunken centroids’ on training set

iii. Test the resulting classifier on the test set (xi)

3. Result: 10 Curves of performance vs. 

4. Average all 10 curves and compute std. dev. at each  

5. Pick the  where the performance is maximal (error min.)



PAM

• For the Khan datat set*; 4 classes of small round blue cell 

tumors (SRBCT): BL, EWS, NB, RMS

• At optimal  : 43 genes not shrunk away

*R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

4 classes:

Neuroblastoma (NB)

Rhabdomyosarcoma (RMS)

Burkitt lymphoma (BL) 

Ewing family of tumors (EWS),



PAM (2)

shrunk

unshrunk



PAM (3)

At optimal  : 43 genes not shrunk away

R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

Neuroblastoma (NB)

Rhabdomyosarcoma (RMS)

Burkitt lymphoma (BL) 

Ewing family of tumors (EWS),



Scoring samples by posterior prob’s

k = {BL,EWS,NB,RMS}



Shrinkage

• PAM: controls contribution of genes to classifier based on 

individual quality (d-measure) and controls degree of 

contribution with cross-validated classification error

• Other approach: regularisation, combine error and penalty 

for number of genes explicitly 



Regularization

• Regularization 1: control contribution of genes to classifier 

based on individual quality and control degree of contribution 

with cross-validated classification error

• Regularization 2: combines accuracy (error) and penalty on 

large weights (= simple models) in one criterion.



Shrinkage (2)

• Model:

• Penalised (aka regularised) least squares:

• Ridge regression: 

• LASSO: minimise

0

1

p

i i

i

y x  
=

= + +

2

2

0 ,

1 1 1

ˆ arg min
p pn

j i j i i

j i i

y x   
= = =

  
= − − +  

   
  ββ

2

0 ,

1 1 1

ˆ arg min
p pn

j i j i i

j i i

y x   
= = =

  
= − − +  

   
  ββ



LASSO

• Difference seems small, but effect of LASSO 

is that genes are no longer used (like in PAM!)
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Final summary

• Feature extraction: 

• Linear:

• PCA, 

• Fisher

• Non-linear

• MDS

• Feature selection: 

• Criteria

• search algorithms 

• forward, 

• backward, 

• branch & bound.

• Sparse classifiers: 

• Ridge, 

• LASSO



Practical session: Feature selection

• All datasets are called a

•  fsel creates a mapping w which can be applied to a data set. 

• Example, select d = 5 features from a:

• w = fsel(a,’individual’,’NN’,5)

• b = a*w will give you a dataset b with 5 features

• To return a list of ranked features, call it like this

• [w,list] = fsel(a);

• Then create a dataset b with the best d features like this:

• b = a*w(:,1:d);



Practical session: feature selection

•  [W,LIST] = fsel (DATA, ALGORITHM, CRITERION, P)

• Defaults: ALGORITHM = 'individual’,CRITERION = 'NN'

• Smarter ALGORITHMs are:

• forward selection: ’forward’

• backward selection: ’backward’

• (Ignore rest)

•  CRITERION: (only use these)

• 'maha-s’: sum of estimated Mahalanobis distances.

• ‘NN’ : 1-NN leave-one-out classification performance

• (Ignore rest)



Exercises

• Exercise 3.1 

• Only use the iris dataset (not biomed)

• Exercise 3.3

• Script on next page

• Exercise 3.7d onwards: 2 modes of calling PCA

• load housing

• [W,FRAC] = pca(a,1); % get a mapping W

• W.data.rot(:,1);

• figure(1); plot(W.data.rot(:,1));

• v = pca(a,0); % get the variance retained v

• figure(2);plot(v);

• figure(3); plot(var(a));
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