
Machine Learning for

Bioinformatics & Systems Biology

4. Selected topics

Marcel Reinders Delft University of Technology

Perry Moerland Amsterdam UMC, University of Amsterdam

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin, David Tax, & Dick de Ridder

Selected topics

• Famous classifiers

• Artificial neural networks

• Support vector classifiers

• Classifier combination

• The fundamental pattern recognition trade-off

• Complexity

Artificial neural networks

Pattern Recognition Week 11: Neural

networks

Artificial neural networks (2)

• Large, densely interconnected networks

of simple processing units

Artificial neural networks (3)

• Inspired by the brain

f(x)

Artificial neural networks (4)

• Research started in the 1950s

• Took off after 1986 – big hype for about 10-15 years

• brought together psychologists, neurologists,

philosophers, machine learners, statisticians...

• helped thinking about, among others,

pattern recognition

• resulted in a lot of grant money

• From 2005/2009 – renewed interest

• Extension to deep learning (deep nets)

• Advances in hardware (GPUs) made it possible to learn these

networks

• Major steps in performance improvement (10%)

• Development of several toolboxes Keras/Tensorflow/Theano/…

• World attention, also from outside Machine Learning field

History

• 1943 : McCulloch and Pitts: model of neuron

• 1958 : Rosenblatt: perceptron

• 1960s : Rosenblatt, Nilsson work on perceptrons

• 1969 : Minsky and Papert point out limitations:

 perceptrons are linear

• 1982 : Hopfield network (associative memory),

 Kohonen’s self-organising map (clustering),

 Fukushima’s Neocognitron (vision)

• 1986 : Rumelhart, Hinton and Williams:

 training of nonlinear networks

• 1997 : Hochreiter and Schmidhuber introduce Long Short-

 term memory (LSTM), recurrent neural net

• 2006 : Hinton showed effective training one-layer at a time

• 2009 : Nvidia involved in “big bang” of “deep learning”, 100x

 time improvement

McCulloch-Pitts model (1943)



McCulloch-Pitts model (2)

bi



wi,1
wi,2

wi,3

wi,4

wi,5

x1

x2

x3

x4

x5

i ij j i

j

o w x b
 

= − 
 


1 0
()

0 0

a
a

a



= 



oi

1
()

1 exp()
a

a
 =

+ −
or

with
transfer function

or

activation function

threshold or bias

inputsweights

output

“Fire” if total input exceeds a threshold

Perceptron

• Networks of McCulloch-Pitts models can perform

universal computation, given the right weights w:

it can do anything a binary computer can do

• ...but how can we find the right weights w ?

• Rosenblatt (1958): possible for single layer networks,

perceptrons

Perceptron (2)

• Goal:

• Trick #1: add bias as weight with constant input

ox

w1

w2

w3

x1

x2

x3

1

2

() ()

0

0

To b





= +

 


 

x w x

x

x

1
,

()

()

T

b

o

a a

   
= =      =   

= 

z v
z v zx w

b

Perceptron (3)

• For classification, set targets q for every input vector z:

• Trick #2: use targets

to obtain single criterion

1

2

: 1

: 1

q

q





 =

 = −

z

z

v
1

2

0
()

0

0

0,

T

T

T

o

q

q





 
= 

 

  

  = 

z
z v z

z

v z

v y y z

1 2

Perceptron (4)

• Goal: zero misclassifications, i.e.

• Criterion to minimize:

where Y is the set of misclassified samples

• Can use gradient descent:

0T

i i v y

()()
i

T

iJ


= −
y

v v y
Y

()() /
i

iJ


  = −
y

v v y
Y

1 ()

,

i

k

i
k k

k

i i

J

d






+


 +


= − = 
 + 


y

v y
v

v v
v

v y y

Y

Y

batch update

single update

Criterion is somewhat arbitrary, could also count misclassifications

learning rate

Perceptron (5)

• Perceptron is a trainable two-class linear discriminant

(extendable to multiple classes)

• Training algorithm can be proven to converge

to correct solution for separable classes

• When classes are not linearly separable:

• indefinite training, weights will blow up

• solution: decrease  during training, (k), or early stopping

Perceptron (6)

• Minsky & Papert (1969): perceptrons are limited

• When classes are nonlinearly separable:
• nonlinear transfer functions

• multilayer perceptron – but how to find weights...?

• Rumelhart et al. (1986): use the chain rule!

The XOR problem cannot be
solved by a linear discriminant

such as the perceptron

x1 x2 
0 0 A

1 0 B

0 1 B

1 1 A

This did in fact take twenty years…

Multilayer perceptron (MLP)

• Stacked perceptrons: feedforward networks

• Each unit has a nonlinear transfer function,

e.g. the sigmoid or logistic function
1

()
1 exp()

a
a

 =
+ −

Backpropagation training

• Method to distribute weight updates through the network

• Criterion: error E, difference between network output and targets

(mean square error between output and target σ 𝑒𝑖 − 𝑜𝑖
2)

• Initialize weights w to small random values

• While not converged, e.g. while |Eold – E|/E > Ethr = 10-6,

or while error on validation set decreases:

• select a training sample xi

• for each weight w

• calculate

• set w’ = w - 

 (with  a learning rate, e.g. 0.01)

• or use a momentum term,

 w’ = w - 

/E w 

/E w 

 / /
prev

E w E w  −  

𝜶>>𝝆: keep moving in previous direction

𝝆>>𝜶: adapt to new direction

momentum term (keep moving in previous direction)

Backpropagation training (2)

• Example: two weights

E

w1 w2

w1

w2

Backpropagation training (3)

• Learning rate controls oscillation and speed

 = 1: >100 iterations  = 0.1: 52 iterations

In practice, not easy

(imagine doing this for thousands of weights)

Backpropagation training (4)

• Momentum uses a bit of the previous step

 = 0.1,  = 0.5: 29 iterations  = 0.5,  = 0.5: >100 iterations

Right: learning rate to large , so oscillations start occurring again …

Also option to make learning rate dependent on time : 𝝆(t)

Other training algorithms

• Backpropagation training

is simple gradient descent,

but implemented in a useful

way: all updates can be

calculated locally (in parallel)

• Other view: simply optimize MSE E w.r.t. weight vector w

using any optimization routine, e.g.

• second order (Newton, pseudo-Newton)

• conjugate gradient descent

• Broyden-Fletcher-Goldfarb-Shanno (BFGS)

• Levenberg-Marquardt (LM, in PRTools)

• Adam (momentum over exponentially decaying past squared

gradients)

F(x;w)
x

t E(w)

Multilayer perceptrons

• Choices:

• targets (0/1, 0.1/0.9, 0.2/0.8) t

• number of hidden layers

• number of units per hidden layer ni

• transfer functions  (a)

• initialisation w(0)

• training algorithm

• parameters (learning rate , momentum 𝜶, etc.)

• convergence decision Ethr or test set selection

• ...

• All of these influence results!

“Training ANNs is more of an ART than a science‘

Multilayer perceptrons (2)

• Number of weights = number of parameters =

 e.g. for p = 10, C = 2, two 20-unit hidden layers:

 = 682 parameters

• Danger of overtraining!

• Prevention:

• use small networks

• regularize: minimize

• small w’s: low complexity, training slowly increases w’s;

so when stopping in time: automatic regularization!

• Regularization is a form of complexity control (discussed later)

1

1

1

(1)
o

l l

l

n n
−

+

=

+

(10 1) 20 (20 1) 20 (20 1) 2+  + +  + + 

()E +w w

Per node: #parents+bias node (nl + 1)

Multilayer perceptrons (3)

• Examples: 1 hidden layer

of 3 units,

2 initialisations

2 hidden layers

of 5 units each,

2 initialisations

0 100 200 300 400 5000

0.05

0.1

0.15

0.2

0.25

iterations

M
S

E

Initialization still important

ANNs for regression

• Feedforward ANNs are universal approximators

• Classification: input x, targets y = 0/1, 0.1/0.9

• Regression: input x, output y

• Examples:

1 hidden unit

(sigmoid)

2 hidden units 2x5 hidden units

y y y

x x x

Autoregressive ANNs / Autoencoder

• Feedforward ANNs that predict their input

• Bottleneck layer: feature extraction

x1

x2

x1

x2

x2

x1

2x̂

1x̂

If linear (as in this example) : then we are performing PCA !!!

require to be the same

Autoregressive ANNs / Autoencoder (2)

• With multiple hidden layers:

nonlinear feature extraction

x1

x2

x1

x2

x2

x1

2x̂

1x̂

Deep learning

 Many hidden layers, learn by auto-encoding

x1

x2

x1

x2

x1

x2

NOW not necessary anymore to learn by autoencoders

With GPUs you can use Backpropagation again (fast enough)

Deep learning

 Convolutional Neural Networks (1)

local connectivity
(node not connected to all)

shared weights
(NN acts as filter)

Deep learning

 Learning features

Deep learning

 Convolutional Neural Networks (2)

Deep learning

 Convolutional Neural Networks (3)

• amount of layers

• use of pre-trained networks (on another problem)

pooling: condense nodes into one node
(eg by taking maximum of output)

Deep learning

 Convolutional Neural Networks (4)

RELU SOFTMAX

Deep learning

 Convolutional Neural Networks (4)

Christof Angermueller et al. Mol Syst Biol 2016;12:878

Radial basis function ANNs

• Feed-forward ANNs with

• Squared distance activation functions

• Gaussian transfer functions

x1

x2

x3

wo-1

1 1 2 1

0(,)o o o

j jz N a w − − −= = =

2
1 -1o o

ja − = x - w

1o

iz −
1o

ja −

1

0

ow −

Radial basis function ANNs (2)

• Example: classification

2 hidden units 5 hidden units 10 hidden units

Other types of ANN

• Large number of feedforward variants

• cascading correlation (self-constructing)

• Neocognitron (for vision)

• time-delay (for speech and image analysis)

• ...

• Self-organising maps and GTMs:

• feature extraction, clustering

• Hopfield networks:

• associative memories, optimisation

• Boltzmann machines, Bayesian networks:

• conditional probability models
37Pattern Recognition Week 11: Neural

networks

Recapitulation

• Perceptrons are “neuron-inspired” linear discriminants

• Multilayer perceptrons and radial basis function

feedforward ANNs are trainable, nonlinear discriminants

• Feed-forward ANNs in general can be used for

classification, regression and feature extraction

• There is a large body of alternative ANNs

• Key problems in the application of ANNs are

choosing the right architecture and good training parameters

39Pattern Recognition Week 11: Neural

networks

10 min break

Support vector classifiers

Vapnik

• Performed foundational work in pattern recognition

with Chervonenkis in Russia from the 1960s

• Motto:

 When you have limited training data,

 and you want to solve a classification problem,

 avoid solving a more complicated intermediate problem

• Translation to classification:

when you want to find a discriminant, avoid estimating densities

Maximum margin classifier

• Simple problem: 2 linearly separable classes

• What is a good linear classifier?

• What is the best linear classifier?

1iy = −

1iy =

?

Maximum margin classifier (2)

• Canonical hyperplane:

any plane of the form

for which

w

x i

1iy = −

1iy = +

0() Tf w= +x w x
min () 1i if =x

1iy = −

0 1T w+  −w x

0 1T w+  +w x

0 1T w+ = −w x
0 0T w+ =w x

0 1T w+ = +w x

1iy = +

Maximum margin for 1D data

min () 1i if =x

Maximum margin classifier (3)

• The distance between an object xi and the hyperplane is

• The maximum margin classifier is a canonical hyperplane

s.t. the distance between the object closest to the hyperplane

on one side,

and the object closest on the other side,

is maximal

• This distance is called the margin:

0(,decision boundary)
T

i
i

w
d

+
=

w x
x

w

0arg min () | 1T

i i iw y+ = +w x

0arg max () | 1T

i i iw y+ = −w x

2
 =

w

Support vector classifier

• Maximizing the margin

under the constraint that all training samples are classified

correctly, leads to the optimization problem:

• The constraints can be written as

• This is called the support vector classifier,

or support vector machine (SVM)

2
 =

w

2

0

0

1
min such that

2

1| 1

1| 1

T

i i

T

i i

w y

w y

+  − = −

+  + = +

w

w x

w x

0() 1T

i iy w+ w x

Support vector classifier (2)

• It is possible to incorporate the constraints into

the optimization itself, using Lagrange multipliers (basic calculus):

• Each constraint corresponds to a single object xi

• Each constraint has a Lagrange multiplier i

• So each object corresponds to a Lagrange multiplier

()
2

0

1

1
min () 1

2

with 0

n
T

i i i

i

i

y w

i





=

+ + −

 

w w x-max
α

min
w,w0

2

0

0

1
min such that

2

1| 1

1| 1

T

i i

T

i i

w y

w y

+  − = −

+  + = +

w

w x

w x

0() 1T

i iy w+ w x

Support vector classifier (3)

• To solve the optimization, take the derivative and set to 0

• Differentiate with respect to :

• Re-substituting gives:

0, ww

1

1

0
n

i i

i

n

i i i

i

y

y





=

=

=

=



w x

1 1 1

1

1
max

2

with 0 and 0

n n n
T

i i j i j i j

i i j

n

i i i

i

y y

i y

  

 

= = =

=

−

  =

 



x x

min
1

2
w

2

+ a
i
y
i
(wT x

i
+w

0
)-1()

i=1

n

å , a
i
> 0-max

α
min
w,w0

(w0)

(w)

Max over 𝜶, derivatives wrt 𝜶

Support vectors

• The classifier is a linear combination of objects:

• Many Lagrange multipliers (𝛼′𝑠) become equal to 0, so in fact

the classifier is a sparse linear combination of objects

• Objects for which the Lagrange multiplier > 0

are called support vectors

1

n

i i i

i

y
=

= w x

Support vectors (2)

w

support vectors

Support vectors (3)

• If non-support vectors are left out and training is repeated,

the resulting classifier is identical

• The number of support vectors

gives a bound on the

leave-one-out error estimate:

support vectors
l̂ooe

n


Class overlap

• When there is overlap between the classes,

the canonical hyperplane is not defined

• To be able to still find a solution,

apply a trick:

soften the constraints

that each object is on

the correct side of the

decision boundary

• For the blue object on the

incorrect side of the boundary:

• The variable i is called a slack variable

i

0() 1T

i i iy w +  −w x

Class overlap (2)

• In the ideal (non-overlapping) case, all slack variables are 0

• To force slack variables to be small,

we add them to the margin to be minimized:

• We can rewrite that in almost the same way we did before:

1 1 1

1

1
max

2

with 0 and 0

n n n
T

i i j i j i j

i i j

n

i i i

i

y y

C i y

  

 

= = =

=

−

   =

 



x x

2

1

0

0

1
min such that

2

(1) | 1

(1) | 1

n

i

i

T

i i i

T

i i i

C

w y

w y







=

+

+  − − = −

+  + − = +

w

w x

w x

The kernel trick

• Function  maps data

into a space in which

classification may be easier

55

 1 2,x x=x () 2 2

1 2 1 2, , 2x x x x  =
 

x

The kernel trick (2)

• Classifier:

• Optimization problem:

1 1 1

1

1
max

2

0,

0

n n n
T

i i j i j i j

i i j

i

n

i i

i

y y

i

y

  





= = =

=

−

 

=

 



α
x x

() 1f  −z

() 1f z

() 0f =z

0

0

1

() T

n
T

i i i

i

f w

y w
=

= +

= +

z w z

x z

The kernel trick (3)

• Classifier can be rewritten as:

• Optimization problem can be rewritten as:

• Only need to specify kernel (inner product of transformed points):

1 1 1

1

1
max () ()

2

0,

0

n n n
T

i i j i j i j

i i j

i

n

i i

i

y y

i

y

  





= = =

=

−  

 

=

 



α
x x

0

0

1

()

() ()

T

n
T

i i i

i

f w

y w
=

= +

=   +

z w z

x z

() ()(,)
T

K =  a b a b

() 1f  −z

() 1f z

() 0f =z

(inner product = distance)

Kernels

• Kernels : nonlinear classifier in original space

• Not necessary to actually know (.),

as long as K(a,b) fullfulls some conditions (!) (positive semi-definite)

58

() ()(,)
T

K =  a b a b

()(,) 1
d

TK = +a b a b

2

2
(,) expK



 −
= − 

 
 

a b
a b

Positive semi-definite: Hermitian matrix all of whose eigenvalues are nonnegative. One intuitive definition is as

follows. Multiply any vector with a positive semi-definite matrix. The angle between the original vector and the
resultant vector will always be less than or equal 𝜋2. The positive definite matrix tries to keep the vector within a

certain half space containing the vector.

Btw, Kernel not restricted to SVMs

• Also kernel versions of PCA, ICA, LDA, CCA, ...

59

Kernels

• Vector kernels:

• Linear

• Polynomial

• Radial basis function

60

(,) TK =a b a b

2

2
(,) expK



 −
=  − 

 
 

a b
a b

()(,) 1
d

TK = +a b a b

Kernels (2)

• For other data types: empirical kernel map

• If we have some kind of a distance measure (not per se positive

definite),

then for each object we can construct a vector with distances

to a number of other objects

• This vector can then be used in a vector kernel

• Example: BLAST kernel

• BLAST a set of sequences w.r.t. each other

• Represent each sequence by

a vector of -log(E)-values

• Use linear kernels on these vectors

61

Kernels (3)

• Spectrum kernel:

• Construct a dictionary of all k-mers

• Construct vector with #occurences of each k-mer

• Use this in a linear kernel

• Need for smart data structures (trie)

• Versions with gaps, substitutions, wildcards...

• Example:

a = aabbababa 1 1 1 2 1 0 0

b = abbaabbab 1 2 1 0 0 1 1

a
a
b
b

a
b
b
a

b
b
a
b

b
a
b
a

a
b
a
b

b
b
a
a

b
a
a
b

K(a,b)=8

Kernels (4)

• Convolution kernel:

• When kernels operate on subparts,

but it is not clear which subparts

• Try all possible decompositions into subparts:

63

() () () ()
1 2

1 2

1 2 1 1 1 2 2 2

...
...

... , , , ... ,
n

n

n n n nK K K K K K s
=
=

   = 
a a a a
b b b b

a b a b a b a b

Kernels (5)

• Local alignment kernel:

• Trivial kernel:

• Letter alignment kernel:

with S the substitution cost

• Gap kernel:

• Local alignment kernel of length n:

• Local alignment kernel:

64

(,) 1tK =a b

()

0 | | 1 | | 1
(,)

exp (,) otherwiseaK
S

  
= 



a b
a b

a b

()()(,) exp | | | |gK = +a b a b

()
(1)

() (,) (,)
n

la n t a g a tK K K K K K
−

=    a b a b

()

0

(,) (,)la la n

n

K K


=

= a b a b

Kernel combination

' (,)
(,)

(,) (,)

i
i

i i

K a b
K a b

K a a K b b
=

18/38

How do we combine the different kernels?

'

1

(,) (,)

n

combined i i

i

K a b w K a b

=

= 

• Combination: weighted sum of normalized kernel matrices

K3x3

x2

x1

xn

K1

K2

Kn

ySVC

powerful: can apply optimal kernel to each data type

Test set:

2021
positive

 protein pairs
39759

negative
 protein pairs

High
accuracy

Medium
accuracy

Low
accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

MIPS (category 550)
Interolog

Interolog (2hop)
mRNA AGASCH

mRNA ALOK
mRNA ARAVAY
mRNA KLUYVER

mRNA HUGHES
mRNA CKAO

mRNA CYERT
mRNA JDLIEB

mRNA MAITREYA
mRNA MICHAS

mRNA SPELLMAN
mRNA VISHY
mRNA YULEI

Gene neighborhood
Gene fusion

Gene coocurrence
TAP

HMS-PCI
tw o-hybrid

synexpression
synthetic lethality

disruption
DIPS various

Affinity chromatography
Tandem Affinity Purif ication

Tw o hybrid test
Copurif ication
In vitro binding

Split ubiquitin system
Immunopreciptation

In vivo kinase activity assay
DIPS various (2hop)

Affinity chromatography (2hop)
Tandem Affinity Purif ication (2hop)

Tw o hybrid test (2hop)
Copurif ication (2hop)
In vitro binding (2hop)

Split ubiquitin system (2hop)
Immunopreciptation (2hop)

Motif
EMotif kernel

spectrum kernel
PFAM kernel

EMotif kernel (pairw ise)
spectrum kernel (pairw ise)

PFAM kernel (pairw ise)

EW-N

PAUC score

0 250 500 750 1000 1250 1500

nr of predicted true positives / nr of non-zero values

nr. of non-zero feature values

tp'(fp
max

)

tp'(0.1 * fp
max

)

tp'(0.01 * fp
max

)

Individual feature performance (PAUC score and True Positives)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

MIPS (category 550)
Interolog

Interolog (2hop)
mRNA AGASCH

mRNA ALOK
mRNA ARAVAY
mRNA KLUYVER

mRNA HUGHES
mRNA CKAO

mRNA CYERT
mRNA JDLIEB

mRNA MAITREYA
mRNA MICHAS

mRNA SPELLMAN
mRNA VISHY
mRNA YULEI

Gene neighborhood
Gene fusion

Gene coocurrence
TAP

HMS-PCI
tw o-hybrid

synexpression
synthetic lethality

disruption
DIPS various

Affinity chromatography
Tandem Affinity Purif ication

Tw o hybrid test
Copurif ication
In vitro binding

Split ubiquitin system
Immunopreciptation

In vivo kinase activity assay
DIPS various (2hop)

Affinity chromatography (2hop)
Tandem Affinity Purif ication (2hop)

Tw o hybrid test (2hop)
Copurif ication (2hop)
In vitro binding (2hop)

Split ubiquitin system (2hop)
Immunopreciptation (2hop)

Motif
EMotif kernel

spectrum kernel
PFAM kernel

EMotif kernel (pairw ise)
spectrum kernel (pairw ise)

PFAM kernel (pairw ise)

EW-N

PAUC score

0 250 500 750 1000 1250 1500

nr of predicted true positives / nr of non-zero values

nr. of non-zero feature values

tp'(fp
max

)

tp'(0.1 * fp
max

)

tp'(0.01 * fp
max

)

Individual feature performance (PAUC score and True Positives)

Application

• Protein

complex

co-member-

ship

66

Hulsman, Reinders, de Ridder. Evolutionary optimization of kernel weights improves protein complex comembership prediction. IEEE/ACM Trans Comput Biol Bioinform . 2009

Recapitulation

• The support vector classifier is based on a

well-founded theoretical basis (Vapnik dimension)

• The original support vector classifier is limited to

problems with two non-overlapping classes, but:

• can be extended to overlapping classes using slack variables

• can be extended to nonlinear decision boundaries using kernels

• can be extended to multiple classes by combining

multiple 2-class classifiers

• A large number of specific kernels for

biological data are available

• A support vector regressor is available (not discussed)

Recapitulation (2)

• Classification performance is often very good

• In particular suited for problems with high-dimensional

datasets and low nr of samples, for which classes are often

separable (and hence estimating densities is extremely difficult)

• The optimization problem is formulated in terms of the

training objects, not the features: slow training for large datasets

• The value for the slack variable trade-off C and

kernel-specific parameters d,  etc. have to be set

Kernels need to be chosen, also an ART!

10 min break

Classifier combination

Network integration (1)

• Construct networks making use of all available data

• various high-throughput measurements

• available prior knowledge (databases)

71

A

B C

D

fAB

N

High-throughput
measurements

Literature

Network
databases

Annotation
databases

Network integration (2)

• Goal: score, predict presence of interactions

72

A

CB

A

CB

0.90.1

0.6

Data integration (1)

• Early integration: feature fusion

Classifierx3 y

x2

x1

xn

73

xi : different data types

Data integration (2)

• Intermediate integration: common representation

(e.g. kernels or probability distributions)

74

r3x3

x2

x1

xn

r1

r2

rn

yClassifier

eg kernel combination

Data integration (3)

• Late integration: classifier combination

75

Classifierx3 y

x2

x1

xn

Classifier

Classifier

Classifier

Classifier combination (late integration)

• Design choices:

• Base classifier: Identical or different?

Base classifiers, feature spaces, training sets, initialisations, etc.

• Combination by a fixed rule or by another classifier?

• Related to work on committees-of-experts

Key issues:

• Assessing individual expertise

• Combining expert opinions

Fixed combination

• Classifiers: individual opinion = posterior probabilities or labels

• Combination by fixed rule, e.g.:

 i.e. assign label i = c to object xi if the combination of

outputs yj,c for class c over all classifiers fj (xi) is maximum

, ,arg max (combination-rule(()))i c j c j c iy f = = x

y1

y3

y2

f1(xi)

f2(xi)

f3(xi)

xi

xi

xi
xi

i

Combination rule might be maximum over all classifiers j,

or votes by all classifiers for that class

Opinion base classifier 1

Fixed combination (2)

• Combination rules on posterior probabilities yj,c = p(i=c|xi):

• Generally applicable:

• Maximum, to select “most confident” classifier

 (assumes good estimates of posteriors)

• Preferable for classifiers trained in different feature spaces:

• Product, justified if feature spaces independent

• Minimum, to select “least objecting” classifier

(assumes good estimates of posteriors)

• Preferable for comparable classifiers trained on the same features:

• Sum/median, to (robustly) improve estimates of posteriors

Fixed combination (3)

• Alternatively, combine labels assigned by classifiers:

• Veto (like minimum)

• Majority vote (like sum/median)

Bayesian network to integrate

• MAGIC (Troyanska et al., PNAS 2003):

Bayesian network, integration through “summary nodes”

• All parameters set manually, based on expert knowledge

p(y|xco)
p(y|xphys) p(y|xass)

p(y|x)

80

Trained combination

• Treat base classifier outputs as new dataset

• In principle, possible to use any classifier

• Danger of overtraining when using full training

set for both stages: use (nested) cross-validation!

Base classifier generation

• Bagging: bootstrapping and aggregating

• For B repetitions

• Sample a subset of size n’ < n using bootstrapping

• Train classifier on this subset (e.g. linear or decision tree)

• Combine B classifier outputs (e.g. sum or vote)

• Boosting:

• Initialize all objects with equal weight

• As often as necessary/wanted

• Sample a subset of size n’ < n according to object weights

• Train a weak classifier on this subset

• Increase weights of incorrectly classified objects

• Combine classifier outputs

Use weak classifiers: only sensible to average over things that differ

Let’s not combine some classifiers,

but set out to generate MANY

Base classifier generation (2)

• Adaboost:

• Initialize all objects with equal weight

• As often as necessary

• Select a train set size n’ < n according to object weights

• Train a weak classifier j

• Classify entire data set and calculate classifier error ej

• Calculate classifier weight αj = 0.5 log((1-ej)/ej)

• Multiply weights of incorrectly classified objects with exp(αj),

multiply weights of correctly classified objects with exp(-αj)

• Combine weak classifiers by weighted voting, using αj

Boosting: weight objects with #errors

Adaboost: weight objects with classifier error

Base classifier generation (3)

October

2008

84Combining Classifiers - Robert P.W. Duin
• Adaboost example

Base classifier generation (4)

• For all combination methods: base classifier should be

fast and weak, i.e. have large bias and small variance

• Decision stumps: short decision trees

• Linear classifiers: nearest mean, LDA

100 decision stumps,

combined by Adaboost

10 decision stumps,

combined by LDA

10 LDAs,

combined by LDA

Recapitulation

• Combining classifiers can help, but is no panacea

• Fixed combination:

• Usually sub-optimal

• Trained combination:

• Use cross-validation to prevent overtraining

• Use weak classifiers: fast, large bias, small variance

• Combination requires variation between classifiers:

• Train different classifiers on the same features

• Train classifiers on different feature spaces (sample features!)

• Subsample the train set (bagging, boosting)

Complexity

Sample size

What is a good classifier?

Sample size (2)

What is a good classifier?

And now?

Sample size (3)

What is a good classifier?

And now? Training size matters! But how?

Learning curves

• How does the error change with varying sample size

(number of objects in the train set)?
e

Apparent error eA

True error

n

True error: error on infinite test data
Apparent error: error on training data

True error not small because of

linear classifier and data is not

linearly separable

Learning curves (2)

• How does the error change with varying sample size

(number of objects in the train set)?

Asymptotic error

e

n

Apparent error eA

True error

Bayes error: overall minimal error (can be smaller than true error for given classifier)

Bayes error

Learning curves (3)

• How does the error change with varying sample size

(number of objects in the train set)?

Apparent error is too optimistic

Asymptotic error

Apparent error eA

True error

e

n

Bayes error

Learning curves (4)

• What happens when you take another classifier?

 (say, use a qdc instead of an ldc)

• More flexible:

• Better performance on the training set

• Worse performance on the test set

• Will perform best in the limit of many training objects

• Less flexible:

• Less adapted to the training set

• Better performance on the test set

• Will not perform best in the limit of many training objects

Learning curves (5)

• Switching to a more complex classifier

influences the learning curves

• So why not always use complex classifiers?

Asymptotic error improves

Apparent error improves

True error increasese

n

qdc
ldc

Classifier complexity

• Optimal complexity depends on sample size

• Small: use a simple classifier

• Large: can use a complex classifier

e

n

Complexity not well-defined.

Intuitively: More parameters, more complex

Classifier complexity (2)

• There is a tradeoff between complexity and training size

e

n

Classifier complexity (3)

• Remember the curse of dimensionality: for fixed sample size,

error increases if classifier complexity increases

Sample size

e

Complexity

Minimum error

Classifier complexity (4)

• How to find the best complexity for a given problem?

• Standard approach:

• Define a large set of classifiers

• Use cross-validation, and repeatedly

• Train all the classifiers on the training set

• Test all the classifiers on the test set

• Find the best classifier

• This is a lot of work….

Regularization

• For many classifiers, it is possible to reduce the complexity of

a classifier by adding constraints on the parameters 

• Often a term is added to the cost function:

• For example:

• Multilayer perceptron:

• Support vector classifier:

()A regE e f = +

2 2

1

()
n

k k i

k i

E g w
=

= − + t x

2

1

1

2

n

i

i

E C 
=

= + w

Regularization (2)

• Another form of

regularization:

starting with small

initial weights in

training multilayer

perceptrons

• Effective complexity

of MLPs increases

during training

5859 18790 18369 42824 22686

18635 47153 15454 3800

Regularization (3)

• Intuitively:

• Regularization is often a quadratic penalty on weight values

• Small weights correspond to simple classifier,

large weights to complex classifiers

• This boils down to a prior on weights

• For example:

• Regularization is like Bayesian estimation on parameters

• Bayesian model selection: apply Bayesian estimation

to entire models (classifiers/regressors)

2 2

1

()
n

k k i

k i

E g w
=

= − + t x

0 wi

p(wi)

Bayesian model selection

• The evidence for model M is the probability of

data X = {x} given model M

• Found by integrating over all possible values of parameters  :

• If multiple alternative models are available, use the Bayes factor:

• We can even take priors on models into account:

(|) (| ,) (|)p M p M p M d= X X θ θ θ

1
1

2

(|)
1

(|)

p M
M

p M
 

X

X

1 1
1

2 2

(|) ()
1

(|) ()

p M p M
M

p M p M
 

X

X

Bayesian model selection (2)

• Integrating over all possible values of  is very hard in practice

• Use Monte Carlo methods

• Use approximations:

• Akaike Information Criterion:

• Bayesian Information Criterion:

• k = number of parameters

• n = number of training objects

• opt = parameters optimizing likelihood

2 2log (| ,)optAIC k p M = −  X θ

log() 2log (| ,)optBIC k n p M = −  X θ

0 1 2 3 4 5 6 7 8 910
-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 7 8 910

0

10

20

30

40

AIC

BIC

#clusters →

(fit MoG, 3 Gaussians)

Recapitulation

• A fundamental trade-off in pattern recognition is between

model descriptiveness (e.g. classification error)

and model complexity

• Optimal complexity depends on the problem and sample size,

and can be assessed/controlled through:

• Cross-validation and learning curves

• Regularization

• Bayesian information criteria

• More fundamental approaches are:

• Bayesian model selection

END

	Slide 1: Machine Learning for Bioinformatics & Systems Biology 4. Selected topics
	Slide 2: Selected topics
	Slide 3: Artificial neural networks
	Slide 4: Artificial neural networks (2)
	Slide 5: Artificial neural networks (3)
	Slide 6: Artificial neural networks (4)
	Slide 7: History
	Slide 8: McCulloch-Pitts model (1943)
	Slide 9: McCulloch-Pitts model (2)
	Slide 10: Perceptron
	Slide 11: Perceptron (2)
	Slide 12: Perceptron (3)
	Slide 13: Perceptron (4)
	Slide 14: Perceptron (5)
	Slide 15: Perceptron (6)
	Slide 16: Multilayer perceptron (MLP)
	Slide 17: Backpropagation training
	Slide 18: Backpropagation training (2)
	Slide 19: Backpropagation training (3)
	Slide 20: Backpropagation training (4)
	Slide 21: Other training algorithms
	Slide 22: Multilayer perceptrons
	Slide 23: Multilayer perceptrons (2)
	Slide 24: Multilayer perceptrons (3)
	Slide 25: ANNs for regression
	Slide 26: Autoregressive ANNs / Autoencoder
	Slide 27: Autoregressive ANNs / Autoencoder (2)
	Slide 28: Deep learning Many hidden layers, learn by auto-encoding
	Slide 29: Deep learning Convolutional Neural Networks (1)
	Slide 30: Deep learning Learning features
	Slide 31: Deep learning Convolutional Neural Networks (2)
	Slide 32: Deep learning Convolutional Neural Networks (3)
	Slide 33: Deep learning Convolutional Neural Networks (4)
	Slide 34: Deep learning Convolutional Neural Networks (4)
	Slide 35: Radial basis function ANNs
	Slide 36: Radial basis function ANNs (2)
	Slide 37: Other types of ANN
	Slide 38
	Slide 39: Recapitulation
	Slide 40: 10 min break
	Slide 41: Support vector classifiers
	Slide 42: Vapnik
	Slide 43: Maximum margin classifier
	Slide 44: Maximum margin classifier (2)
	Slide 45: Maximum margin for 1D data
	Slide 46: Maximum margin classifier (3)
	Slide 47: Support vector classifier
	Slide 48: Support vector classifier (2)
	Slide 49: Support vector classifier (3)
	Slide 50: Support vectors
	Slide 51: Support vectors (2)
	Slide 52: Support vectors (3)
	Slide 53: Class overlap
	Slide 54: Class overlap (2)
	Slide 55: The kernel trick
	Slide 56: The kernel trick (2)
	Slide 57: The kernel trick (3)
	Slide 58: Kernels
	Slide 59: Btw, Kernel not restricted to SVMs
	Slide 60: Kernels
	Slide 61: Kernels (2)
	Slide 62: Kernels (3)
	Slide 63: Kernels (4)
	Slide 64: Kernels (5)
	Slide 65: Kernel combination
	Slide 66: Application
	Slide 67: Recapitulation
	Slide 68: Recapitulation (2)
	Slide 69: 10 min break
	Slide 70: Classifier combination
	Slide 71: Network integration (1)
	Slide 72: Network integration (2)
	Slide 73: Data integration (1)
	Slide 74: Data integration (2)
	Slide 75: Data integration (3)
	Slide 76: Classifier combination (late integration)
	Slide 77: Fixed combination
	Slide 78: Fixed combination (2)
	Slide 79: Fixed combination (3)
	Slide 80: Bayesian network to integrate
	Slide 81: Trained combination
	Slide 82: Base classifier generation
	Slide 83: Base classifier generation (2)
	Slide 84: Base classifier generation (3)
	Slide 85: Base classifier generation (4)
	Slide 86: Recapitulation
	Slide 87: Complexity
	Slide 88: Sample size
	Slide 89: Sample size (2)
	Slide 90: Sample size (3)
	Slide 91: Learning curves
	Slide 92: Learning curves (2)
	Slide 93: Learning curves (3)
	Slide 94: Learning curves (4)
	Slide 95: Learning curves (5)
	Slide 96: Classifier complexity
	Slide 97: Classifier complexity (2)
	Slide 98: Classifier complexity (3)
	Slide 99: Classifier complexity (4)
	Slide 100: Regularization
	Slide 101: Regularization (2)
	Slide 102: Regularization (3)
	Slide 103: Bayesian model selection
	Slide 104: Bayesian model selection (2)
	Slide 105: Recapitulation
	Slide 106: END

