
Machine Learning for 
Bioinformatics & Systems Biology

5. Deep learning strategies  & 
Generative Modelling

Marcel Reinders Delft University of Technology

Perry Moerland Amsterdam UMC, University of Amsterdam

Lodewyk Wessels Netherlands Cancer Institute



Deep learning strategies



What is Artificial Intelligence?

Learning from data



Machine learning : learning from data

Statistical modeling

Neural network modeling

(level metabolite X)

(height)



Complex functions, non-linear complex 
networks

But you need a lot of (labeled) data (Y’s)

many, many parameters



Reduce dimensionality, autoencoder
Build predictor in reduced space, embeddings

PCA
linear reduction

Autoencoder 
non-linear reduction

Use learned 
representation to predict Y

latent space, embedding, learned 
representation
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Famous example: MNIST

Learned representation
Digits separable



Multi modalities: 
cross-modality imputation, joint spaces

improvement
(gene expression)

(methylation)

Makrodimitris, Pronk, Abdelaal, Reinders. An in-depth comparison of linear and non-linear joint embedding methods for bulk and single-cell multi-omics, Briefings in Bioinformatics, 2024



Incorporate knowledge into neural network
Eg how molecules relate to each other

Sanyal et al. ProteinGCN: Protein model quality assessment using Graph Convolutional Networks. bioRxiv. 2020

message passing



Alfafold: predicting 3D structure of proteins
Based on graph convolutional neural net (GNN)

Jumper et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021.



Incorporate knowledge into neural network
Eg how genes relate to each other

Elmarakeby et al. Biologically informed deep neural network for prostate cancer discovery. Nature. 2021.



Incorporate knowledge into neural network
Eg on physical constraints on output

Peng et al. Multiscale Modeling Meets Machine Learning: What Can We Learn? Archives of Computational Methods in Engineering. 2020



Learn cellular drug/perturbation response

Alessandro Palma, Fabian J Theis, Mohammad Lotfollahi. Predicting cell morphological responses to perturbations using generative modelling. Nature Communications. 2025



Reinforcement learning
Learning strategies

feedback!

take an action



Generative Modelling
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Deep generative model families 

Autoregressive language models (LMs)

Variational AutoEncoders (VAEs)

Generative Adversarial Networks (GANs) 

Normalising Flows (NFs)

Diffusion Models (DMs)

Strokach, A., & Kim, P. M. (2022). Deep generative modeling for protein design. Current opinion in structural biology, 72, 226-236.



Applications in Bioinformatics

17

Autoregressive language models (LMs)

Variational AutoEncoders (VAEs)

Generative Adversarial Networks (GANs) 

Normalising Flows (NFs)

Diffusion Models (DMs)

e.g., protein design (ProtGPT2, ProGen, …), 
drug discovery (molGPT, …), DNABert, …

e.g., data generation/augmentation across 
different bioinformatics domains (scRNA-
seq data, DNA sequences, Protein 
sequences), …

e.g., protein design, drug discovery, representation 
learning in transcriptomics, multimodal data 
integration, …

e.g., protein folding, protein and small 
molecule generation, protein-ligand 
interaction modeling, data analysis (cryo-
EM, gene expression), single-cell image, …

and many more…



Autoregressive Language Model
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Autoencode sequences (Language models)

ProtTrans Transformer model (attention)

Bepler and Berger. Learning the protein language: Evolution, structure, and function. Cell systems. 2021.
Elnagger et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE PAMI. 2022
Heinzinger et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinformatics. 2019



Autoencode sequences (Language modes)
Protein embeddings, function prediction, redesign



Variational Autoencoder
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Revisit Autoencoder

2D

Learned representation
Digits separable

Sampling from embedding space 
generates samples that can be 
decoded and look like the 
samples in input space

Enforce this behavior more: 
Require that samples close to 
embedded sample should 
generate the same sample



Probabilistic encoder
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inference model generative model

Choice prior can be anything, Gaussian, Laplacian, Student t, 
Mixture of gaussians, etc.



Backpropagation problem

● Backpropagation cannot flow through the random node
● Solve by reparameterization

Instead of sampling from 

Sample from 

And linear transform

Alternatively, sampling from 

Is the same as sampling from 

And setting

https://blog.bayeslabs.co/2019/06/04/All-you-need-to-know-about-Vae.html



What to optimize

● For each sample z, there will be two variables μ and σ (defining Gaussian)
● Accumulation of all Gaussian distributions becomes the original 

distribution P(x)

● P(x), likelihood of the data, the bigger the better



LogP(x)

Kullback Leiber divergence, always bigger then zero

= ELBO

Maximizing P(x) equal to maximizing ELBO
https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68

equals 1 (trick)



ELBO

maximize Maximize

P(x|z) (Decoder’s output) given that q(z|x) 
(Encoder’s output) is as high as possible. Similar to 
AutoEncoder’s loss function(reconstruction error):

https://medium.com/geekculture/variational-autoencoder-vae-9b8ce5475f68

prior on z



Some variations (many more)

● 𝛽-VAE : Balance between reconstruction loss and KL term, learn to 
entangle (𝛽>1)

● 𝛽-Total Correlation VAE (𝛽-TCVAE) : Additionally penalizing the total 
correlation between the latent variables, more statistically independent 
latent variables

dependence term prevent latent variable to diverge from prior

mutual information between the data 
variable and latent variables



Autoencoder with generating distribution
Latent dimensions can vary different traits

Distributions!



Example: Beta-VAE on GTEX data ; latent factors are 
disentangled and correlate with data features

17,382 samples with 56,200 genes

representing 30 different tissue 

types

Eltager, Abdelaal, Charrout, Mahfouz, Reinders, Makrodimitris, Benchmarking variational AutoEncoders on cancer transcriptomics data, Plos One 2023 



Diffusion model
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Idea: Recursively add noise (the diffusion) 

32

Image is transformed to TV static (white noise) 



Idea: What if we could reverse this process?
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Then we can draw random noisy image, and generate an 
image like our training data



Diffusion Probabilistic Models

● Forward diffusion process: Markov chain gradually adds noise to data to obtain 
approximate posterior

● Generative diffusion process: use the Markovian assumption to learn the reverse 
process

𝑞 𝑥𝑇|𝑥𝑇−1 ≈ 𝑁 0, 1

𝑝 𝑥𝑇 = 𝑁 0, 1

J. Ho, et al. “Denoising diffusion probabilistic models.” In NeurIPS 2020
This we are going to do by trained NN



Intuitive

● Need to learn                 which is our model;  

● Provide any NN architecture with
and learn to predict               from 

1) Want to optimize that for all diffusion steps
2) Need to do that for many diffusions, and for all time steps (to be able 

to generate from noise)
35

𝜃 refers to model

diffuse



more formal
(sorry, some more math)
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The forward process (diffusion process) (2)
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The posterior 
distribution after T 

steps

The product of each 
state at time t given 

the previous state t-1

Corrupt data by sampling from a 
multivariate Gaussian distribution 

mean centered around the 
previous state

Where β1, …, βT is a variance schedule 
(either learned or fixed)

Too large β will corrupt image too 
quickly. Very difficult to undo

Too small will take a long time to learn

diffuse

Tutorials and math derivations: 
https://cvpr2022-tutorial-diffusion-models.github.io/ 
https://towardsdatascience.com/understanding-diffusion-probabilistic-models-dpms-1940329d6048
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 



The forward process (diffusion process) (3)

● Property of the forward process is that it admits sampling xt at an arbitrary 
timestep t in closed form (one step instead of sequence of steps)

● Allows to rewrite, reverse step(!) (remember q was defined with:                  )

38
Available, can be used for training!

diffuse



The reverse process (reverse diffusion process)
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The parameterised Markov 
chain mapping noise back to 

image

Different time steps are 
associated with different 

noise levels

p(xT) = q(xT|x0) ≈ Ɲ(0, 1) These need to be 
learned

Note: Reverse diffusion transition distribution depends only 
on the previous timestep (Markov): 

diffuse



● Reverse Markov transitions:

● Find the one that maximize the likelihood of the training data 

● Use Kullback-Leibler Distance to measures distance between two distributions

Reverse Markov transitions (1)

40

diffuse



Reverse Markov transitions (2)

● Simplify: Set the variances equal to variances in forward process schedule :

● Reverse Markov transition becomes:

● Allows to transform (rewrite) Kullback-Leiber distance to:

● The most straightforward parameterization of    is   a model that 
predicts the        forward process posterior mean (known/training!)

41

known model that we want

diffuse



Some rewriting

● Reparametrize forward step

● Rewrite posterior mean

42

diffuse

rewrote x0



our model

Prediction model, sampling becomes

● Remember

● Becomes now

●       is available function approximator intended to predict     from        : LEARN

● To sample              is to compute:

43



phew
(now algorithm ☺)

44



DPM training and sampling
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𝐱𝑡, the noised image at 
timestep 𝑡

predicted noise add noise back for stochasticity 
(and ensure noise remains 

Gaussian)

sample from prior

J. Ho, et al. “Denoising diffusion probabilistic models.” In NeurIPS 2020

predicted
noise



Example Diffusion Model
Generating Antibodies

46



Introduction to antibodies

● Antibody (Ab) or Immunoglobulin (Ig)
 Y-shaped protein produced by the immune system
 in response to antigens (Ag)

● Two heavy (H) and two light (L) chains
● Constant regions (mostly H)
● Variable regions (H/L)

Antigen-binding site (paratope)
 Framework region + CDR loops 
 CDR-H3 loop → most variable

● Monoclonal antibody (mAb) → engineered in the lab



Diffusion model for antibody design – DiffAb

● In antibody design, diffusion models used to generate CDR sequences and structures
● Condition on bound antibody-antigen complex
● Multimodal → amino acid types, Cα atom coordinates, and orientations in SO(3)

Generative diffusion process

S. Luo, et al. “Antigen-specific antibody design and optimization with diffusion-based generative models.” In NeurIPS 2022



DiffAb – Diffusion processes

○ F, G, H share an encoder (3D attention layers) of single and pairwise features from the previous 
timestep

○ These networks are equivariant to the rotation and translation of the overall structure

Feature Forward diffusion process (𝒕 = 𝟎,… , 𝑻). Distributions 𝒒
Prior distribution (sampling 
from 𝒕 = 𝑻)

Generate diffusion process (𝒕 = 𝑻,… , 𝟎). Neural 
network parameterization

Amino acid types

Multinomial distribution:

𝑞 𝑠𝑗
𝑡|𝑠𝑗

0 = Multinomial ത𝛼𝑡 ∙ onehot 𝑠𝑗
0 +

1 − ത𝛼𝑡

20
· 𝟏

Uniform distribution over 
20 classes

F → MLP decoder to predict the probabilities of the 
20 amino acids

Cα coordinates
Normal distribution:

𝑞 𝐱𝑗
𝑡|𝐱𝑗

0 = 𝑁 𝐱𝑗
𝑡 | ത𝛼𝑡 · 𝐱𝑗

0, 1 − ത𝛼𝑡 𝐈
Standard normal 
distribution

G → MLP decoder to predict the coordinate deviation 
wrt the current orientation in the local frame

Orientations in 
SO(3)

Isotropic Gaussian distribution in SO(3):

𝑞 𝐎𝑗
𝑡|𝐎𝑗

0 = 𝐼𝐺SO 3 𝐎𝑗
𝑡 | ScaleRot ത𝛼𝑡 · 𝐎𝑗

0 , 1 − ത𝛼𝑡
Uniform distribution over 
SO(3)

H → MLP decoder to predict the so(3) vector that is 
converted to orientation matrix

S. Luo, et al. “Antigen-specific antibody design and optimization with diffusion-based generative models.” In NeurIPS 2022



Result: Generate new antibodies

50

S. Luo, et al. “Antigen-specific antibody design and optimization with diffusion-based generative models.” In NeurIPS 2022



Developability properties

● Which properties are essential for antibody developability?
● How can we calculate or predict these properties?

hydrophilic

hydrophobic

1. Hydropathy score (proxy for solubility) 2. Folding energy (∆G)

Predictor of changes in binding energy upon 
mutation (∆∆G) for protein-protein complexes

J. Kyte and R.F. Doolittle. “A simple method for displaying the hydropathic 

character of a protein.” Journal of Molecular Biology, 1982.

S. Shan, et al. “Deep learning guided optimization of human antibody against 

SARS-CoV-2 variants with broad neutralization.” Proceedings of the National 

Academy of Sciences, 2022.



Proposed guidance methods: Property-aware prior

● Sample from informative prior:      

 𝑠𝑗
𝑇 ∼ Multinomial ഥ𝐩 = 1 − 𝑏 · Uniform 20 + 𝑏 · Multinomial 𝐩

● Probabilities 𝐩 = [𝑝1, … , 𝑝20] for hydropathy

Villegas-Morcillo, Weber, Reinders, Guiding diffusion models for antibody sequence and structure co-design with developability property, PRX Life, 2024 



Proposed guidance methods: Sampling by property

● At each generation timestep:
1. Sample 𝑁 times
2. Select the sample with minimum property value

● With multiple properties, select Pareto optimal (minimum of the sum)
● Properties: hydropathy score and predicted ∆∆G 

Villegas-Morcillo, Weber, Reinders, Guiding diffusion models for antibody sequence and structure co-design with developability property, PRX Life, 2024 



Pareto optimal solutions

● Designs in the Pareto frontier
● Different CDR sequences lead to similar structures compared to the reference 

with improved hydropathy and predicted ΔΔG

Villegas-Morcillo, Weber, Reinders, Guiding diffusion models for antibody sequence and structure co-design with developability property, PRX Life, 2024 
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