
Lodewyk Wessels (The Netherlands Cancer Institute)

Marcel Reinders (Delft University of Technology)

Perry Moerland (Amsterdam UMC, University of Amsterdam)

Some material courtesy of Robert Duin and David Tax

Machine Learning for Bioinformatics

& Systems Biology

3. Feature selection and extraction

Overview

• Dimensionality reduction

• Feature extraction

• Feature selection

• Regularized classifiers

Overview

• Feature extraction

• Linear:

• PCA

• Fisher

• Non-linear

• MDS (Multi-dimensional scaling)

• t-SNE

• UMAP

• ViVAE

Overview

• Feature selection

• Criteria

• Search algorithms

• n-best selection

• Forward selection

• Backward selection

• …

Overview

• Regularized classifiers

• PAM (Prediction Analysis of Micro-arrays = shrunken centroids)

• Ridge regression

• LASSO (Least Absolute Shrinkage and Selection Operator)

Dimensionality reduction

Aim of Feature Extraction and Selection: reduce dimensionality

Dimensionality reduction

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?

Dimensionality reduction

Aim of Feature Extraction and Selection: reduce dimensionality

Why is reducing dimensionality useful?

1. Fewer parameters: faster, easier to estimate – possibly better

performance

2. Explain which measurements (features) are useful and which

are not (reduce redundancy)

3. Visualisation

Curse of dimensionality

• Curse of dimensionality (# features / # samples):

• for fixed sample size

• and increasing number of features (number of parameters)

• performance decreases

• (There are fewer samples per parameter, i.e. worse estimates)

Curse of dimensionality

• Curse of dimensionality (# features / # samples):

• for fixed sample size

• and increasing number of features* (number of parameters)

• performance decreases

• (There are fewer samples per parameter, i.e. worse estimates)

• Traditional assumption in pattern recognition:

• need 5-10 times as many samples as there are parameters

• with regularization we can do with fewer

* measurements

Curse of dimensionality

• Curse of dimensionality (# features / # samples):

• for fixed sample size

• and increasing number of features (number of parameters)

• performance decreases

• (There are fewer samples per parameter, i.e. worse estimates)

• Traditional assumption in pattern recognition:

• need 5-10 times as many samples as there are parameters

• with regularization we can do with fewer

• But genomic data (e.g. RNAseq) is extreme:

• 100-1000 times fewer samples than parameters!

* measurements

Curse of dimensionality

• Curse of dimensionality (# features / # samples):

• for fixed sample size

• and increasing number of features (number of parameters)

• performance decreases

• (There are fewer samples per parameter, i.e. worse estimates)

• Traditional assumption in pattern recognition:

• need 5-10 times as many samples as there are parameters

• with regularization we can do with fewer

• But genomic data (e.g. RNAseq) is extreme:

• 100-1000 times fewer samples than parameters!

• For example: nearest mean classifier on Golub data

• p = 3051, k = 2 → number of parameters = 6102

• Number of samples, n = 38

Feature selection vs. extraction

• Feature selection:

select d out of p features

x1

xp

f1

f2

Feature selection vs. extraction

• Feature selection:

select d out of p features

• Feature extraction:

map p features

to d features

(e.g. PCA)

x1

xp

x1

xp

f1

f2

f2

f1

Feature selection v extraction (2)

Advantage Disadvantage

Selection cut in features expensive

easy interpretation often approximate

Feature selection v extraction (2)

Advantage Disadvantage

Selection cut in features expensive

easy interpretation often approximate

Extraction cheap need all features

linear and nonlinear criterion sub-optimal

not axis aligned

Feature extraction (2)

• Linear, unsupervised (= no class labels):

• Principal Component Analysis (PCA)

• Linear, supervised (= use class labels):

• Linear Discriminant Analysis (LDA)

Principal component analysis

(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):

Goal: find directions in data...

Principal component analysis

(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):

Goal: find directions in data...

• which retain as much variation as possible

Principal component analysis

(Unsupervised feature extraction)

• Principal component analysis (PCA, 1901):

Goal: find directions in data...

• which retain as much variation as possible

• which minimise squared reconstruction error

Principal component analysis

(Unsupervised feature extraction)

-5 0 5

-5

0

5

Steps:
1. Center data

2. Compute covariance, C

3. Perform PCA on C

Output:
1. Eigenvectors: e1, e2

2. Eigenvalues: λ1, λ2

Reducing dimensions:
Choosing ‘d’

Feature 1 (e.g. Gene 1)

F
e

a
tu

re
 2

 (
e

.g
.
G

e
n

e
 2

)

Principal component analysis

(Unsupervised feature extraction)

-5 0 5

-5

0

5

Steps:
1. Center data

2. Compute covariance, C

3. Perform PCA on C

Output:
1. Eigenvectors: e1, e2

2. Eigenvalues: λ1, λ2

Reducing dimensions:
1. Choosing d = 1

2. Project data on e1

Feature 1 (e.g. Gene 1)

F
e

a
tu

re
 2

 (
e

.g
.
G

e
n

e
 2

)

Choosing reduced dimensionality

• To choose d inspect the retained variance,

• or the ratio of retained variance,

• Rule of thumb: Select d for which 80-90% variance is retained

• Reduced dimensionality data set

• [x1
T;x2

T ; … ;x2
T][e1, e2 , … , ed]


=

d

i

i

1



1 1

pd

i j

i j

 
= =

 

Principal component analysis

(Unsupervised feature extraction)

-5 0 5

-5

0

5

Steps:
1. Center data

2. Compute covariance, C

3. Perform PCA on C

Output:
1. Eigenvectors: e1, e2

2. Eigenvalues: λ1, λ2

Reducing dimensions:
1. Choosing d = 1

2. Project data on e1

Feature 1 (e.g. Gene 1)

F
e

a
tu

re
 2

 (
e

.g
.
G

e
n

e
 2

)

PCA example

• e.g. NIST digits: 2000 samples, p = 256 (16 X 16)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

%
 V

a
ri

a
n
c
e

re
ta

in
e
d

d

PCA tips

• Ensure data is centered (mean of each feature is zero):
x’  (x - )

PCA tips

• Ensure data is centered (mean of each feature is zero):
x’  (x - )

• PCA is sensitive to scaling

• length in cm has a much larger variance than length in m

• best to standardise: x’  (x - ) / 

PCA tips

• Ensure data is centered (mean of each feature is zero):
x’  (x - )

• PCA is sensitive to scaling

• length in cm has a much larger variance than length in m

• best to standardise: x’  (x - ) / 

2 4 6 8 10 12
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2 2.5 3
x 10

4

1

2

3

4

5

6

7

8

9

10

11

12

13

d

var(xi) retained variance

PCA tips

• Ensure data is centered (mean of each feature is zero):
x’  (x - )

• PCA is sensitive to scaling

• length in cm has a much larger variance than length in m

• best to standardise: x’  (x - ) / 

2 4 6 8 10 12
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2 2.5 3
x 10

4

1

2

3

4

5

6

7

8

9

10

11

12

13

0 0.5 1 1.5

1

2

3

4

5

6

7

8

9

10

11

12

13

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d d

var(xi) var(x’i)retained variance retained variance

PCA conclusions

• PCA:

• Is global and linear

• Criterion: maximizes the retained variance

• Is unsupervised (but we can do PCA on each class)

• Needs a lot of data to estimate the covariance matrix well.

PCA conclusions

• PCA:

• Is global and linear

• Criterion: maximizes the retained variance

• Is unsupervised (but we can do PCA on each class)

• Needs a lot of data to estimate the covariance matrix well.

• Danger:

• Criterion is not necessarily

related to the goal;

• Might discard important directions

Supervised, linear feature extraction

• Extraction: mapping of features to new (sub)space (figure)

• Class label is given, hence supervised extraction

• Criterion: Reduce dimensionality and maximize class separation

• Examples: Fisher mapping; Linear Discriminant Analysis

Supervised feature extraction > Criteria
(supervised = we know the class labels)

m1 m2

x3

x2

x1

x5

x4

m

1
2

Class 1 Class 2

Supervised feature extraction > Criteria

Within-class and between-class scatter matrices:

• Within-class:

m1 m2

x3

x2

x1

x5

x4

m

Weighted average = SB

Weighted average = SW

i

C

i

i
w

n

n
 =

=
1

S

1
2

Supervised feature extraction > Criteria

Within-class and between-class scatter matrices:

• Within-class:

• Between-class:

m1 m2

x3

x2

x1

x5

x4

m

Weighted average = SB

Weighted average = SW

i

C

i

i
w

n

n
 =

=
1

S

T

ii

C

i

i
B

n

n
))((

1
mmmmS −−=  =

1
2

Fisher mapping: finding the direction

(subspace) to project onto for the best class

separation

Fisher mapping: defining the Fisher criterion

Fisher mapping: defining the Fisher criterion

Fisher mapping: defining the Fisher criterion

Fisher mapping (Fisher criterion)

()

2

1 2

2 2

1 2

F

m m
J

 

−
=

+

m1 m2

σ1

σ2

Fisher mapping: defining the Fisher criterion

()

2

1 2

2 2

1 2

F

m m
J

 

−
=

+

m1

m2

σ1

σ2

Fisher mapping: defining the Fisher criterion

()

2

1 2

2 2

1 2

F

m m
J

 

−
=

+

m1

m2

Fisher mapping

• Find basis vector a1 for {x} such that in the projections, the

classes are maximally separated

• Choose a1 to maximise Fisher criterion:

• Maximize between class variance

 Minimize within class variance

• Solution:

• eigen-analysis on SW
-1SB

• select c-1 (# classes – 1) dimensions for final classifier

J
F
(a

1
) =
a

1

T
S
B
a

1

a
1

T
S
W
a

1

Fisher mapping (3)

• Map down to a

maximum of c - 1

dimensions

• Example: NIST digits

1 2 3

4 5 6

7 8 9

Fisher mapping (4)

• To avoid fitting noise, can do PCA first

• If system is underdetermined (n  p), first doing PCA is

required, otherwise matrix inversion results in singularity

• But then… ?

Fisher mapping (4)

• To avoid fitting noise, can do PCA first

• If system is underdetermined (n  p), first doing PCA is

required, otherwise matrix inversion results in singularity

• But then we might be destroying the class separation as

PCA is unsupervised

Summary

• Discussed:

• Linear feature extraction

• Unsupervised: Principal Component Analysis (PCA)

• Supervised: Fisher mapping

48

Nonlinear, unsupervised feature extraction

• Multidimensional scaling (MDS):

• Nonlinear:

• Sammon mapping

• t-SNE / UMAP / ViVAE

49

Nonlinear feature extraction (3)

Example: embedding

• Find new representation

such that distances

between samples are

preserved

as well as possible

Multidimensional scaling (MDS)

• Criterion: preserve all inter-sample distances

• Needed: n x n distance matrix between all samples

• Map samples to a new (lower dimensional) space

51

Multidimensional scaling (MDS)

• Criterion: preserve all inter-sample distances

• Needed: n x n distance matrix between all points

• Map samples to a new (lower dimensional) space

A

B

C

B

C

A

52

MDS (2)

• Advantages of using distances:

• do not necessarily need original data

53

MDS (2)

• Advantages of using distances:

• do not necessarily need original data

• allows inclusion of knowledge on objects (e.g. characteristics of

amino acids when comparing proteins)

54

MDS (2)

• Advantages of using distances:

• do not necessarily need original data

• allows inclusion of knowledge on objects (e.g. characteristics of

amino acids when comparing proteins)

• allows inclusion of knowledge of relations (e.g. invariances) in

distance measure (e.g. Pearson correlation being shift and scale

invariant when comparing expression profiles)

55

MDS (2)

• Advantages of using distances:

• do not necessarily need original data

• allows inclusion of knowledge on objects (e.g. characteristics of

amino acids when comparing proteins)

• allows inclusion of knowledge of relations (e.g. invariances) in

distance measure (e.g. Pearson correlation being shift and scale

invariant when comparing expression profiles)

• easy to introduce nonlinearity

56

MDS (2)

• Advantages of using distances:

• do not necessarily need original data

• allows inclusion of knowledge on objects (e.g. characteristics of

amino acids when comparing proteins)

• allows inclusion of knowledge of relations (e.g. invariances) in

distance measure (e.g. Pearson correlation being shift and scale

invariant when comparing expression profiles)

• easy to introduce nonlinearity

• Algorithms should find:

• new, low-dimensional coordinates for each object

• the number of dimensions to embed the data in

57

MDS: Non-linear mappings (5)

• dij : distance || xi - xj || in original space (? - dimensional)

• ij : distance || yi - yj || in new space (d - dimensional)

58

MDS: Non-linear mappings (5)

• dij : distance || xi - xj || in original space (? - dimensional)

• ij : distance || yi - yj || in new space (d - dimensional)

• weight factor q = ..., -2, -1, 0, 1, 2,...

q > 0 : emphasise large distances

 q < 0 : de-emphasise large distances (smaller more important)

 Sammon mapping: q = -1

2

(2)

1
() ()q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y

59

MDS: Non-linear mappings (6)

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

60

MDS: Non-linear mappings (6)

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

2

(2)

1
() ()q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y

61

MDS: Non-linear mappings (6)

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

• Compute derivative of the stress with respect to positions of
samples in new space

2

(2)

1
() ()q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y

62

MDS: Non-linear mappings (6)

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

• Compute derivative of the stress with respect to positions of
samples in new space

• Adapt the positions of samples in lower dimensional space

2

(2)

1
() ()q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y

()
'

Stress



= −



y
y y

y

63

MDS: Non-linear mappings (6)

• Procedure:

• Initialize positions of samples in lower dimensional space (yi)

• Compute stress

• Compute derivative of the stress with respect to positions of
samples in new space

• Adapt the positions of samples in lower dimensional space

• Repeat till convergence (positions of samples do not change)

2

(2)

1
() ()q

ij ij ijq
i j iij

i j i

Stress d d
d


+





= −


y

()
'

Stress



= −



y
y y

y

64

Embedding new points

• Problematic: re-run entire algorithm...

• Sub-optimal solution: triangulation

• Embed new point D

• D has A and B as neighbors

 in original space

• Preserve distance

to two embedded

neigbours A’, B’

exactly

• Use C’ to decide

which of the two

candidates D1’, D2’

to use

MDS example

Neuroblastoma (NB)

Rhabdomyosarcoma (RMS)

Burkitt lymphoma (BL)

Ewing family of tumors (EWS),

Khan et al, Nature Medicine, 2001

t-SNE (t-distributed stochastic neighbor

embedding) (van der Maaten et al, 2008)

• In the input (high-D) space, X: compute dissimilarities between

all pairs of points using a gaussian dissimilarity measure, pij

• In the output (low-D) space, Y: compute dissimilarities between

all pairs of points using a t-distribution (with 1 d.o.f. (Cauchy))

dissimilarity measure, qij

• Minimize the Kullback-Leibler distance between these two

distributions

t-SNE: Cauchy and Gaussian distribution

Points that are close

have the same dissimilarity

In both low-D and high-D spaces

t-SNE: Cauchy and Gaussian distribution

Points further away in high-D space can be placed

even further away in low-D space and preserve

similarity

t-SNE (t-distributed stochastic neighbor

embedding) (van der Maaten et al, 2008)

• In the input (high-D) space, X: compute dissimilarities between

all pairs of points using a gaussian dissimilarity measure, pij

• In the output (low-D) space, Y: compute dissimilarities between

all pairs of points using a t-distribution (with 1 d.o.f. (Cauchy))

dissimilarity measure, qij

• Minimize the Kullback-Leibler distance between these two

distributions (P and Q)

• t-SNE faithfully retains small distances

t-SNE: Sammon map of digit data

(q = -1; de-emphasis of large distances)

Distance from oriin

t-SNE: t-SNE map of digit data

Distance from origin

UMAP
(Uniform Manifold Approximation and Projection)

• As t-SNE constructs a high-D graph representation of the data

then optimizes a low-D graph to be as structurally similar

Bech et al, Nature Biotechnology, 2018

UMAP
(Uniform Manifold Approximation and Projection)

• As t-SNE constructs a high-D graph representation of the data

then optimizes a low-D graph to be as structurally similar

• High-D graph:

• "fuzzy simplicial complex”

• weighted graph: edge weights representing the likelihood that two

points are connected.

• Connects points within a certain radius

• Radius includes nth neighbor

• ”Fuzzy" likelihood of connection decreases with radius

UMAP
(Uniform Manifold Approximation and Projection)

• As t-SNE constructs a high-D graph representation of the data

then optimizes a low-D graph to be as structurally similar

• High-D graph:

• "fuzzy simplicial complex”

• weighted graph: edge weights representing the likelihood that two

points are connected.

• Connects points within a certain radius

• Radius includes nth neighbor

• ”Fuzzy" likelihood of connection decreases with radius

• Low-D graph:

• optimizes layout of a low-D graph to be as similar as possible

• This process is essentially the same as in t-SNE

• Using a few clever tricks for speed

UMAP Parameters

• n_neighbors

• # approximate nearest neighbors used to construct the initial high-

D graph.

• controls how UMAP balances local versus global structure

• min_dist:

• minimum distance between points in low-D space.

• controls how tightly UMAP clumps points together

• low values = tightly packed embeddings.

UMAP Parameters

Local structure emphasized

Tightly packed low-D

UMAP Parameters

Global structure emphasized

Tightly packed low-D

UMAP Parameters

Global structure emphasized

Loosely packed low-D

ViVAE (Novak et al. bioRxiv, 2024)

• Imposes a structure-preserving (Quartet loss):

• Preserve relative distances within quartets (groups of 4) of points

that are randomly (repeatedly) drawn

Novak et al. bioRxiv, 2024

ViVAE (Novak et al. bioRxiv, 2024)

• Uses a variational autoencoder (VAE), to optimise both local

and global distances between points.

• VAE is trained to optimise all the intra-quartet distances jointly

at each iteration.

Comparison of approaches (zebrafish embryo)

Early

Late

82

MDS conclusions

• Experts or measurements provide distances

• Optimise a stress-function (MDS) or KL distance (t-SNE)

• Important:

• the distance measure used: is it representative?

• Parameter choices can influence outcome heavily.

• Remaining problem: embedding new data points

• t-SNE (and now UMAP, ViVAE) are modern techniques to

perform representation of data in high-D space in 2D

• Use multiple methods (or multiple parameter settings) to prevent

over-interpretation

Supervised Feature selection

• For supervised feature selection, we need:

• A criterion function

e.g. error, class overlap, information loss

• A search algorithm

e.g. pick the best single feature at each time

Feature selection > Criteria > Wrapper

1. Wrapper: exact performance measure

• base performance estimate on classifier;

• estimate performance using cross-validation:

• very expensive!

Feature Selection > Criteria > Wrapper

1. Wrapper: direct performance measure

• base performance estimate on classifier;

• estimate performance using cross-validation:

• very expensive!

Note:

we should never use the training set to calculate

performance; this will give a biased estimate!

Feature Selection > Criteria

1. Wrapper: direct performance measure

• base performance estimate on classifier;

• estimate performance using cross-validation:

• very expensive!

2. Filter: approximate performance predictors:

• calculate the performance of an easy-to-use/’cheap’ model

• indication of how well a more powerful model may perform

• is much faster to compute.

Note:

we should never use the training set to calculate

performance; this will give a biased estimate!

Feature Selection > Criteria > Filter

• Example

• Simple measure of the ‘separability’ of classes given a feature

• 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

()

2

1 2

2 2

1 2

F

m m
J

 

−
=

+

m1 m2

σ1 σ2

Feature Selection > Criteria > Filter

• Example

• Simple measure of the ‘separability’ of classes given a feature

• 1D case: Signal-to-Noise Ratio (SNR) or Fisher criterion:

• If JF is large: good separability

• If JF is small: poor separability

()

2

1 2

2 2

1 2

F

m m
J

 

−
=

+

m1 m2

σ1 σ2

Feature Selection > Criteria > Filter

• The multi-variate equivalent of the Fisher criterion is the

• Mahalanobis distance:

• assumes

• Gaussian distributions with

• equal covariance matrix :

() ()1

1 2 1 2

T

MD m m m m−= −  −

m1, 1

m2, 2

i

C

i

i
w

n

n
 =

=
1

S

Feature Selection > Search algorithms

• Feature selection: select a subset of d out of p features which

optimises the criterion

• Brute force solution: consider all possible subsets

• Problem: there are subsets

• e.g. p = 50 features, d = 2 : 1225 subsets

d = 5 : 2.1 x 106 subsets

d = 25: 1.3 x 1014 subsets

!)!(

!

ddp

p

d

p

−
=









Feature Selection > Search algorithms

• Sub-optimal algorithms:

• Simplest: d best (individually evaluated)

but these are not necessarily the best d ! (“dB not Bd”)

• Demonstration: two Gaussians;

select 2 features out of 3 for classification

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algo’s (2B not B2)

x1
x2

x3

x2

x1

x3

x1

x3

x2

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

→ x1 → x2 → x3

Feature Selection > Search algorithms

• Other sub-optimal algorithms:

• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time

so that the entire subset so far performs best

Feature Selection > Search algorithms

• Other sub-optimal algorithms:

• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time

so that the entire subset so far performs best

• Backward selection (for when d is high)

• start with entire set

• keep removing one feature at a time

so that the entire subset so far performs best

Feature Selection > Search algorithms

• Other sub-optimal algorithms:

• Forward selection (for when d is low)

• start with empty set

• keep adding one feature at a time

so that the entire subset so far performs best

• Backward selection (for when d is high)

• start with entire set

• keep removing one feature at a time

so that the entire subset so far performs best

• Plus-l-takeaway-r (may be slightly better)

• start with empty set (if l > r) or entire set (if l < r)

• keep adding best l and removing worst r

Feature Selection > Search algorithms > Stopping

• When should we stop?

• Due to estimation problems (e.g. covariance matrix),

we may be overtraining on training set

• This is revealed by increasing error on the test set

• Otherwise (with very large sample sizes), we will have to specify

a desired number of measurements

d

E
rr

o
r

Training error

Test error

Example: Recursive feature elimination (RFE)

Train

Classifier

(SVM)

Eliminate

Genes

with

smallest

weights

Gene weights

Stop if

perf.

peaks

Wrapper, Backward search

What can go wrong?

Selection bias...

• Guyon et al. (2002). Machine Learning 46, 389 – 422.

• Ambroise and McLachlan (2002). PNAS 99, 6562-6566.

Repeat for different

 splits, (xi,yi)

Biased selection

Data

Set

X

Select

best N

predictor

genes Build

Classifier:

C(xi
N)

Test on

Left-out

set:

P(C(xi
N),yi

N)

Train

Set:

xi

Test

Set:

yi

S
a
m

p
le

s

Repeat for different

 splits, (xi,yi)

Unbiased selection

Data

Set

X
Select

best N

predictor

genes

Build

Classifier:

C(xi
N)

Test on

Left-out

set:

P(C(xi
N),yi

N)

Train

Set:

xi

Test

Set:

yi

Ambroise & McLachlan experiments

Data

set

50%

50%

Train final

classifier
CV1IE

CV10E

AE
Estimate

Errors

Test TE

Ambroise & McLachlan experiments

Colon vs. normal data

Ambroise & McLachlan experiments

Random data

Random data

Cross-validation

• Remember:

• for small sample size: use cross-validation

• Cross-validation should be applied to

every choice made, including:

• the number of features to use

• the features to use

• the type of classifier to use

• …

Note:

we should never use the training set to calculate

performance; this will give a biased estimate!

Feature selection: summary

• Feature selection can improve performance

and help interpretation

• Requirements: a criterion and a search algorithm

• Methodology (cross-validation) is very important,

especially for ‘p >> n’ problems, e.g. RNAseq data

• There seems to be some evidence that the simplest methods

(individual selection) work best

Shrinkage

• Feature selection: selects a subset of features (1/0)

• Feature extraction: combinations of features are constructed

based on variance and accuracy arguments

• Regularization 1: control contribution of genes to classifier

based on individual quality and control degree of contribution

with cross-validated classification error

• Regularization 2: combines accuracy (error) and penalty on

large weights (= simple models) in one criterion.

Shrunken centroids

• Same principle as forward filtering

• Genes are evaluated individually

• BUT, do not start with the best and keep adding;

• RATHER, start removing worst genes from the back

• In PAM* genes can participate ‘partially’, in forward filtering a

gene is either 100% in or out.

* PAM: Prediction analysis of micro-arrays; R. Tibshirani, T. Hastie, B.

Narasimhan and G. Chu. Diagnosis of multiple cancer types by shrunken

centroids of gene expression. PNAS 99(10):6567 6572, 2002.

Shrunken centroids (1)

Step 1: Compute class centroids per gene

gene expression

CancerNormal

Shrunken centroids (2)

Step 1: Compute class centroids per gene

gene expression

CancerNormal

Mean

expression of

normal samples:

N

Mean

expression of

cancer samples:

C

Shrunken centroids (3)

Step 2: Compute overall centroids per gene

gene expression

CancerNormal

Mean

expression of

normal samples:

N

Mean

expression of

cancer samples:

C

Mean of all

samples: 

Shrunken centroids (4)

Step 3: Compute d per gene

gene expression

CancerNormal
dC=(C-)

Distance between

the class mean and

the overall mean

Mean

expression of

normal samples:

N

Mean

expression of

cancer samples:

C

Mean of all

samples: 

dC

Shrunken centroids (4)

Step 3: Compute d per gene

gene expression

CancerNormal
dC=(C-)

Distance between

the class mean and

the overall mean

Mean

expression of

normal samples:

N

Mean

expression of

cancer samples:

C

Mean of all

samples: 

dC

Shrunken centroids (5)

Step 3: Compute d per gene

gene expression

CancerNormal
dC=(C-)

Distance between

the class mean and

the overall mean

Mean

expression of

normal samples:

N

Mean

expression of

cancer samples:

C

Mean of all

samples: 

dC

Note: for poor

reporters, SNR is

small AND

D is small

Shrunken centroids (6)

Step 4: Shrink the centroids

gene expression

CancerNormal

Mean

expression of

normal samples:

N

Mean

expression of

cancer samples:

C

Mean of all

samples: 

dCdCd’C

d’C = sign(dC)(|dC| -)

Distance between the

class mean and the

overall mean

Shrunken centroids (7)

Step 5: Classify with shrunken centroids / perf.

gene expression

CancerNormal

CancerNormal

Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till

all genes shrunk away

gene expression

CancerNormal

CancerNormal

Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till

all genes shrunk away

gene expression

CancerNormal

CancerNormal

Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till

all genes shrunk away

gene expression

CancerNormal

CancerNormal

Shrunken centroids (8)

Repeat shrinking and evaluation of classifier till

all genes shrunk away

gene expression

CancerNormal

CancerNormal

Shrunken centroids: selecting the

genes

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Cancer Normal

dC

Genes sorted based on D-measure: best to worse

Shrunken centroids: selecting the

genes
Cancer Normal

CV Performance

#
 g

e
n
e
s

Train classifier on all 8 genes; estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Shrink all d by =1: reduce length by 1

Cancer Normal
CV Performance=1

#
 g

e
n
e
s

Train classifier on 7 genes (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Shrink all d by =2: reduce length by 2

Cancer Normal
CV Performance=2

#
 g

e
n
e
s

Train classifier on 5 genes (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Shrink all d by =3: reduce length by 3

Cancer Normal
CV Performance=3

#
 g

e
n
e
s

Train classifier on 4 genes (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Shrink all d by =7: reduce length by 7

Cancer Normal
CV Performance=7

#
 g

e
n
e
s

Train classifier on 1 gene (d>0); estimate CV performance

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene 7

Gene 8

Determining the optimal 

p

p e





1. Split the data (X) in 10 equal parts (x1,…x10)

2. For each of the 10 folds (i=1,2,…,10)

3. On the training set (X\xi)

1. Compute the class and overall centroids

2. For a range of  ( = [0,0.5,…,7])

i. Shrink d for all genes

ii. Compute ‘shrunken centroids’ on training set

iii. Test the resulting classifier on the test set (xi)

3. Result: 10 Curves of performance vs. 

4. Average all 10 curves and compute std. dev. at each 

5. Pick the  where the performance is maximal (error min.)

PAM

• For the Khan datat set*; 4 classes of small round blue cell

tumors (SRBCT): BL, EWS, NB, RMS

• At optimal  : 43 genes not shrunk away

*R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

4 classes:

Neuroblastoma (NB)

Rhabdomyosarcoma (RMS)

Burkitt lymphoma (BL)

Ewing family of tumors (EWS),

PAM (2)

shrunk

unshrunk

PAM (3)

At optimal  : 43 genes not shrunk away

R. Tibshirani et al. (2002) PNAS 99(10):6567-6572, 2002.

Neuroblastoma (NB)

Rhabdomyosarcoma (RMS)

Burkitt lymphoma (BL)

Ewing family of tumors (EWS),

Scoring samples by posterior prob’s

k = {BL,EWS,NB,RMS}

Shrinkage

• PAM: controls contribution of genes to classifier based on

individual quality (d-measure) and controls degree of

contribution with cross-validated classification error

• Other approach: regularisation, combine error and penalty

for number of genes explicitly

Regularization

• Regularization 1: control contribution of genes to classifier

based on individual quality and control degree of contribution

with cross-validated classification error

• Regularization 2: combines accuracy (error) and penalty on

large weights (= simple models) in one criterion.

Shrinkage (2)

• Model:

• Penalised (aka regularised) least squares:

• Ridge regression:

• LASSO: minimise

0

1

p

i i

i

y x  
=

= + +

2

2

0 ,

1 1 1

ˆ arg min
p pn

j i j i i

j i i

y x   
= = =

  
= − − +  

   
  ββ

2

0 ,

1 1 1

ˆ arg min
p pn

j i j i i

j i i

y x   
= = =

  
= − − +  

   
  ββ

LASSO

• Difference seems small, but effect of LASSO

is that genes are no longer used (like in PAM!)

10-2 100 102 104
-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
o
e
ff
ic
ie
n
ts


10-1 100 101 102 103 104

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



C
o
e
ff
ic
ie
n
ts

Ridge LASSO

Final summary

• Feature extraction:

• Linear:

• PCA,

• Fisher

• Non-linear

• MDS

• Feature selection:

• Criteria

• search algorithms

• forward,

• backward,

• branch & bound.

• Sparse classifiers:

• Ridge,

• LASSO

Practical session: Feature selection

• All datasets are called a

• fsel creates a mapping w which can be applied to a data set.

• Example, select d = 5 features from a:

• w = fsel(a,’individual’,’NN’,5)

• b = a*w will give you a dataset b with 5 features

• To return a list of ranked features, call it like this

• [w,list] = fsel(a);

• Then create a dataset b with the best d features like this:

• b = a*w(:,1:d);

Practical session: feature selection

• [W,LIST] = fsel (DATA, ALGORITHM, CRITERION, P)

• Defaults: ALGORITHM = 'individual’,CRITERION = 'NN'

• Smarter ALGORITHMs are:

• forward selection: ’forward’

• backward selection: ’backward’

• (Ignore rest)

• CRITERION: (only use these)

• 'maha-s’: sum of estimated Mahalanobis distances.

• ‘NN’ : 1-NN leave-one-out classification performance

• (Ignore rest)

Exercises

• Exercise 3.1

• Only use the iris dataset (not biomed)

• Exercise 3.3

• Script on next page

• Exercise 3.7d onwards: 2 modes of calling PCA

• load housing

• [W,FRAC] = pca(a,1); % get a mapping W

• W.data.rot(:,1);

• figure(1); plot(W.data.rot(:,1));

• v = pca(a,0); % get the variance retained v

• figure(2);plot(v);

• figure(3); plot(var(a));

	Slide 1: Machine Learning for Bioinformatics & Systems Biology 3. Feature selection and extraction
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Overview
	Slide 6: Dimensionality reduction
	Slide 7: Dimensionality reduction
	Slide 8: Dimensionality reduction
	Slide 9: Curse of dimensionality
	Slide 10: Curse of dimensionality
	Slide 11: Curse of dimensionality
	Slide 12: Curse of dimensionality
	Slide 13: Feature selection vs. extraction
	Slide 14: Feature selection vs. extraction
	Slide 15: Feature selection v extraction (2)
	Slide 16: Feature selection v extraction (2)
	Slide 17: Feature extraction (2)
	Slide 18: Principal component analysis (Unsupervised feature extraction)
	Slide 19: Principal component analysis (Unsupervised feature extraction)
	Slide 20: Principal component analysis (Unsupervised feature extraction)
	Slide 21: Principal component analysis (Unsupervised feature extraction)
	Slide 22: Principal component analysis (Unsupervised feature extraction)
	Slide 23: Choosing reduced dimensionality
	Slide 24: Principal component analysis (Unsupervised feature extraction)
	Slide 25: PCA example
	Slide 26: PCA tips
	Slide 27: PCA tips
	Slide 28: PCA tips
	Slide 29: PCA tips
	Slide 30: PCA conclusions
	Slide 31: PCA conclusions
	Slide 32: Supervised, linear feature extraction
	Slide 33: Supervised feature extraction > Criteria (supervised = we know the class labels)
	Slide 34: Supervised feature extraction > Criteria
	Slide 35: Supervised feature extraction > Criteria
	Slide 36: Fisher mapping: finding the direction (subspace) to project onto for the best class separation
	Slide 37: Fisher mapping: defining the Fisher criterion
	Slide 38: Fisher mapping: defining the Fisher criterion
	Slide 39: Fisher mapping: defining the Fisher criterion
	Slide 40: Fisher mapping (Fisher criterion)
	Slide 41: Fisher mapping: defining the Fisher criterion
	Slide 42: Fisher mapping: defining the Fisher criterion
	Slide 43: Fisher mapping
	Slide 44: Fisher mapping (3)
	Slide 45: Fisher mapping (4)
	Slide 46: Fisher mapping (4)
	Slide 47: Summary
	Slide 48: Nonlinear, unsupervised feature extraction
	Slide 49: Nonlinear feature extraction (3)
	Slide 50: Multidimensional scaling (MDS)
	Slide 51: Multidimensional scaling (MDS)
	Slide 52: MDS (2)
	Slide 53: MDS (2)
	Slide 54: MDS (2)
	Slide 55: MDS (2)
	Slide 56: MDS (2)
	Slide 57: MDS: Non-linear mappings (5)
	Slide 58: MDS: Non-linear mappings (5)
	Slide 59: MDS: Non-linear mappings (6)
	Slide 60: MDS: Non-linear mappings (6)
	Slide 61: MDS: Non-linear mappings (6)
	Slide 62: MDS: Non-linear mappings (6)
	Slide 63: MDS: Non-linear mappings (6)
	Slide 64: Embedding new points
	Slide 65: MDS example
	Slide 66: t-SNE (t-distributed stochastic neighbor embedding) (van der Maaten et al, 2008)
	Slide 67: t-SNE: Cauchy and Gaussian distribution
	Slide 68: t-SNE: Cauchy and Gaussian distribution
	Slide 69: t-SNE (t-distributed stochastic neighbor embedding) (van der Maaten et al, 2008)
	Slide 70: t-SNE: Sammon map of digit data (q = -1; de-emphasis of large distances)
	Slide 71: t-SNE: t-SNE map of digit data
	Slide 72: UMAP (Uniform Manifold Approximation and Projection)
	Slide 73: UMAP (Uniform Manifold Approximation and Projection)
	Slide 74: UMAP (Uniform Manifold Approximation and Projection)
	Slide 75: UMAP Parameters
	Slide 76: UMAP Parameters
	Slide 77: UMAP Parameters
	Slide 78: UMAP Parameters
	Slide 79: ViVAE (Novak et al. bioRxiv, 2024)
	Slide 80: ViVAE (Novak et al. bioRxiv, 2024)
	Slide 81: Comparison of approaches (zebrafish embryo)
	Slide 82: MDS conclusions
	Slide 83: Supervised Feature selection
	Slide 84: Feature selection > Criteria > Wrapper
	Slide 85: Feature Selection > Criteria > Wrapper
	Slide 86: Feature Selection > Criteria
	Slide 87: Feature Selection > Criteria > Filter
	Slide 88: Feature Selection > Criteria > Filter
	Slide 89: Feature Selection > Criteria > Filter
	Slide 90: Feature Selection > Search algorithms
	Slide 91: Feature Selection > Search algorithms
	Slide 92: Feature Selection > Search algo’s (2B not B2)
	Slide 93: Feature Selection > Search algo’s (2B not B2)
	Slide 94: Feature Selection > Search algo’s (2B not B2)
	Slide 95: Feature Selection > Search algo’s (2B not B2)
	Slide 96: Feature Selection > Search algo’s (2B not B2)
	Slide 97: Feature Selection > Search algo’s (2B not B2)
	Slide 98: Feature Selection > Search algo’s (2B not B2)
	Slide 99: Feature Selection > Search algo’s (2B not B2)
	Slide 100: Feature Selection > Search algorithms
	Slide 101: Feature Selection > Search algorithms
	Slide 102: Feature Selection > Search algorithms
	Slide 103: Feature Selection > Search algorithms > Stopping
	Slide 104: Example: Recursive feature elimination (RFE)
	Slide 105: What can go wrong?
	Slide 106: Biased selection
	Slide 107: Unbiased selection
	Slide 108: Ambroise & McLachlan experiments
	Slide 109: Ambroise & McLachlan experiments
	Slide 110: Ambroise & McLachlan experiments
	Slide 111: Cross-validation
	Slide 112: Feature selection: summary
	Slide 113: Shrinkage
	Slide 114: Shrunken centroids
	Slide 115: Shrunken centroids (1) Step 1: Compute class centroids per gene
	Slide 116: Shrunken centroids (2) Step 1: Compute class centroids per gene
	Slide 117: Shrunken centroids (3) Step 2: Compute overall centroids per gene
	Slide 118: Shrunken centroids (4) Step 3: Compute d per gene
	Slide 119: Shrunken centroids (4) Step 3: Compute d per gene
	Slide 120: Shrunken centroids (5) Step 3: Compute d per gene
	Slide 121: Shrunken centroids (6) Step 4: Shrink the centroids
	Slide 122: Shrunken centroids (7) Step 5: Classify with shrunken centroids / perf.
	Slide 123: Shrunken centroids (8) Repeat shrinking and evaluation of classifier till all genes shrunk away
	Slide 124: Shrunken centroids (8) Repeat shrinking and evaluation of classifier till all genes shrunk away
	Slide 125: Shrunken centroids (8) Repeat shrinking and evaluation of classifier till all genes shrunk away
	Slide 126: Shrunken centroids (8) Repeat shrinking and evaluation of classifier till all genes shrunk away
	Slide 127: Shrunken centroids: selecting the genes
	Slide 128: Shrunken centroids: selecting the genes
	Slide 129: Shrink all d by =1: reduce length by 1
	Slide 130: Shrink all d by =2: reduce length by 2
	Slide 131: Shrink all d by =3: reduce length by 3
	Slide 132: Shrink all d by =7: reduce length by 7
	Slide 133: Determining the optimal 
	Slide 134: PAM
	Slide 135: PAM (2)
	Slide 136: PAM (3)
	Slide 137: Scoring samples by posterior prob’s
	Slide 138: Shrinkage
	Slide 139: Regularization
	Slide 140: Shrinkage (2)
	Slide 141: LASSO
	Slide 142: Final summary
	Slide 143: Practical session: Feature selection
	Slide 144: Practical session: feature selection
	Slide 145: Exercises

